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1. Introduction

The subject of this chapter is quantum chaos (QC), in particular, the QC that occurs in the

Anisotropic Kepler Problem (AKP). In QC, one studies a quantum system whose classical

counter part is chaotic, and one investigates how the chaotic property in the classical

theory shows up its imprints in the quantum theory. To elucidate this quantum-classical

correspondence is the first mission of the quantum chaos study.

With the advent of nanophysics techniques, QC has become very important concern also at

the experimental side; for pioneering works, we refer to conductance fluctuations in quantum

dot (Marcus et. al., 1992), magnetoresistance on a superlattice of antidots (Weiss et al., 1991),

a cold-atom realization of the kicked top (Chaudhury et al., 2009).

Also for an interesting experimental observation of quantum scars of classical orbits (Heller,

1984; 1989), we refer to (Stein & Stöckmann, 1992).

Furthermore, quantum chaos study has been developed under far-reaching mutual influences

with related areas. In order to explain where our study in AKP stands, let us briefly review a

few aspects of quantum chaos study.

Let us first consider the random matrix theory (RMT) (Mehta, 2004). It is proposed by (Wigner,

1951) to predict the universal spectral property of complex nucleus, and the mathematical

basement is set by (Dyson, 1962), (Dyson & Mehta, 1963) and (Mehta & Dyson, 1963). In

RMT, the hamiltonian of the physical system is described by a random matrix in the three

basic ensembles. This implies that the intrinsic quantum property of the physical system is

determined by the time reversal symmetry and internal symmetry only, and does not depend

on the details of the system hamiltonian. If the time-reversal by the operator T is broken

in a system, the relevant ensemble is gaussian random ensemble of hermite matrices for the

hamiltonian, admitting the invariance of the hamiltonian under the unitary transformation

(GUE), with Dyson parameter β = 2. If the T invariance holds with T2 = 1, it is gaussian

orthogonal ensemble (GOE) of real symmetric matrices with β = 1 , while with T2 = −1,

it is gaussian symplectic ensemble (GSE) of quarternion selfdual matrices with β = 4. It is

conjectured by (Bohigas et al., 1984) that, irrespective to the details of the system hamiltonian,

the stochastic spectral property of energy levels of an physical system (including AKP) is
uniquely described by the relevant RMT ensemble chosen by the above symmetry property
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2 Will-be-set-by-IN-TECH

only, provided that the quantum system is in the ergodic regime (BGS conjecture). 1 This

conjecture2 most remarkably asserts universality classes in the whole lots of quantum chaos

systems, and has been successful in great many physical systems 3. Now, let us mention

a famous, though ever charming episode; a mathematician Montgomery was introduced to
Dyson at a tea time and explained his result on the spacing distribution of the non-trivial

zeros of Riemann zeta function. Then, Dyson immediately told that it is just what he knows,

the P(s) of GUE! Of course, one should also mention that the Gutzwiller trace formula that

enumerates the semi-classically quantum Green function of a classically chaotic system from

unstable periodic orbits has so close intriguing correspondence with the trace formula of the

Riemann zeta function (Bohigas, 2005). A deep correspondence between the Riemann zeta

function and the random matrix theory is shown by the agreement between the Conrey-Ghosh

conjecture on the 2k-th continuous moment of ζ(1/2 + it) and Keating-Snaith random matrix

calculation. One of the most flourishing areas in physics is Anderson localization (Evers &

Mirlin, 2008) which is only understandable as a quantum phenomena from the interfering

amplitudes at the metal and insulator transition point. The critical statistics is a target of

critical random matrix theories. So much for general review and let us turn to AKP.

In this chapter, we calculate the energy level statistics of AKP, and find that it is described

well (over a finite range of mass anisotropy) by the critical random matrix model devised by

(García-García & Verbaarschot, 2003) that is also related to the critical level statistics in the

Anderson localization. We also investigate the systematic change of the AKP wave functions

with the mass anisotropy. In the Anderson localization, the theory predicts that at the mobility

edge, the wave function is multi-fractal, and the level statistics indicator Σ2(L) should show

a linear rise for large L that is also observed by our data. In this way, our study may give a

support to the recent notion Anderson localization in quantum chaos proposed by (García-García,

2007; García-García & Wang, 2008).

The AKP is a system of an electron bound to a proton, just like a hydrogen atom, but the

electron has an anisotropic mass. This system is experimentally realized by an electron in a

doped semiconductor. Gutzwiller, who made the periodic orbit theory by his semi-classical

trace formula, chose often AKP for a nice testing ground of QC (Gutzwiller, 1971; 1977;

1980; 1981; 1982; 1990). In fact, when mass anisotropy is not present, the system is the

hydrogen atom (the Kepler problem) that is one of the most well-studied integrable quantum

system. By varying the mass anisotropy parameter, the classical system changes the strength

of randomness. It is known that the AKP is not KAM system (García-García & Verbaarschot,

2003; Wintgen & Marxer, 1988) that means that the classical phase space, when the mass

anisotropy is present, is not a mixture of integrable regions (tori) and ergodic regions. Instead,

with the increase of the anisotropy, the system changes its classical phase space structure

due to the gradual collapse of tori, via the structure filled by cantori (Zaslavsky et al., 1991)

(stochastic web of chaos), finally to that filled by isolated unstable periodic orbits. Thus, AKP

is really a nice testing ground that gives us the opportunity to investigate how systematically,

1 The ergodic regime is defined by as the region with Ec >> ∆ where Ec is the Thouless energy Ec =
h̄D/L2 (D is the diffusion constant and L is the system size) and ∆ is the mean level spacing.

2 Recently, a generating function described by a set of periodic orbits is shown, in the semi-classical
limit, equivalent to the Feynman diagrams for the kernel in the random matrix theory (Heusler et al.,
2007). This clarifies the way the random matrix theory describes the quantum chaos system in the
semi-classical limit.

3 More detailed universality classification is given by (Zirnbauer, 1996).
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Anisotropic Kepler Problem and Critical Level Statistics 3

along with increasing anisotropy, the quantum feature changes reflecting the change in the

classical phase space structure. Any periodic orbits in AKP in the chaotic regime can be

uniquely coded by its own Bernoulli sequences and furthermore Gutzwiller found an amazing

approximate formula that gives the action of a periodic orbit from its Bernoulli sequences.
In this chapter we aim to view various faces of QC from AKP taking the above mentioned

advantages of AKP.

In section 2, we first calculate the energy levels of AKP at various anisotropy following the

method developed and first applied to AKP by (Wintgen et al., 1987). In this method, there is a

particular parameter ǫ (see (6)) and how to choose it at given anisotropy is crucial to guarantee

the accuracy of the levels. We use the Sturmian basis just as in (Wintgen et al., 1987) and we

present a couple of simple rules to choose the parameter at a given anisotropy. Also, we set

up another formulation based on the harmonic oscillator basis. This provides us with a useful

check of our results and, in addition, serves as an efficient method for calculating Husimi

function that is an important measure to explore the quantum and classical correspondence.

In section 3, we investigate the level statistics in AKP. There is a concrete result by (Wintgen

& Marxer, 1988) for the anisotropy parameter γ = 0.8 (only), but, in order to investigate

the quantum statistics change according to the the variation of γ, we definitely need reliable

eigenvalue set at various anisotropy too. This is why we have performed the eigenvalue

analysis from scratch as described in section 2. We now show for the first time how the number

variance and the spectral rigidity change their feature with the variation of mass anisotropy in

AKP. The AKP is a system that preserves the time reversal invariance with T2 = 1 and hence

its level statistics is expected to be described by GOE in the ergodic region (γ ≪ 1), while in

the vicinity of Kepler limit (γ = 1), it should be Poissonian. We are interested in the physics in

the intermediate range. (García-García & Verbaarschot, 2003) showed that the level statistics of

AKP at one particular anisotropy is successfully explained by a critical random matrix theory

that has one parameter h (temperature in an equivalent model), using the eigenvalue set at

γ = 0.8 given by Wintgen only available at that time, provided that h is suitably chosen. We

show that the AKP level statistics can be well described by their critical random matrix theory

in a finite range of γ in the intermediate region and show that there is a smooth relation

between the parameter h and the anisotropy γ (h ∝ e7.2γ).

In section 4, we now turn our attention to various interesting features of wave functions

of AKP. We discuss firstly the nodal line systematics. Then we investigate the probability

densities and find salient scars of periodic orbits. This observation is strengthened by

the subsequent study of Husimi functions of AKP calculated by the method developed in

subsection 4.3.

In section 5, we conclude after a briefly discussion on the future outlook of our work,

especially, on the possibility to consider quantum chaos in AKP in the context of Anderson

transition

2. Non-perturbative matrix method for the evaluation of quantum energy levels

2.1 WMB method

First we recapitulate the WMB method in the context of AKP (Wintgen et al., 1987; Wintgen

& Marxer, 1988) with the electron mass tensor diag(m1, m1, m2) when diagonalized and mass

83Anisotropic Kepler Problem and Critical Level Statistics
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anisotropy parameter is γ = m1/m2 < 1. 4

Introducing appropriate dimensionless coordinates (x, y, z) and momenta (px , py, pz), the

AKP hamiltonian is

Ĥ = −
(

∂2

∂x2
+

∂2

∂y2
+ γ

∂2

∂z2

)

− 2

r
(1)

= −∆(3) − 2

r
+ (1 − γ)

∂2

∂z2
(2)

in the units h̄2K/m1e2, m1e4/2h̄2K2, 2h̄3K2/m1e4 for length, energy, time, respectively(K is the

dielectric constant). One uses Sturmian basis {|nℓm〉}

〈�r|nℓm〉 = 1
r

√

n!
(2ℓ+n+1)!

e−
λr
2 (λr)ℓ+1L2ℓ+1

n (λr)Yℓm(θ, ϕ). (3)

Here n, ℓ, m are radial, azimuthal, magnetic quantum numbers respectively and they are

related to the principle quantum number np by np = n + ℓ+ 1. The parameter λ is introduced

for the scaling of r. (In the left hand side the dependence on λ is suppressed for simplicity).

Note for the eigen function with np in the Kepler problem (γ = 1), λ = 2/np. In the Sturmian

basis the Schrödinger equation of the AKP becomes a matrix equation:

[

−λ
←→
∆(3) + (1 − γ)λ

←−−→
∂2/∂z2 − 2(

←→
1/r)

]

Ψ = (E/λ)
←→
Id Ψ (4)

where the eigenvector Ψ is Col.(〈nℓm|Ψ〉), and the matrix elements are respectively

〈n′
ℓ
′m′|←→Id |nℓm〉 = δℓ′ℓδm′m[2(n + ℓ+ 1)δn′n −

√

(n + 1)(2ℓ+ n + 2)δn′n+1],

〈n′
ℓ
′m′|

←→
∆(3)|nℓm〉 = (−1)n+n′+1 1

4
〈n′

ℓ
′m′|←→Id |nℓm〉,

〈n′
ℓ
′m′|

←→
1

r
|nℓm〉 = δn′nδℓ′ℓδm′m.

(The ∂2 term is somewhat complicated and we refer the reader to (Wintgen et al., 1987)).

Noting that the Coulombic interaction term is diagonal, while
←→
Id is not, one exchanges

them between right and left to obtain the standard eigenvalue problem. Dividing the whole

equation by λ one obtains

←→
M Ψ ≡

[

−
←→
∆(3) + (1 − γ)

←−−→
∂2/∂z2 − ǫ

←→
Id

]

Ψ = (2/λ)Ψ. (5)

Note that E/λ in the right-hand side of (4) is now (after divided by λ) changed into a

parameter ǫ in the left-hand side of (5), namely

E/λ2 ⇒ ǫ. (6)

This ǫ should be fixed at some constant value in the diagonalization of (5). This fixing is an

extremely clever way in WMB. We will explain this point shortly below.

4 For ordinary Kepler problem γ is unity; for silicon γ = 0.2079 and for germanium γ = 0.05134.
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Anisotropic Kepler Problem and Critical Level Statistics 5

The ’hamiltonian’ matrix
←→
M is symmetric and block diagonal; nonvanishing elements are

those with ℓ′ = ℓ+ 2 or ℓ, and due to the rotational symmetry about z-axis m′ = m. Therefore

one can organize
←→
M as a banded and sparse matrix. By solving (5) for the eigenvalues Λi ≡

2/λi the energy levels are in turn determined by Ei = ǫλ2
i . This is the WMB method. In this

scheme (5), the eigen function 〈�r|Ψi〉 of the i-th level Ei is calculated from the eigen vector Ψi

using the Sturmian basis with parameter λi = (Ei/ǫ)1/2. To be explicit one calculates

〈�r|Ψi〉 = ∑
n,ℓ,m

〈�r|nℓm; λi〉〈nℓm; λi|Ψi〉. (7)

This is in a sharp contrast to (4) where eigenstates of all energy levels must be calculated with

a uniquely chosen λ. With the flexibility of optimizing λi for each Ψi, WMB method (5) is by

far superior to (4). For instance, if γ ≈ 1, ǫ ≈ −1/4 is a good choice since at ǫ = −1/4

the Sturmian basis is already the proper basis for the first order perturbation theory for AKP

in 1 − γ. 5 In fact we can accommodate various γ by adjusting ǫ properly. Supposing that

we choose another value for the parameter ǫ of the matrix
←→
M , the eigenvalues Λis will be

accordingly changed, but the physical energies Ei should be kept unchanged. However in

practice we cannot help using a truncated basis. We discuss how to accommodate this subtle

problem by adjusting ǫ shortly below.

Hereafter we focus our attention to the m = 0 sector that is related to the 2−dimensional

classical AKP. Also for definiteness we consider the case of even ℓ case. With these constraints

the matrix
←→
M to diagonalize is N × N with N = (Np + 1)2/4 where Np is the maximal

principal quantum number of the Sturmian basis {|nℓm〉} , i.e. np = n + ℓ + 1 ≤ Np, (ℓ ≤
np − 1).
We present in Fig. 1 the energy levels of m = 0 sector obtained by diagonalizing the

’hamiltonian’
←→
M in (5) with N = 7921 (Np = 177). The levels are plotted as functions of

the scaling parameter ǫ (see (5)) for typical values of anisotropy parameter γ, after proper

stretch (Bohigas, 2005) using Thomas-Fermi approximation N(E) for the stair case function of

AKP (Wintgen & Marxer, 1988)

N(E) ≡
∫ E

−∞
dE′ρ(E′) ≈ − 1

4
√

γE
(8)

where ρ(E) ≡ ∑i δ(E − Ei) is the level density. Given N(E), the stretched energy levels fi are

given by inversion (unfolding map (Bohigas & Giannoni, 1984));

fi = N(Ei), i = 1, · · · , N (9)

and the average energy spacing 〈 fi+1 − fi〉 = 1. The levels must be independent from the

scaling parameter ǫ (level curves must be horizontal) in so far as the matrix formalism works

properly. (Recall that the WMB method is not a perturbation theory; it should yield exact

results if the matrix size N is infinity at any choice of ǫ.) However, at a glance, one finds that

the curves are under all over systematic distortion induced by truncating the matrix size. In

order to accommodate this, one should select the part of calculated energy levels that satisfy

5 At ǫ = −1/4 and γ = 1, λi = (Ei/ǫ)1/2 = 2/np so that L2ℓ+1
n (λir) = L2ℓ+1

n ((2/np)r) is the main radial
part of the eigenfunction of the Kepler problem.
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ε
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ε

−0.2−0.3 −0.1
ε

γ = 0.4 γ = 0.2 γ = 0.05

γ = 0.9 γ = 0.8 γ = 0.6

Fig. 1. Stretched level curves fi at every 200 level along with the good domain on the fi − ǫ
plane. Np =177, N = 7921, ℓ=even, m=0. Sky- and dark-blue mountain-like curves account
for necessary conditions 1 and 2 respectively and the bulk under the curves satisfies
sampling test (e.g. Fig. 2). In order to make curves, diagonalization is performed for each γ
and for thirty values of scaling parameter ǫ ranging from −0.3 to −0.01 with inclement 0.01.
The green dashed curve connects the minimum point of fi and hits naturally the peak of the
mountain. The level group with level-repulsion property is marked by red; these groups
together remarkably overlap the domain for any γ (except the one γ = 0.9 > 8/9). For
discussion on this, see subsection 3.1.

the following condition:

Condition 1: The level curves must be all horizontal. This is a necessary condition. In each diagram

for respective γ the region under the (sky-blue) mountain-shaped curve is the good ǫ-scaling

region.

One must consider one more condition. Recall that the spectrum (Ei) is stretched by
Thomas-Fermi formula. If this procedure is valid the resultant spectrum ( fi) must satisfy

δ fi ≈ 1 apart from local fluctuations. Let us put this into a quantitative form;
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Anisotropic Kepler Problem and Critical Level Statistics 7

Condition 2: The |〈δ fi〉n − 1| � 0.05 .6 Here n labels one of the 40 groups that the whole levels

are divided into by ascending order. The region under the (dark-blue) mountain-shaped curve

is the successfully stretched region. One observes a good overall agreement between two-types

of regions, which gives a strong support for the celebrated WMB method. The bulk under the
mountain-shaped curves in the fi − ǫ plane in Fig. 1 is a candidate region for the study of level

statistics satisfying both of necessary conditions. Let us call it the good domain.

Now we have to proceed a step forward; the energy levels are under subtle fluctuation and we

must examine the level statistics (for each anisotropy γ) in order to understand the quantum

AKP theory. Does the good domain maintain a unique level statistics?

(a)

(b)

(c)

∆
3
(L

)

Poisson
GOE

0

0.4

0.2

0 5 10 15 20
L

(b)

(c)

(a)

0 1 2 3

GOE

Poisson

(L
)

Σ
2

0

1

0.5

L
0 1 2 3

(a)

(b)

(c)

0.8

0.4

0

0.8

0.4

0

0.8

0.4

0

(a)

(b)

(c)

GOE

P
(s

)

s

Poisson

Fig. 2. Comparison of the level statistics P(s), Σ2(L), ∆3(L) sampled at regions (a), (b), (c).
Note that graphs for the latter two statistics are properly shifted to avoid their overlap. The
vertical axis is for (c).

Fig. 2 exhibits a sample of test. Here we have selected three regions (a, b, c), each consists of

a thousand levels (5 groups) at a given ǫ. The comparison of the level statistics (Dyson, 1962;

Dyson & Mehta, 1963; Mehta, 2004) in this figure succinctly shows that there is no sizable

difference of the statistics with respect to any one of the three statistical characteristics; the

spacing distribution P(s), the number variance Σ2(L) and the spectral rigidity ∆3(L). (For

details of these quantities, see later discussion.) Repeating this test all over the good domain,

we have checked that any region in the good main is equally satisfactory for the level statistics.

Now we are in the position to propose a prescription to determine the proper ǫ for the

eigenvalue analysis on the WMB method;

6 We checked that the accepted region does not vary more than one group in height (200 levels) even if
the bound is replaced by 0.1. On the other hand if the bound is decreased the region becomes sparse
because of the tail of the P(s) distribution. The averaging over the group acts to suppress this.
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8 Will-be-set-by-IN-TECH

Prescription for ǫ: Choose the ǫ value that gives the maximum height of the good domain; then one can

determine the largest number of levels at the given γ and at the given matrix size N. This ǫ is the best.

We denote it ǫ∗.

2.2 Regularities regarding the best choice for ǫ

We have found the following empirical regularities regarding ǫ∗.

(i) Fig. 3 shows the relationship between γ and ǫ∗. Data points clearly follow a linear line

described very well by

ǫ∗ ≃ (−1/4)γ. (10)

0 0.2 0.4 0.6 0.8 1

0

−0.05

−0.1

−0.15

−0.2

−0.25

γ

ε
*

Fig. 3. The ǫ∗ vs. γ.

(ii) Consider the ratio Re f f of the number of eigenvalues that satisfy conditions (1) and (2)

to the number of whole levels N at ǫ∗. This is an indicator that tells us how much levels

among all are really usable for the investigation of quantum level statistics. Fig. 4 shows

plotted Re f f as a function of γ. We find it is described very well by

Re f f ≃ c
√

γ. (11)

Here c = 1 with an error of only one per cent.

We have checked that these observations do not depend on the matrix size N. For instance, the
small set N = 1444(Np = 75) shows the same features with the large set N = 7921(Np = 177).
This independence assures the following planning of the AKP diagonalization using the WMB

method. Using (10) as a rule of thumb, we can first easily estimate the appropriate ǫ∗ that is

appropriate for a given anisotropy γ. Then using (11), we can estimate the necessary matrix

size N for obtaining desired number of energy levels. For instance, if one wants to examine the

germanium (silicon) levels with γ ≈ 0.05 (0.2), then Re f f = 0.23 (0.46) at ǫ∗ = −0.01(−0.05).
Then, to obtain first say 2000 reliable levels in the ℓ =even and m = 0 sector, one has to choose

N ≈ 8800(4400). On the other hand, for γ = 0.8, the appropriate ǫ∗ now becomes −0.2 and

88 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



Anisotropic Kepler Problem and Critical Level Statistics 9

0 0.2 0.4 0.6 0.8 1

0.8
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0.4

0.2

0
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R

ef
f

SiGe γ

Fig. 4. Ratio of reliable levels vs. γ.

Re f f = 0.9. 7 Regularities (10) and (11) are remarkably simple. It is obvious that the ǫ∗ curve in

Fig. 3 starts from ǫ = −1/4 at the Kepler limit (γ = 1) because, as we discussed below (7), the

Sturmian basis is already the proper basis for the first order perturbation theory for AKP. This

curve presumably represents the effect of truncating the basis in the WMB diagonalization.

(10) and (11) are tantalizing.

2.3 Application of harmonic oscillator function basis to AKP

Harmonic oscillator function basis is quite useful for quantum chaos study through Husimi
function (Husimi, 1940) and we discuss here the application of it to AKP. The formulation is

almost parallel to that in subsection 2.1; main difference stems in the interaction terms. Let us

introduce the semi-parabolic coordinates μ, ν, φ by

μν = ρ =
√

x2 + y2,
1

2
(μ2 − ν2) = z, φ = tan−1

( y

x

)

. (12)

The AKP Schrödinger equation in terms of semi-parabolic coordinates is

[

− 1

2(μ2 + ν2)

(

∆
(2)
μ + ∆

(2)
ν

)

+
1 − γ

2

∂2

∂z2
− 2

μ2 + ν2

]

|Ψ〉 = E|Ψ〉. (13)

7 The level statistics of AKP at γ = 0.8 were studied in the seminal paper (Wintgen & Marxer, 1988)
but the choice of ǫ was not written there regrettably. Also no other data were published for other γ.
In an earlier article (Wintgen et al., 1987) (the paper of WMB method), the low lying levels of silicon
(γ = 0.2079) and germanium (γ = 0.05134) had been presented with the explicit statement of ǫ = −0.01
for both cases. This led us to some confusion at the early stage of this work, because, for γ = 0.8, the
proper choice is ǫ ≈ −0.2 much smaller than ǫ = −0.01. Our level statistics results for γ = 0.8 agree
with those in (Wintgen & Marxer, 1988) within errors; therefore we believe that ǫ was adjusted properly
in (Wintgen & Marxer, 1988). We add that the best choice for Silicon is ǫ = −0.05 rather than ǫ = −0.01;
this enhances Re f f approximately by factor 3. At these circumstances we revisited the whole level
calculation and construct Fig. 1 (plus a dozen diagrams for other anisotropy).
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Multiplying by μ2 + ν2 and exchanging the Coulombic interaction term and the E term

between the right and left hand sides, one obtains

[

− 1

2

(

∆
(2)
μ + ∆

(2)
ν

)

+ |E|(μ2 + ν2) +
1 − γ

2
(μ2 + ν2)

∂2

∂z2

]

|Ψ〉 = 2|Ψ〉. (14)

Thanks to the semi-parabolic coordinates, the Coulombic singularity has removed

(Kustaanheimo & Stiefel, 1965) (for γ = 1).

One has now two of two-dimensional harmonic oscillators coupled by an interaction term

(μ2 + ν2)∂2/∂z2 introduced by the mass anisotropy in the original problem. Let us call

the oscillators as μ− and ν− oscillators respectively. The proper basis for each oscillator is

the harmonic oscillator basis and for two of them one uses tensor product of these bases.

The μ− harmonic basis {|j, m〉} is defined as eigenstates of the Schrödinger equation for the

two-dimensional harmonic oscillator
(

− 1

2
∆
(2)
μ +

1

2
μ2

)

|j, m〉 = (2j + 1 + |m|) |j, m〉 (15)

and the polar-coordinate representation of normalized |j, m〉 is given by

〈μ, φμ|j, m〉 ≡ ψjm(μ, φμ) =
1√
π

√

j!

(j + |m|)! eimφμ L
|m|
j (μ2)e−

μ2

2 μ|m|,

∫ ∞

0
μdμ

∫ 2π

0
dφμ〈j′, m′|μ, φμ〉〈μ, φμ|j, m〉 = δjj′δmm′ . (16)

For the m = 0 sector of AKP, one should set mμ = mν = 0 and one uses tensor basis

|i, j〉 ≡ |i, mμ = 0〉 ⊗ |j, mν = 0〉,
|μ, ν〉 ≡ |μ, φμ = 0〉 ⊗ |ν, φν = 0〉,

〈μ, ν|i, j〉 ≡ ψi0(μ)ψj0(ν) =
1

π
Li(μ

2)Lj(ν
2)e−

μ2+ν2

2 . (17)

In order to use WMB method let us modify basis {|i, j〉} by introducing a scaling parameter κ.

One replaces μ2/2 and |j, m〉 by κ2μ2/2 and |j, m, κ〉. This leads to a modified basis {|i, j, κ〉}
with

〈μ, ν|i, j; κ〉 = κ

π
Li(κμ2)Lj(κν2)e−κ

μ2+ν2

2 . (18)

With this basis (14) is written as the matrix equation

∑
i′′,j′′

〈i′, j′; κ|
{

− 1

2

(

∆
(2)
μ(rad)

+ ∆
(2)
ν(rad)

)

+ |E|(μ2 + ν2) +
1 − γ

2
(μ2 + ν2)

∂2

∂z2

}

|i′′, j′′; κ〉〈i′′, j′′; κ|Ψ〉 = 2〈i′, j′; κ|Ψ〉. (19)

One finds

〈i′, j′; κ|μ2|i, j; κ〉 = 1

κ3
〈i′, j′; 1|μ2|i, j; 1〉 (20)
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and corresponding scaling property of other terms are κ−2, κ−1, κ−1 for 1, ∆
(2)
μ(rad)

, (μ2 +

ν2)∂2/∂z2 respectively. Using this scaling, (19) is transformed into

∑
i′′,j′′

〈i′, j′; 1|
{

− 1

2

(

∆
(2)
μ(rad)

+ ∆
(2)
ν(rad)

)

+
|E|
κ2

(

μ2 + ν2
)

+
1 − γ

2
(μ2 + ν2)

∂2

∂z2

}

|i′′, j′′; 1〉

×〈i′′, j′′; κ|Ψ〉 = 2

κ
〈i′, j′; κ|Ψ〉. (21)

The matrix elements for the first two terms are

〈i′, j′; 1|
(

μ2 + ν2
)

|i, j; 1〉 =
[

(2i + 1)δi′ iδj′ j − (i + 1)δi′ i+1δj′ j − iδi′ i−1δj′ j

]

+
[

i ↔ j
]

,

〈i′, j′; 1|
(

∆
(2)
μ(rad)

+ ∆
(2)
ν(rad)

)

|i, j; 1〉 = (−1)i′+j′+i+j+1〈i′, j′; 1|
(

μ2 + ν2
)

|i, j; 1〉. (22)

Matrix elements of the third term 8 needs tedious but straightforward calculation 9.

1

4
D ∂2

∂z2
〈μ, ν|i, j〉=

{

−
(

1

D2
+

1

D

)

(

(i− j)(μ2−ν2)+2μ2ν2
)

+
μ2ν2−2ij

D +
1

4
(μ2+ν2)

}

〈μ, ν|i, j〉

+

[

i

(

μ2 − ν2

D2
+

2j − ν2

D

)

〈μ, ν|i − 1, j〉
]

+

[

μ ↔ ν, i ↔ j

]

− 2ij

D 〈μ, ν|i − 1, j − 1〉, D ≡ μ2 + ν2 = 2r

and the necessary integration formula is

∫ ∞

0
μdμ

∫ ∞

0
νdν

μ2bν2c

(μ2 + ν2)a
Ln′ (μ2)Ln(μ

2)Lm′(ν2)Lm(ν
2)e−(μ2+ν2),

(a ∈ {0, 1, 2}, b ∈ {0, 1}, c ∈ {0, 1}).
(23)

The case a = 0 is straightforward; for a = 1, 2, one uses the integral of the type

Ln(βx) =
n

∑
k=0

(

n
k

)

βk(1 − β)n−kLk(x).

Now that we have obtained the matrix elements, our procedure goes parallel to that in

subsection 2.1. Corresponding to (6) we introduce the parameter

ǫ̃ = 2
|E|
κ2

. (24)

8 For diamagnetic hydrogen case, the corresponding term is B2(μ4ν2 + μ2ν4) (Müller & Wintgen, 1994)
and easier to calculate.

9 It can be useful to formulate with the creation and annihilation operators. Details will be discussed in
our forthcoming paper.
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Then one can solve (21) as the standard eigenvalue problem and can obtain eigenvalues Λn =
2/κn . Energy levels are determined by

En = − κ2
n

2
ǫ̃ = − 2

Λ2
n

ǫ̃. (25)

It is found numerically that the best value of ǫ̃ satisfies

ǫ̃∗ = γ (26)

which is similar to (10). Finally we should add that we have found precise agreement between

our calculations by the Sturmian basis and by the harmonic oscillator basis. 10

3. Quantum level statistics in anisotropic kepler problem

3.1 Level repulsion

Let us first look at the nearest neighbor level spacing distribution P(s) that is the probability

for the nearest neighbor level appears at the distance s∆. Here ∆ is the mean level spacing

and after the stretch (9), ∆ = 1 in this subsection. First we recollect the RMT predictions.

For γ near 1 the overlap of wave functions are negligible and P(s) is expected to be Poisson.

The mean squared deviation (MSD) of level spacings is then unity. On the other hand, for

large anisotropy, the wave function overlap is sizable and quantum levels repel each other.

Especially at the ergodic limit, the statistics is expected to be Wigner-Dyson(WD) statistics.

Since AKP respects time reversal invariance, one expects the limiting level statistics is WD

with β = 1 (GOE). (BGS conjecture). At this limit, the RMT prediction for the MSD of level

spacing is as low as 4/π − 1 = 0.273 · · · .

With this theoretical expectation in mind, let us first try a coarse analysis to obtain rough idea

on where the level statistics is like WD distribution using data on P(s). As the limiting MSD

is 0.273, we set a condition MSD � 0.28. We indicate in Fig. 1 by vertical lines the regions

where this condition is met. Here we observe that, except for γ = 0.9 (the first panel), whole of

the region of reliable data (the region under the mountain) remarkably satisfy the condition,

while other region does not. This indicates some consistency in our analysis. But, of course,

looking only at the second moment is insufficient to tell the real shape of the distribution is

like-WD.

Therefore, in order to step forward, we have calculated the P(s) from our data extensively.

In Fig. 5, we show real P(s) distribution at γ = 0.9, 0.8, 0.7 as samples and compare with

the prediction at limits (Poisson and GOE). We find that for γ � 0.7 the P(s) is WD, and

around γ ∼ 0.8 a small deviation from WD starts. (But still satisfies above like-WD criterion).

Now the P(s) at γ = 0.9 is sizeably deviated from WD distribution. This explains why the

like-WD criterion is not met at γ = 0.9. Furthermore, the deviation occurs mainly around

s = 1 and remarkably the level repulsion still persists (P(s) ∝ s). From this, it seems that

AKP is not a system to have the Berry-Robnik distribution (Berry & Robnik, 1984) in which

the P(0) takes finite value depending on the partition of regular and chaotic orbits and rather

a system that follows the stochastic approach (Hasegawa et al., 1988; Yukawa & Ishikawa,

10 For instance, E1800 = −0.00018114433 and E1800 = −0.00018114418 for Sturmian and harmonic basis
calculation respectively.
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1989). The persisting repulsion at the transitive region reminiscent to the fact that, in the

Anderson transition, not only in the metallic phase but also at the mobility edge the level

repulsion occurs (Fyodorov & Mirlin, 1997). Noting that AKP is not a KAM system, it would

be interesting to look at the change of the behavior of P(s) near γ = 1 though it is difficult to
apply proper stretch there.
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0.4

0
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P
(s

)

Poisson

GOE
γ = 0.9

0 1 2 3

0.8

0.4

0
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P
(s

)
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GOE
γ = 0.8

0 1 2 3

0.8

0.4

0
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P
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)

γ = 0.7Poisson

GOE

Fig. 5. Nearest neighbor level spacing distribution of AKP for γ = 0.9, 0.8, 0.7.

3.2 Level statistics as seen by Σ2(L) and ∆3(L)

As further statistical quantities one can consider the number variance Σ2(L) and the spectral

rigidity ∆3(L). These are both related to the level density-density correlation functions and

suitable to the test for the RMT predictions. The number variance is defined as

Σ2(L) =
〈

(n̂(L, E)− L)2
〉

(27)

and the spectral rigidity 11 by

∆3(L) =

〈

1

L
min
{A,B}

∫ L/2

−L/2

(

N̂(E + x)− Ax − B
)2

dx

〉

. (28)

Here n̂(L, E) is the number of (unfolded) levels within the band with L around E, N̂(E) is

the stair case function, and 〈· · ·〉 implies the spectral average. Because both Σ2(L) and ∆3(L)
are derived from the two-point correlation functions, they are related by the Pandey relation

(Pandey, 1979)

∆3(L) =
2

L4

∫ L

0
(L3 − 2rL2 + r3)Σ2(r)dr. (29)

This gives, for the Poisson statistics (independent levels), ∆3(L) = L/15 from Σ2(L) = L. As

a map from Σ2(L) to ∆3(L), this gives enhanced weight for the low L side of Σ2(L).
In Fig. 6, we present for the first time the Σ2(L) and ∆3(L) for various anisotropy (γ =
0.85, 0.8, 0.7). Prediction by RMT (GOE) is also shown;

Σ2(L) =
2

π2

[

log(2πL) + γE + 1 − π2

8

]

, (30)

∆3(L) =
1

π2

[

log(2πL) + γE − 5

4
− π2

8

]

, (31)

11 ∆3(L) was first introduced in (Dyson & Mehta, 1963) and studied in terms of the periodic orbit theory
(Berry, 1985). The useful formulation for the numerical computation is found in (Bohigas & Giannoni,
1984).
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for large L and in the small L region we give numerical estimate.

For γ = 0.6 and lower, the statistics become indistinguishable from the GOE.
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0

0.1

0.5

0.2
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0.4

∆
3
(L
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γ=0.85
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Poisson

Fig. 6. Number variance Σ2(L) and spectral rigidity ∆3(L)) of AKP at γ = 0.85, 0.8, 0.7
calculated from 2501 to 12500 levels with ℓ = even, m = 0, N = 19321(Np = 277). The solid
curves exhibits the prediction by the generalized GOE model (García-García & Verbaarschot,
2003) at h = 0.160, 0.114, 0.034 for Σ2(L) and h = 0.178, 0.128, 0.032 for ∆3(L) respectively.

3.3 Critical random matrix theories

There is an important model by García-García & Verbaarschot (2003) (we call it GV model)

of the critical level statistic for the T invariant system. It is an extension of the generalized

GUE (Moshe et al., 1994) to generalized GOE. This extension is successfully performed by

two threads of ideas; a map to the Calogero-Sutherland (CS) model (Calogero, 1969a;b; 1971;

Sutherland, 1971a;b), which avoids the difficult integration over matrices in the GOE case, and

the use of Kravtsov-Tsvelik (KT) conjecture for the density-density correlation function of the

CS model in the low temperature limit (Kravtsov & Tsvelik, 2000).

The model is defined by the joint probability distribution

P(S, b) =
∫

dMe−
1
2 TrSST

e−
b
2 Tr[M,S][M,S]T, (32)

where the matrices S and M are both N × N and real symmetric and orthogonal respectively.

This is a one-parameter model; the parameter b interpolating two statistics. At b → 0, the

model becomes GOE (P(S) ∼ e−
1
2 TrSST

). At b → ∞, such S dominate that commute with

arbitrary diagonal orthogonal matrices, i.e. the Poisson ensemble. The critical statistics is

obtained if b is scaled as b = h2 N2 for the large N limit.

The joint distribution of the eigenvalues x ≡ (x1, x2, · · · , xN) of S is given by

ρ(x) = ∆(x)
∫

dMe−
2b+1

2 TrS2+bTrSMSMT
(33)
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where ∆(x) = ∏i<j(xi − xj). Now, by considering the propagator of the matrix S in the

imaginary time τ (Zirnbauer & Haldane, 1995), one obtains

〈x|e−τĤCS;λ=1|x〉 = C
∫

dMe−
ω

2 sinh ωτ [TrS2 cosh ωτ−TrSMSMT] (34)

where ĤCS;λ=1 in the left-hand side is the CS hamiltonian 12 with λ = 1. Therefore, by

comparing (33) and (34), one finds that the joint eigenvalue distribution of GV model is given

by the diagonal matrix elements of the N-particle density matrix of CS model at an inverse

temperature τ given by the identification ω/sinh ωτ = 2b, ω cosh ωτ/sinh ωτ = 2b + 1.

The KT conjecture gives the low temperature limit of connected density-density correlation

function of CS model at λ = 1 as

RT
2,c(x, 0) = −(KT(x, 0))2 −

(

d

dx
KT(x, 0)

)

∫ ∞

x
KT(t, 0)dt (36)

where KT(x, 0) = Tsin(πx)/sinh(πxT) is the kernel of CS model for λ = 2 and T = πh/2.

(García-García & Verbaarschot, 2003) suggests to replace it by its finite temperature analog

(Moshe et al., 1994) and then the unfolded spectral kernel is given by 13

K
T
(x, 0) =

√
h
∫ ∞

0

cos(πx
√

ht)

2
√

t

1

1 + z−1et
dt. (37)

From the density-density correlation function (36) with (37) one can calculate Σ2(L) by

Σ2(L) = L + 2
∫ L/ρ(0)

0
ds(L − s)RT=πh/2

2,c (s, 0) (38)

and the spectral rigidity ∆3(L) through the Pandey relation (29). The above summarizes the

work by García-García & Verbaarschot (2003).

Now we are in a position to compare their predictions with the AKP data with respect to

the variation of γ. We have verified, first of all, the AKP data of Σ2(L) and ∆3(L) satisfy

the Pandey relation in order to guarantee that AKP levels are normal statistical set (Pandey,

1979). Now in order to test that the GV model can explain Σ2(L) and ∆3(L) coherently, we

have performed a one parameter fit, at each γ, for the best h that explains Σ2(L) data and

∆3(L) data independently. Since the Σ2(L) soon shows large fluctuation for large L, we have

limited to L � 5 for the Σ2(L) fit, and used L � 20 for the ∆3(L) fit. The level set we used is the

largest one that is obtained by the diagonalization of 19321 × 19321 (Np = 277) hamiltonian

matrix (at each γ) and we used the reliable 104 levels starting from 2501-th.

The result exhibited in Fig. 7 succinctly shows that the GV model well describes the AKP data

in the range of γ from 0.75 up to 0.9. The discrepancy between the Σ2(L) fit and ∆3(L) fit is

12 The CS hamiltonian is

ĤCS = −∑
j

∂2

∂x2
j

+
λ

2

(

λ

2
− 1

)

∑
i �=j

1

(xi − xj)2
+

ω2

4 ∑
j

x2
j . (35)

13 A typographical error in equation (30) of García-García & Verbaarschot (2003) is corrected in their
arXiv:cond-mat/0204151(version 2) and we have corrected for it in (37).
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Fig. 7. The parameter h in the critical random matrix model (García-García & Verbaarschot,
2003) as determined by number variance (box with solid error bar) and by spectral rigidity
(triangle with dashed error bar).

negligible. The parameter h is related to the temperature T of the CS model as T = πh/2.

We note that the correspondence between h and anisotropy γ is well described by a simple

approximation

h ∝ e7.2γ. (39)

In the physics of Anderson transition, a finite size scaling analysis turns out vital to scrutinize

the phase transition point (García-García & Wang, 2008; Shklovskii et al., 1993). In order to

compare with it, we are now trying a similar analysis using our results at various sizes. So

much for the eigenvalues. Now let us turn to the wave functions.

4. Wave function features in anisotropic kepler problem

Here we describe three important features of AKP wave functions. Firstly, we show the

systematic increase of the complexity of wave function nodal lines ({r|Ψi(r) = 0}) with the

increase of the anisotropy 1 − γ. Secondly, the probability density |Ψi(r)|2 is investigated and

it is shown that salient scars of periodic orbits are observed. Thirdly, we describe the method

to evaluate Husimi functions using the basis given in subsection 2.3 and compare the Husimi

distributions with the Poincaré section of the above scarring periodic orbits.

4.1 Nodal lines of AKP wave functions

The systematics of nodal lines of the eigenfunction of the laplacian operator has long history.

For instance, we can find an amazing example in (Courant&Hilbert, 1953) of a self-avoiding

long nodal line of an eigenfunction of a laplacian, that propagates in the whole rectangle only

by itself (Fig. 8).
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Fig. 8. The nodal line of an eigenfunction u(x, y) = sin(2rx) sin y + μ sin x sin(2ry) of an
eigenvalue problem ∆u + λu = 0 in the square region S ≡ [0, π]2 with Dirichlet boundary
condition u|∂S = 0 with eigenvalue λ = 1 + 4r2. Left: μ = 1 and right: μ = 0.96. r = 6 is
chosen to reproduce the figures in (Courant&Hilbert, 1953).

In general, the nodal line for the wave function in the non integrable case is self-avoiding. At

the would be crossing, the function must be zero, and also it must be a saddle point. Both

conditions can be met only coincidentally. We refer to (Gutzwiller, 1990) for nodal lines.
Also we refer to a recent interesting example, the nodal line of the Maass wave form on

modular surface PSL(2, Z) \ H calculated by (Hejhal & Rackner, 1992) and the increase of

the complexity at higher eigenvalues.

In Fig. 9 we exhibit the nodal line of AKP wave function Ψ438(r) at γ = 1, 0.95, 0.8, 0.2. 14 One

observes that even a small anisotropy, the crossings of nodal lines at the integrable limit (γ =
1) are resolved. With increasing anisotropy, nodal loops are created, and nodal lines increase

their complexity. In the ergodic region (γ = 0.2), nodal lines become very complex. It seems

that nodal lines in the large anisotropy region show some fractal structure. (Compare the

right magnified diagram with the left one at γ = 0.2.) We are pursuing this issue introducing

manifold with smoothened Coulomb singularity. The relation between the multi-fractality of

wave functions (see section 5) is also under survey.

4.2 Large value of wave functions and periodic orbits

Let us try a straight forward comparison between the probability distribution of the AKP

electron predicted by the wave function and periodic orbits. We have constructed and scanned

|Ψi(r)|2 for all of the wave functions up to some 5000-th level for anisotropy γ from 0.05 to

0.98. For intermediate γ (0.85 − 0.5), the pattern varies level by level almost randomly, but

we observe that there are recognizably characteristic patterns (around ten or so) that appear

repeatedly. If we pick one level at random, and calculate its |Ψ(r)|2, the pattern is similar to

one of the characteristic patterns or a combination of a few of them. On the other hand, for

higher anisotropy γ < 0.5, the probability pattern becomes so complex that we cannot identify

characteristic pattern.

In Fig. 10, we exhibit two of characteristic patterns at γ = 0.6, |Ψ438|2 and |Ψ579|2 on the μ-ν

plane. We have already stored periodic orbits by increasing order of the Bernoulli coding up

to 8 binary digits. (For this task we benefited from a paper (Gutzwiller, 1981) which gives

classification of AKP periodic orbits considering time-reversal and symmetries around axes.)

In the figure selected periodic orbits that run on the μ-ν plane along the large value region

14 The choice of the energy is just to guarantee the visibility of the nodal line. One could choose equally
Ψ12500(r) and the calculation of nodal lines is equally possible.
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Fig. 9. Nodal lines of the AKP wave function Ψi(r) with i = 438 in the sector ℓ = even, m = 0
in the x − z plane. (z axis, vertical, is the heavy axis). γ = 1, 0.95, 0.8, 0.2 for (a), (b),(c), [(d),
(e)] respectively. The energies are approximately equal for all, and for the integrable case (a)
Ψnp=41,ℓ=20,m=0(r) is chosen among the degenerate levels. Two diagram are shown for
γ = 0.2. The right is a magnified plot of r ≤ 0.2 part of the left one.

of the probability distribution are also exhibited. These are the scarring orbits in the sense of

(Heller, 1984; 1989). It seems that the association of one periodic orbit(PO) to one probability

distribution is not ad hoc, since with the change of γ, both PO and large value region change

keeping the association. This observation takes the advantage of one-parameter characteristic

of AKP and we are consolidating this.

4.3 Husimi function and Poincaré surface of section

Husimi function for |Ψn〉 is

WHus
Ψn

(q0,p0) = |〈CHS|Ψn〉|2 =

∣

∣

∣

∣

∣

∣

∑
i,j

〈CHS|i, j; κn〉〈i, j; κn |Ψn〉

∣

∣

∣

∣

∣

∣

2

. (40)

Here |CHS〉 denotes the coherent state, a Gaussian packet centered at (q0,p0) and width b

〈q|CHS〉 = 1√
πb

eip0·q− (q0−q)2

2b2 . (41)
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Fig. 10. AKP probability distributions in the μ − ν plane. γ = 0.6, m = 0, ℓ =even. Left:
|Ψ438(r)|2. Right: |Ψ579(r)|2. Scarring short periodic orbits are also exhibited. Left: the
primary periodic orbit (+−). Right: (+ +−−) and (+ +−+−−) exhibited by red and
green respectively. Surrounding yellow circle shows the boundary of the classical motion.

Following (Müller & Wintgen, 1994) we obtain

|CHS〉 = |Iμ, ημ〉b ⊗ |Iν, ην〉b

=
1

√

I0(Iμ)I0(Iν)

∞

∑
j,k=0

(−1)j+k

(

Iμ

2

)j ( Iν

2

)k e2i(jημ+kην)

j!k!
|j, k; 1/b2〉 (42)

where |j, k; 1/b2〉 is given by (18) with κ = 1/b2. In Fig. 11 we exhibit the Husimi function

of Ψ438 and Ψ579 on the μ-pμ plane. (The same wave functions with Fig. 10). We observe

that the Poincaré section of periodic orbits that are associated with the large probability

distributions in Fig. 10 (the scarring orbits) is now clearly sitting in the midst of the large

value region of Husimi function (creating scars). It is interesting to note that the fundamental

periodic orbit which creates a strong scar in Ψ438 seems to be creating an anti-scar in Ψ579

and the same contrast holds for other two PO’s too. We finally mention that the patterns in

Fig. 11 are remarkably reminiscent of the classical phase space structure presented in Fig.

1 of the seminal paper (Wintgen & Marxer, 1988). We are now extensively studying the

correspondence between the quantum and classical phase space structures.

5. Future outlook

We discuss here two of currently pursuing problems.

5.1 Physics of quantum chaos and Anderson localization

For one thing, we contemplate to investigate the relation of quantum chaos to the Anderson

localization — a very extensively studied branch of quantum physics (see for instance, Evers

& Mirlin (2008)). The multi-fractality of AKP wave function was conjectured by (García-García

99Anisotropic Kepler Problem and Critical Level Statistics

www.intechopen.com



20 Will-be-set-by-IN-TECH

Fig. 11. Husimi function at Poincaré surface of section defined by ν = 0 for Left:Ψ438(r) and
Right:Ψ579(r). γ = 0.6, m = 0, ℓ =even. White regions indicate large value. The Poincaré
shots of scarring short periodic orbits in Fig. 10 are superposed. Surrounding yellow circle
shows the boundary of the classical motion.

& Verbaarschot, 2003) and AKP was considered as a candidate system to test an interesting

scheme Anderson transition in quantum chaos by (García-García, 2007).
The general picture of Anderson localization is as follows (Fyodorov & Mirlin, 1997). At the

metallic phase, a typical wave function is extended, the overlap of wave functions of nearby

energy levels leads to the repulsion, and the statistics is WD. Approaching the Anderson

transition point Ec, the wave functions show up multi-fractal structure. The level statistics

deviates from WD, but remarkably the repulsion still persists, which is an intrinsic feature of

quantum dynamics of Anderson localization. The statistics at the transition point (the mobility

edge), the critical level statistics, is just between WD and Poisson. Passing the transition point

into the insulator side, the wave functions become well localized, the overlap is negligible,

and the level statistics is Poisson.

Now we have seen, in the quantum chaos study of AKP, a very similar phenomenon (see

Table 1).

Anderson localization level statistics quantum chaos (AKP) classical AKP

insulator Poisson γ � 1 (decaying tori?)
Mobility Edge critical statistics 0.75 � γ � 0.85 Cantori (Web of chaos)

metal Wigner-Dyson γ � 0.6 isolated unstable P. O.s

Table 1. Anderson localization and quantum chaos (AKP).

In order to consolidate this correspondence, a crucial test would be the verification of the

multi-fractality of wave function in AKP in the region of critical level statistics.

The multi-fractal nature of the wave function at the mobility edge is reflected in the

compressibility of the energy levels as seen as the one-dimensional gas

Σ2(L) = χL (L ≫ 1) (43)
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where χ is a constant less than one. (For Poisson statistics, Σ2(L) = L and χ = 1, while for

WD statistics, Σ2(L) = c log(L) and χ = 0, see (30) ). The value of χ is exactly expressed by a

formula derived by Chalker et al. (1996a)

χ =
d − D2

2d
(44)

where d is the system dimension and the multi-fractal dimension D2 necessary for the R2(s)
statistics quantity Σ2(L) is defined by

〈

∫

ddr|ψn(r)|2p

〉

∝ L−Dp(p−1) (45)

with p = 2. As this is a key formula relating the level statistics and the wave function

structure, let us briefly follow (Chalker et al., 1996a;b) for its derivation. The compressibility χ

can be calculated from the spectral form factor K(t) (the Fourier transform of the two level

correlation function R(s), K(t) =
∫ ∞

−∞
dse−ist/tH R(s) with the Heisenberg time tH

15 ) by

taking a limit (Aronov et al., 1994; Kravtsov et al., 1994)

χ =
∫ ∞

−∞
R(s)ds ≡ lim

t→0
K(t). (46)

Then there is a deep formula

K(t) =
1

2

|t|p(t)
πh̄ρ +

∫ |t|
0+ p(t′)dt′

(47)

that gives the spectral form factor K(t) by the return probability p(t). It is introduced as a

probability for the wave packet originally created in a small volume V0 = ℓd to remain within

this volume at time t

p(t) =
∫

ddr

〈

∑
k<N0

|ψn(r)|2|ψn+k(r)|2 e−i
(En−En+k)t

h̄

〉

(48)

with N0 ∼ Ld/V0. At this point the physics of energy levels meet the physics of

eigenfunctions. The return probability should behave as

p(t) ∼ VD2 /d−1
0

(

h̄ρ

t

)D2/d

(49)

at the mobility edge (Chalker & Daniell, 1988; Chalker, 1990; Huckestein & Schweitzer, 1994).

Now, inserting (49) into (47) and noting that the first term in the denominator is negligible
compared with the second term

πh̄ρ

/

∫ |t|

0+
p(t′)dt′ ∝

1

Ld

(

tH

t

)

t
D2
d → 0 (50)

15 The Heisenberg time tH is defined by tH = h̄/∆ and ∆ is the mean level spacing ∆ = 1/(〈ρ〉 Ld) with
the system size L.

101Anisotropic Kepler Problem and Critical Level Statistics

www.intechopen.com



22 Will-be-set-by-IN-TECH

for t ≪ tH and at L → ∞, one ultimately obtains (44).

Coming back to AKP, we have seen already that the Σ2(L) for large L is linearly rising in

the critical statistics region. Based on this observation (and with further support of kicked

particle) García-García and Verbaarschot (García-García & Verbaarschot, 2003) conjectured the
multi-fractal structure of AKP wave functions in this region. We are currently working to

verify quantitatively this conjecture based on (49) by our AKP data. Once the comparison of

Table 1 is established, it would also give a supporting contribution to the extremely ambitious

theme Anderson localization in quantum chaos by García-García & Wang (2008).

5.2 A non-trivial test of periodic orbit theory in AKP

Our another concern is to understand the spectral rigidity ∆3(L) of AKP from the periodic

orbit theory following the seminal paper by (Berry, 1985). In terms of periodic orbits, the

behavior of ∆3(L) for L ≪ Lmax is predicted universally by the contribution of very long

classical orbits under the sum rule by (Hannay & Ozorio de Almeida, 1984). 16 On the other

hand, using a semi-classical sum rule, it is shown that the behavior of ∆3(L) for L ≫ Lmax

is non-universally determined by the short periodic orbits. More precisely, it is of order

h̄−(N−1) for integrable models, and log(h̄−1) for chaotic systems; the discrepancy comes from

the manner of quantum interference. As we have described in the introduction, the isolated

unstable orbits in AKP is symbolically coded by binary digits (Bernoulli sequences) and there

is an amazing formula found by (Gutzwiller, 1980; 1981) that gives a good estimate of the

action for each periodic orbits concisely and enables one to evaluate the contribution of whole

periodic orbits. We have already checked, using our ∆3(L) data, that the above Lmax seems to

give a right value for the change of ∆3(L) from logarithmic rise to the asymptotic plateau. We

are now trying to explain the plateau values of ∆3(L) data for various γ from the contribution

of short periodic orbits of AKP.

6. Conclusion

AKP is an old working ground which produced fruitful results on quantum chaos, especially

via the pioneering works by Gutzwiller (Gutzwiller, 1971; 1977; 1980; 1981; 1982; 1990), and

via the work by Wintgen (Wintgen & Marxer, 1988). It seems however that the focus of

quantum chaos study has been shifted to elsewhere though for us it seems many things are

still waiting for clarification in AKP. In this article we have extensively revisited AKP and

have shed lights on its quantum features from the critical random matrix theories and from

the insights from Anderson transition theories. We have in particular devoted ourselves to

the quantitative investigation how the anisotropy in AKP affects systematically the quantum

features of AKP. To this end, we have calculated quantum levels and wave functions from

scratch. In section 2, we have recapitulated the vital WMB method (Wintgen et al., 1987) for

the quantum levels. This method includes a key parameter ǫ and the effect in the eigenvalue

calculation is exhibited in Fig. 1. Based on it, we have presented a prescription how to select

the best ǫ for a given γ, and we have given simple rules (Fig. 3, 4). Besides the original WMB

in AKP using the Sturmian basis, we have also formulated WMB calculation of AKP in terms
of tensored harmonic basis. This in one hand provides us with a precise check of eigenvalues,

and on the other hand, with necessary data for the Husimi function calculation. In section 3,

16 Lmax ∼ h̄−(N−1) for a system of N freedoms.
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we have investigated the energy level statistics and have shown that GV model (García-García

& Verbaarschot, 2003) successfully describes the statistics in a range 0.75 � γ � 0.9. The finite

scaling property is under survey. We have furthermore obtained a simple rule h ∝ e7.2γ that

relates the effective temperature in the CS model (equivalent to GV random matrix model)
to the AKP anisotropy. In section 4 we have investigated the wave functions and Husimi

functions. In both, salient quantum scar of classical unstable periodic orbits are observed. We

have found that the nodal line of the wave function (at given energy) increases its complexity

and seems to extend a fractal structure. In section 5 we have discussed our current projects,

one on the multi-fractality of wave functions that may be deeply related to the Anderson

localization, and the other on the non-trivial test of the periodic orbit theory in terms of the

finite non-universal asymptote in ∆3(L).
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