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1. Introduction

Classical and Quantum Mechanics make use of different objects and they also were written on
different background spaces. As a consequence, they have followed different paths regarding
the mathematical objects that they use. Classical Mechanics makes use of points and functions
on a real cotangent space T∗Q of a mechanical system, and makes use of differential geometry
as the basic language with which the theory is developed. This is due to the existence of
trajectories of single points.
On the other side, Quantum Mechanics makes use of state vectors in a complex Hilbert space,
with operators, commutators, and eigenvectors, and makes use of some postulates that look
weird from a classical point of view. This is a point of view that was induced by the lack of
trajectories and by the use of probabilistic interpretations of state vectors.
There have been efforts to define similar classical and quantum functions that can be
compared with each other. Quantum densities were written as functions on phase–space
by means of integral transformations. Two of these transformations are the Wigner (Wigner,
1932, Muga & Snider, 1992, Sala, R, Brouard, S, & Muga, JG, 1993, Sala & Muga, 1994, Bracken,
2003) and the Husimi (Husimi, 1940, Torres & Frederick, 1990, 1991) transforms. They provide
with a phase–space function that can be used as a classical picture of the quantum probability
density. However, these functions are difficult to interpret.
An approach to classical–quantum correspondence uses quantum concepts in Classical
Mechanics focusing on the eigenfunctions of the classical Liouville operator. Complex
functions are introduced, together with a quantum–like inner product between phase–space
functions, into the classical theory, but this leads to some inconveniences like having quantities
with no physical interpretation (Koopman, 1931, Jaffé & Brumer, 1984, 1985„ Jaffé, 1988
Woodhouse, 1991). Here, we do not make use of complex quantities at all.
In this chapter, we stay with plain Classical Mechanics and we want to identify some of
the classical objects that are the analogue of quantum quantities. These analogues allows
us to take a point of view of classical systems similar to the one used in quantum systems.
These analogues show that these theories are not that far from each other. In fact, we
show that we can handle classical systems in a very similar way as it is done for quantum
systems. We define eigenfunctions of classical dynamical variables and use them to define
alternative representations of classical quantities and in the calculation of averages and of
other quantities.
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The way of handling time in classical and quantum physics, as well as in other theories in
physics, has been a subject of the interest of many researchers for a long time now (Aharonov
et al, 1961, Allcock, 1969, Muga et al, 1998, Muga & Leavens, 2000, Muga, JG, Sala–Mayato,
R and Egusquiza, IL (ed), 2002, 2008, Galapon, 2002, Galapon et al, 2004, Isidro, 2005, Torres,
2007, 2009, Delgado et al, 1997, Giannitrapani, 1997, Halliwell, 1999, Hegerfeldt et al, 2004,
Kijowski, 1974, Kobe et al, 1993, 1994, Kochański et al, 1999, Leavens, 2002, León, 1997, Rovelli,
1990, 1991). We make use of those developments and further develop and apply those ideas
in this chapter.
Looking for classical analogues of quantum objects is of help in clarifying the physical
meaning of the latter, and it shows us that we can also make use of the quantum language in
the classical realm, taking a path in parallel to the direction that Quantum Mechanics theory
has taken.
Earlier treatments of time in Classical Mechanics make use of canonical transformations.
However, this type of treatment needs to introduce a "tempus" variable which is not related
with physical time and has no physical interpretation. One can see applications of this theory
in the treatment of tunnelling through a potential barrier (Razavy, 1967, 1971, Kobe, 2001).
Here we do not need to introduce additional variables.
In quantum Mechanics, the description of the evolution of wave packets can be carried out
in terms of the eigenfunctions of the Hamiltonian operator. This is the operator that appears
in the evolution equation for wave functions. Then, a way of approaching the evolution of
probability densities in classical phase–space makes use of the eigenfunctions of the Liouville
operator (Jaffé, 1988, Jaffé & Brumer, 1984, 1985). That seems to be a reasonable approach
because the classical evolution equation of probability densities is determined by the Liouville
operator, precisely. However, some of these eigenfunctions are complex with no physical
interpretation. Here, we focus on the eigen surfaces and eigen functions of the dynamical
quantities instead.
Conserved quantities have been used to construct directional derivatives (Jaffé, 1988, Jaffé
& Brumer, 1985), but nothing has been said about the use of the use of pairs of conjugate
variables. Here we propose to also use conjugate dynamical variables as generators of
translations in phase–space. With the use of conserved quantities, the motion of phase–space
points is kept on the energy shell surface, but with a conjugate function, points can leave that
shell.
On the other hand, we are interested on recognising that many of the concepts that are used
in the theory of Quantum Mechanics can also be used in the study of classical systems, a
point of view which is closer to Quantum Mechanics than other approaches like Geometric
Mechanics or Geometric Quantisation. Our approach makes use of eigen objects, operators,
and commutators, in a similar way as is done in Quantum Mechanics. This approach will lead
to a plausible classical interpretation of the collapse of a quantum wave function; the goal of
this paper. A benefit of our approach is that it is of help in the understanding of quantum
phenomena.
We will be working with conservative Hamiltonian systems, systems for which Hamilton’s
equations of motion apply, without an additional "tempus variable" involved.
Throughout the text, we will be considering as a model system the nonlinear oscillator with
dimensionless Hamiltonian given by (José and Saletan, 1998)

H(z) =
p2

2
+

k

2

(

√

a2 + q2 − l

)2

. (1)
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This Hamiltonian describes the motion of a bead that slides on a horizontal bar and is acted
on by a spring attached to a fixed point a distance a from the bar. The force constant of the
spring is k, and l is its natural length, so that

√

a2 + q2 − l is its stretch. The fixed points for
this system are located at

q0 = 0,±
√

l2 − a2 , p0 = 0 . (2)

There is only a minimum of the potential function when a > l, and there are two minima and
one maximum when a < l.
We will also consider an application of our results to the tunnelling through a potential barrier.

2. Conjugate variables and representations

Let us consider a Poisson manifold (T∗Q, {•, •}) associated to a classical system, with {•, •}
the usual Poisson bracket, which for two functions F(z) and G(z) is defined as

{F, G}(z) = ∂F(z)

∂qi

∂G(z)

∂pi
− ∂G(z)

∂qi

∂F(z)

∂pi
, (3)

where z = (q, p), q = (q1, . . . , qn), p = (p1, . . . , pn) is a point on T∗Q.
We will be mainly concerned with pairs of conjugate variables and some of the consequences
of that relationship between them. Conjugate variables are the variables that are related
by a constant Poisson bracket, {F, G}(z) = 1, in Classical Mechanics and by a constant
commutator, [F̂, Ĝ] = ih̄, in Quantum Mechanics, between the corresponding quantum
operators F̂, Ĝ.
The dynamics of classical systems usually is described in terms of the pairs of conjugate
variables qi and pi. These pairs of variables are related by a constant Poisson bracket,

{qi, pj} = δi
j . (4)

The domain in which this relationship is valid is D = R
n × R

n. They are the coordinates
for describing the evolution of a classical system, and each variable, usually, take continuous
values from −∞ to ∞ or on some subset of it. Time is a parameter in terms of which the motion
of point particles can be described.
The quantum position Q̂ and momentum P̂ operators are related by a constant commutator

[Q̂i, P̂j] = ih̄δi
j , (5)

and their eigenfunctions cannot be normalised in the conjugate space, meaning that they
are not part of a Hilbert space. However, these eigenfunctions are used as coordinates (as
a representation).
In Quantum Mechanics, the commutator between the time operator T̂ and the Hamiltonian
operator Ĥ is assumed to be

[T̂, Ĥ] = ih̄, (6)
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Fig. 1. Values of the Poisson bracket {t, H}(z) for the nonlinear oscillator with a = 1, l = 2,
and k = 9.8. The turquoise points indicate that the Poisson bracket evaluates to one there,
whereas in the red points the value is zero. (a) X = 0, and (b) X the location of the right
minima of the potential. Dimensionless units.

so that they are a pair of conjugate operators. We find a similar relationship in the classical
regime, the Poisson bracket between time and energy is equal to one

{t, H}(z) = ∂t

∂qi

∂H

∂pi
− ∂H

∂qi

∂t

∂pi
=

∂t

∂qi

∂qi

∂t
+

∂pi

∂t

∂t

∂pi
=

dt

dt
= 1 , (7)

where we have made use of Hamilton’s equations of motion

dqi

dt
=

∂H

∂pi
,

dpi

dt
= − ∂H

∂qi
, (8)

and of the chain rule. We argue that these variables, energy and time, can also be used as an
alternative coordinate system. In these coordinates, motion of conservative systems becomes
quite simple, one of the variables is kept constant and the other just increases. What we have
here is the set of canonical variables of group theory.
An object that is inherent to a Poisson bracket equal to one is the domain in which that equality
holds. For the nonlinear oscillator, the values that the Poisson bracket take have been plotted
in figure 1, for two choices of reference zero time surface. The way in which those values were
obtained is explained below. The domain of the energy, D(H), is the whole of phase–space,
but the domain of time, D(t), is not. The domain of the Poisson bracket is the intersection
of these domains, D(H) ∩ D(t), which, in this case, coincides with the domain of time. In
Quantum Mechanics, we have to consider the intersection of the domains of ĤT̂ and of T̂Ĥ,
D(ĤT̂) ∩D(T̂Ĥ).
The new coordinates, (t, E), are a bit different from (p, q) because to a value of the energy
correspond two values of pi (usually pi appears as p2

i in the Hamiltonian) so that E is bounded
from below. It is then necessary to make the distinction between the cases of positive or
negative momentum.
In general, the explicit expression in terms of z of one of the variables related by a constant
Poisson bracket is known but not the other, as is the case of energy (known) and time (not
known). Below, we will show how to generate the unknown one (time) using the equations
of motion. We can generate the unknown variable because they are related by the Poisson
bracket precisely.
In Quantum Mechanics we have a similar situation. Usually, quantum dynamics is analysed
in coordinate or momentum representations, but we can also change to energy or time
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Fig. 2. Time surfaces for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) Negative
times and (b) positive times. The initial curve is q = 0. Dimensionless units.

representations. The energy representation is well known (the energy eigenstates) but the
time representation is not. However, because time is conjugate to energy, we can define time
eigenstates and then use them as an alternative representation of quantum states, in the same
way as it is done in classical systems (see below).

3. Generating the time coordinate system

Let us consider a cotangent space T∗Q with coordinates z = (q, p). Given the Hamiltonian
H(z) of a classical system, Hamilton’s equations of motion

dz

dt
= XH , XH =

(

∂H

∂p
,− ∂H

∂q

)

, (9)

use the conjugate variable to the Hamiltonian, time, as a parameter for describing the motion
of a particle on the energy shell. The origin of time on the integral lines of equation (9) is
chosen arbitrarily and, usually, it is different for each integral line.
We can generate a time coordinate system in T∗Q so that we can have the time variable in
terms of (p, q). A point in cotangent space T∗Q can be propagated according to the dynamical
system defined by equations (9). These points will move along the surfaces of constant H so
that the value of H does not changes but the value of t does. In order to get a coordinate
system for time in T∗Q, we define constant t surfaces in T∗Q. A hypersurface Σ0(z) that
crosses the constant H surfaces is chosen as the reference, the origin of t, and by propagating
it we will obtain surfaces Σt(z) corresponding to other values of time, so obtaining the desired
coordinate system for t in T∗Q.
We will use the surface q1 = X as the initial time surface, and we will make a distinction on
the sign of the momentum of these points giving rise to two time eigensurfaces:

Σ
±
t=0(z) = {z|q1 = X, ±p1 > 0} . (10)

In figures 2 and 3 there are examples of the surfaces that comprise the time coordinate system
in the case of the nonlinear oscillator. The initial surfaces are q1 = X, with X = 0, 1.5. Under
this convention, the time values for each point in phase–space are shown in Fig. 4. They

69Correspondence, Time, Energy, Uncertainty, Tunnelling, and Collapse of Probability Densities

www.intechopen.com



6 Will-be-set-by-IN-TECH

p

qq

p (a) (b)

T=0

T=−0.24T=−0.48

T=−0.96

T=0.96

T=0.24

T=0.0

0

2

−1.5 1.50.0

 −2

4

−4
−3.0 3.0 −1.5 1.50.0−3.0 3.0

−2

0

2

−4

4

Fig. 3. Time surfaces for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) Negative
times and (b) positive times. The initial curve is q = 1.5. Dimensionless units.

are the shortest times that it would take to a particle with z as final position to arrive at or
depart from q1 = X. These values are the classical analogue of the quantum time operator
T̂. Note that not all points in T∗Q will arrive or depart from q1 = X. For this reason, some
regions of T∗Q are not part of the domain of the Poisson bracket equal to one (see Fig. 1).
Points on the separatrix move quite slow as seen on the plot. Time reversal symmetry, i.e. the
transformation (t, p) → (−t,−p) is evident in these figures.
The quantum procedure that can be used to generate time eigenstates is very similar to
the classical one. The quantum initial state, in momentum space (in one dimension, for
simplicity),

〈p|t = 0〉 = 1√
2πh̄

e−ipX , (11)

is the equivalent to the line q = X in phase–space. The squared modulus of this state in
momentum space is constant for all values of p, but it is a delta function centred at q = X in
coordinate space. This is the reference state for time. The propagation of it, i.e. the state

〈p|t〉 = 1√
2πh̄

e−itĤ/h̄e−ipX , (12)

is the time coordinate system that can be used for a time representation. These states cannot
be normalised.
Quantum time eigenstates have been in use for a long time now without realizing it. Let
us rewrite the expression for a wave packet in the coordinate representation in terms of the
momentum wave packet as (unless otherwise stated the integrals are taken from −∞ to ∞)

ψ(x; t) =
1√
2πh̄

∫

dp eipxψ(p; t) =
1√
2πh̄

∫

dp eipxe−itĤ/h̄ψ(p)

=
1√
2πh̄

∫

dp ψ(p)eitĤ/h̄eipx =
1√
2πh̄

∫

dp ψ(p)(e−itĤ/h̄e−ipx)∗

= 〈t|ψ〉 , (13)

which is the inner product between the time eigenstate |t〉 and a ket |ψ〉.
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Fig. 4. Time values t(z) for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) X = 0
and (b) X = 1.5. The points coloured in cyan indicate the zero time points. Dimensionless
units.

4. Time and energy eigenfunctions

Quantum energy eigenstates |ǫ〉 are the states characterised by just being multiplied by the
corresponding eigenvalue ǫ after the application of the Hamiltonian operator, i.e. Ĥ|ǫ〉 = ǫ|ǫ〉.
We can take as the classical analogue of the quantum energy eigenstate to a unit density with
the constant energy shells as support,

ν±ǫ (z) = δ(z − Σ
±
ǫ (z)) (14)

where

Σ
±
ǫ (z) = {z|H(z) = ǫ, ±p1 > 0} . (15)

If we evaluate the Hamiltonian function on the support Σ
±
ǫ (z) of this function, we will obtain

the value ǫ. The density ν±ǫ (z) is the classical analogue of the quantum density |〈q|ǫ±〉|2.
Now, a unit density with the time eigen surfaces Σ

±
t (z) as support,

ν±t (z) = δ(z − Σ
±
t (z)) ,

is the analogue of the squared magnitude of the quantum time eigenfunction |〈q|t〉|2. In
the realm of functions on T∗Q, the classical time eigen density is generated by starting with
ν±t=0(z) and propagating it with the classical propagator as

ν±t (z) = e−tL(z)ν±t=0(z) , L(z) = XH · ∇ , (16)

where the vector field is XH = (∂H/∂p,−∂H/∂q). If we evaluate time on the support Σ
±
t (z)

of the eigen density ν±t (z) we will get the value t.
The unboundedness of the eigensurfaces of a dynamical variable usually implies a problem
with the normalisation of functions with them as a support so that they cannot become
probability densities. However, we need to include that type of variables to have a
representation of quantities in T∗Q. These eigen densities, νǫ(z) and νt(z) are the classical
analogues of the quantum representation vectors 〈ǫ|, and 〈t|, respectively. But recall that
some of these quantum vectors are not part of the Hilbert space.
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Fig. 5. Classical energy densities corresponding to the quantum eigenvalues for the nonlinear
oscillator. (a) Energy curves in phase–space, (b) classical eigendensity for one energy value,
and (c) the overlap between the energy eigendensity and a Gaussian density. Dimensionless
units.

5. Uncertainty of conjugate eigenfunctions

In Quantum Mechanics, the average of an operator F̂ when the system is in one of its
eigenfunctions | f 〉 is the corresponding eigenvalue f , i.e. 〈 f |F̂| f 〉 = f , and the width vanishes,

i.e. ∆F̂ =
√

〈 f |F̂2| f 〉 − 〈 f |F̂| f 〉2 = 0. However, for the conjugate operator Ĝ, the average

〈 f |Ĝ| f 〉 and width ∆Ĝ =
√

〈 f |Ĝ2| f 〉 − 〈 f |Ĝ| f 〉2, in the states | f 〉, are not defined. A property

in agreement with Heisenberg’s uncertainty principle, (∆F̂)2(∆Ĝ)2 ≥ h̄2〈[F̂, Ĝ]/ih̄〉2/4,
because when one of the observables, in this case F̂. is well defined, the conjugate observable
Ĝ becomes undefined.
Note that we also observe this characteristic on the eigensurfaces of dynamical variables of
classical systems. In the classical case, with the nonlinear oscillator as an example (see figure
5), on the energy eigen surfaces Σ

±
ǫ (z), the energy is well defined with no dispersion, i.e. there

is a zero width in energy. However, they span values of time ranging from minus infinity to
infinity. And vice-versa, the time eigen density has zero width in time but they include an
unbounded set of energy values (see figures 2 and 3). Then, we can say that the classical
eigendensities ν±ǫ (z) and ν±t (z) correspond to the squared magnitude of the quantum energy,
|ǫ±〉, and time, |t±〉, eigenstates, respectively,

ν±ǫ (z) ↔ |ǫ±〉〈ǫ±| , ν±t (z) ↔ |t±〉〈t±| . (17)

In Fig. 5, we show few classical energy curves, for the nonlinear oscillator, with energy values
equal to the quantum eigenvalues. Note that the separatrix is excluded from these values.
There is also, a schematic representation of a classical unit density with one of the energy
curves as support.
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Fig. 6. Classical energy representation ρ(ǫ±) of a Gaussian probability density

e−(q−q0)2/2σ2−2σ2(p−p0)2
/
√

2πσ centred at (q, p) = (0,−1) for the nonlinear oscillator with
a = 1, l = 2, k = 9.8, and σ = .8. The peaks are located at the energy of the separatrix. This is
the classical analogue of the squared magnitude of the energy representation of a quantum
state |〈ǫ±|ψ〉|2. Dimensionless units.

6. Energy and time representations

With the help of the classical energy eigendensities (14), the energy representation of a
probability density ρ(z) is defined as

ρ(ǫ±) =
∫

dz ν±ǫ (z)ρ(z) . (18)

Note that we have reduced the representation from one with 2n variables, namely pi and qi,
to one with only one variable, ǫ±. Then, it is not possible to recover the original density ρ(z)
from the reduced one ρ(ǫ±). An example of these reduced densities is found in Fig. 6 for the
nonlinear oscillator.
Recall that the quantum energy representation is obtained as the inner product between
the energy eigenstate, |ǫ〉, and the wave function, |ψ〉, separated into negative and positive
momentum parts, as

ψ(ǫ±) =
∫

∞

0
dp〈ǫ| ± p〉〈±p|ψ〉 . (19)

Thus, the squared magnitude of this quantity is the analogue to the classical energy
representation of a probability density of equation (18). Since the quantum spectrum is
discrete for the nonlinear oscillator, only few points will be found in the energy representation,
as can be seen in Fig. 7.
For a classical time representation of a probability density, we calculate the overlap between
the time eigendensity Eq. (16) with a probability density ρ(z)

ρ±(t) =
∫

dz ν±t (z)ρ(z) . (20)

This is also a reduced representation of the density ρ(z) because it only depends on one
variable. For the nonlinear oscillator, an example of this representation is shown in Fig. 8. The
time representation depends on the zero–time reference surface Σt=0(z). Different regions
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Fig. 7. Quantum energy representation of the Gaussian state

e−(q−q0)2/4σ2−ip0(q−q0/2)/
√

σ
√

2π centred at (q, p) = (0,−1), with σ = 0.2, and for the
nonlinear oscillator. Dimensionless units.

of phase–space are available depending upon the choice of X, the location of the zero–time
reference surface.
A quantum time representation is obtained in a similar way: the wave packet |ψ〉 is projected
onto the time eigenstates |t±〉 of equation (12),

ψ(t±) =
∫

∞

0
〈t| ± p〉〈±p|ψ〉 . (21)

The squared magnitude of this projection is the desired quantum time probability density.
For the nonlinear oscillator, the quantum time probability density looks like the ones shown
in Fig. 9.
The time width of a given probability density that can be calculated with our procedure is
a static property. It is a consequence of a probability density having a non zero width on
phase–space in a particular set of coordinates. Other possibility is the time dependence and
time width due to the actual motion of the system.
The following is not possible for quantum systems, but a joint representation is obtained with
the joint eigen surfaces and densities of energy and time,

Σ
±
ǫτ(z) = {z|H(z) = ǫ, t(z) = τ, ±p1 > 0 when τ = 0} , (22)

ν±ǫτ(z) = δ(z − Σ
±
ǫτ(z)) . (23)

The energy-time representation of a classical probability density is then given by

ρ±(ǫ, τ) =
∫

dz ν±ǫτ(z)ρ(z) . (24)

This representation has no quantum counterpart because energy and time cannot be
determined simultaneously in quantum systems. An example of this representation is found
in Fig. 10 for the nonlinear oscillator.
We can say that functions like the classical energy or time eigenstates have been in use for a
long time now in an unnoticed way. We can rewrite a time dependent probability density in
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Fig. 8. Time eigendensity and representation for the nonlinear oscillator with a = 1, l = 2,
and k = 9.8. (a) Schematic representation of the overlap between a time eigenfunction and a
Gaussian probability density centred at (q, p) = (0,−1), and the time representation ρ±(T)
for (b) X = 0, (c) X the positive fixed point, and (d) for X = 2.2. Dimensionless units.

phase–space in terms of the phase–space and time eigenfunctions. The following shows this

ρ(z; t) =
∫

dz′δ(z′ − z)ρ(z′; t) =
∫

dz′δ(z′ − z)etL(z′)ρ(z′)

=
∫

dz′ρ(z′)e−tL(z′)δ(z′ − z) + b.t.

=
∫

dz′ρ(z′)νzt(z
′) + b.t. , (25)

where

νzt(z
′) = e−tL(z′)δ(z′ − z) , (26)

and b.t. stands for the boundary terms arising from the integration by parts (throughout the
text partial integration is used with the assumption that contributions from the boundaries
always vanish). These terms usually evaluate to zero because probability densities vanish at
the boundaries. What we have here is the motion of single points of phase–space weighted
by the density at the initial place of the points. This is a way of moving functions on
phase–space according to the motion of phase–space eigendensities, an integral operator form

of the classical propagator etL(z).
The classical time representation ρ(τ) can be written in terms of the initial time eigendensities
and the probability density at time τ, or in terms of the eigendensities at time τ and the initial
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Fig. 9. Quantum time representation of the Gaussian state e−(q−q0)
2/4σ2−ip0(q−q0/2)/

√

σ
√

2π
centred at (q, p) = (0,−1), with σ = 0.2, and for the nonlinear oscillator. The zero–time
reference state is located at (a) X = 0, (b) X the location of the right fixed point, and (b)
X = 2. Dimensionless units.

probability density,

ρ(τ) =
∫

dz ντ(z)ρ(z) =
∫

dz ρ(z)e−τLH δ(z − Στ=0(z))

=
∫

dz δ(z − Στ=0(z))e
τLH ρ(z) + b.t. =

∫

dz δ(z − Στ=0(z))ρ(z; t) + b.t.

=
∫

dz ντ=0(z)ρ(z; t) + b.t. . (27)

Then, we do not need to propagate the time eigendensity and the probability density, only the
evolution of one of them is enough.

7. Collapse of probability densities

In the process known as the quantum collapse of wave functions, a quantum system
represented by the wave function |ψ〉 ends up in the eigenstate |g〉 of the operator Ĝ, with
probability |〈g|ψ〉|2, after a measurement of the quantity represented with the operator Ĝ.
This is a postulate of Quantum Mechanics introduced to ensure a continuity of measurements
when the same property of a quantum system is measured several times. This postulate seems
a bit awkward at first sight, but it can be understood in classical terms, as we will see in this
section.
A classical image of the quantum collapse process is one in which an apparatus selects from
the particles of an ensemble ρ(z) only the ones with a z that gives the observed value g of
G(z), reducing the domain of ρ(z) from T∗Q to Σg(z), i.e. ρ(z) → ρ(Σg). The probability of
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Fig. 10. Classical energy–time representation of a Gaussian density, centred at
(q, p) = (0,−1), for the nonlinear oscillator with a = 1, l = 2, k = 9.8, X = 0, and σ = .8.
Dimensionless units.

measuring the value g is ρ(g) =
∫

dzνg(z)ρ(z). Since the support of ρ is reduced to Σg, an
afterwards measurement of G(z) will return the expected value of g.
An example of this is the following. Let us assume that a beam of particles is travelling to
the right and that when this beam crosses the origin of coordinates, a disc with a hole in it is
rotating letting the crossing of only a part of the beam. The selected particles can be labelled
as having t = 0. We can assert that the selected particles will have a time t afterwards, and a
wide range of values of energy.

8. An application to the tunnelling through a potential barrier

A straightforward application of the results found in previous sections is the determination
of tunnelling times through a potential barrier. There are several ways of calculating
tunnelling transmission coefficients (Muga, 1991, Wigner, 1972, del Barco, 2007, Kobe, 2001)
and tunnelling times. We consider the calculation of tunnelling times that makes use of time
averages (Wigner, 1972, del Barco, 2007). Other approaches introduce a "tempus" variable, a
variable which is not related to physical time (Kobe, 2001).
Time eigenfunctions provide a sound basis for the use of a constant coordinate in the
calculations of time averages that Wigner and other authors use (Wigner, 1972, del Barco,
2007). Our results also show that it is not necessary to consider "initial conditions giving the
state of the system for all times but only for a single value of one of the spatial coordinates"
as Wigner required, because it is the time eigenstate the quantity that has that property, and it
can be determined.
In Quantum Mechanics, it is common the use of the average time, when the system is in the
state |ψ〉, in the determination of tunnelling times. According to equation (13), the average
time, at fixed position q1 = X, can be written in terms of the time eigenstates as follows

〈t(X)〉 ≡
∫

dt |ψ(X; t)|2t
∫

dt |ψ(X; t)|2 =

∫

dt |〈t|ψ〉|2t
∫

dt |〈t|ψ〉|2 =

∫

dt 〈ψ|t〉t〈t|ψ〉
∫

dt 〈ψ|t〉〈t|ψ〉 ,

with X fixed. We note that the time eigenkets can be used to form projection P̂X and time
T̂X operators with them. These operators project onto the subspace that is available to wave
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functions that can depart or arrive at q1 = X. They are defined as

P̂X ≡
∫

dt |t〉〈t| , T̂X ≡
∫

dt |t〉t〈t| . (28)

With these operators, the time average, at fixed position, is written as the ratio

〈t(X)〉 = 〈T̂X〉
〈P̂X〉

. (29)

For the classical case, and according to equation (20), the average of time, for fixed q1 = X, is
defined as

t̄(X) =

∫

dt tρ(t)
∫

dt ρ(t)
=

∫

dt t
∫

dz νt(z)ρ(z)
∫

dt
∫

dz νt(z)ρ(z)
. (30)

We note that we need of two functions. One that collects the points that can arrive or depart
from q1 = X,

PX(z) ≡
∫

dt νt(z) , (31)

and another,

tX(z) ≡
∫

dt t νt(z) , (32)

which can be considered as a classical time probe function for the subspace determined by the
initial time surface Στ=0(z). With these definitions, the time average can be written as follows

t̄(X) =
〈tX〉
〈PX〉

, (33)

a result which is similar to the quantum average, equation(29).
The interpretation of the time distributions is that the time eigenstates are used as probe
functions that identify the amount of probability that has a particular value of time and sums
those contributions.
Thus, Wigner’s annotation concerns the time eigendensities. But this is no problem at all
because we know them for all time and single value of one of the spatial coordinates, initially.

9. Remarks

We can say that conjugate variables can be used to generate pairs of coordinate systems in
the phase–space of classical systems. The eigensurfaces of these variables might cover an
unbounded region of T∗Q and then can be used to write other dynamical quantities in terms
of them. A unit density with these eigensurfaces as support cannot be normalised and then
cannot be used as probability densities in T∗Q.
A similar thing occurs in quantum systems. The eigenstates of pairs of conjugate operators can
be used as vectors with which quantum states and operators can be represented. In general
the coordinate, momentum, or time eigenstates cannot be normalised. They are not part of
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the Hilbert space, so that they cannot be a wave function. However, they are needed so that
we can have a representation of other dynamical quantities.
There are many other aspects of Quantum Mechanics that can be analysed in the classical
realm. The classical analysis in the terms done in this chapter is useful because it shows that
many of the objects found in Quantum theory are also present in the Classical theory, and that
they are of help in the understanding of quantum phenomena.
In future work we will study other properties of quantum systems, like the meaning of
the Pauli theorem (Pauli, 1926), a theorem that prevents the existence of an hermitian time
operator.
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