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1. Introduction

Quantum mechanics is one of the two fundamental pillar of modern physics. The success
of the theory can be found everywhere in our everyday life and essentially in every new
product that we build. We just have to remember that every semiconductor chip usually uses
a quantum behavior in an essential way, for example quantum tunneling, to work. Until now,
none of the thousand of experiments realized have succeeded to contradicted or to find a
problem with the predictions given by quantum mechanics.
However, in spite of this incredible success, many profound questions are still open. For
example, we have some problems understanding the measurement, the coherence and the
decoherence process, as well as the interpretation of what the theory tell us about the world
we live in (Schlosshauer, 2005).
Among the possible ways of investigation that we have, we think that stressing the
foundations of the theory at the level of the mathematical structure, on which the theory
stands, could be a good way to understand why and how the theory works. The
mathematical structure of quantum mechanics consists in Hilbert spaces defined over the
field of complex numbers (Birkhoff & Von Neumann, 1936). The success of the theory has led
a number of investigators, over many decades, to look for general principles or arguments
that would lead quite inescapably to the complex Hilbert space structure. It has been
argued (Stueckelberg, 1960; Stueckelberg & Guenin, 1961), for instance, that the formulation
of an uncertainty principle, heavily motivated by experiment, implies that a real Hilbert space
can in fact be endowed with a complex structure. The proof, however, involves a number
of additional hypotheses that may not be so directly connected with experiment. In fact
Reichenbach (Reichenbach, 1944) has shown that a theory is not straightforwardly deduced
from experiments, but rather arrived at by a process involving a good deal of instinctive
inferences. This was also pointed out more recently by Penrose (Penrose, 2005, p. 59);

In the development of mathematical ideas, one important initial driving force has always
been to find mathematical structures that accurately mirror the behaviour of the physical world.
But it is normally not possible to examine the physical world itself in such precise detail that
appropriately clear-cut mathematical notions can be abstracted directly from it.

Moreover, in the last decade, some of the efforts to derive the complex Hilbert space structure
have focused on information-theoretic principles (Clifton et al., 2003; Fuchs, 2002). The
general principles assumed at the outset are no doubt attractive, but yet open to questioning
(Marchildon, 2004).
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2 Will-be-set-by-IN-TECH

The upshot is that there is no compelling argument restricting the number system on which
quantum mechanics is built to the field of complex numbers. The justification of the theory lie
rather in its ability to correctly describe and explain experiments.
We think that all this justifies the investigation of a quantum mechanics standing on a different
algebra than the usual one, not necessarily in the aim of replacing the actual theory, but
in the aim of a better understanding of the actual theory by meticulously compare the two
descriptions. Moreover, it does not exclude that a quantum mechanics standing on a different
algebra can end with some new predictions.
This is with those things in mind that we would like to introduced this chapter on bicomplex
quantum mechanics and on the bicomplex Heisenberg uncertainty principle.
In section 2, we present the bicomplex numbers, that are a generalization of complex numbers
by means of entities specified by four real numbers. Bicomplex numbers are commutative but
do not form a division algebra. Division algebras do not have zero divisors, that is, nonzero
elements whose product is zero. We also present some algebraic properties of bicomplex
numbers, modules, scalar product and linear operator. In the recent years, bicomplex numbers
have founded application in quantum mechanics (Gervais Lavoie et al., 2010b; Rochon &
Tremblay, 2004; 2006), in pure mathematics (Charak et al., 2009; Gervais Lavoie et al., 2010a;
2011; Rochon, 2003; 2004; Rochon & Shapiro, 2004) as well as in the construction of three
dimensional fractals (Garant-Pelletier & Rochon, 2009; Martineau & Rochon, 2005; Rochon,
2000).
The section 3 presents some important results on infinite-dimentional bicomplex Hilbert
spaces.
In section 4, we give a sketch of some fundamentals aspect of bicomplex quantum mechanics.
We also present our solution for the problem of the bicomplex harmonic oscillator. These
results are already given in (Gervais Lavoie et al., 2010b), but we present them here with a
new approach, the differential one. We also plot some of the eigenfunctions that we found and
give some new representation of them by means of hyperbolic sinus and cosinus functions.
Section 5 is the main part of this chapter. We work out, in details, the bicomplex Heisenberg
uncertainty principle. This will give an explicit and fully detailed example of the kind of
computation that arise in bicomplex quantum mechanics.

2. Preliminaries

This section summarizes basic properties of bicomplex numbers and modules defined over
them. The notions of scalar product and linear operators are also introduced. Proofs and
additional material can be found in (Gervais Lavoie et al., 2010a;b; 2011; Price, 1991; Rochon
& Shapiro, 2004; Rochon & Tremblay, 2004; 2006).

2.1 Bicomplex numbers

The set T of bicomplex numbers can be define essentially in two equivalent way as

T :=
{

w = we + wi1
i1 + wi2

i2 + wjj | we, wi1
, wi2

, wj ∈ R
}

(1)

≡
{

w = z + z′i2 | z, z′ ∈ C(i1)
}

, (2)

where i1, i2 and j are (complex) imaginary and hyperbolic units such that

i2
1 = −1 = i2

2 and j2 = 1. (3)

40 Theoretical Concepts of Quantum Mechanics
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The Bicomplex Heisenberg Uncertainty Principle 3

The product of units is commutative and defined as

i1i2 = j, i1j = −i2 and i2j = −i1. (4)

It is obvious that definition (1) and (2) imply that z = we + wi1
i1 and z′ = wi2

+ wji1 are both
in C(i1).
Three important subsets of T can be specified as

C(ik) := {x + yik | x, y ∈ R}, k = 1, 2; (5)

D := {x + yj | x, y ∈ R}. (6)

Each of the sets C(ik) is isomorphic to the field of complex numbers, while D is the set of
so-called hyperbolic numbers.
With the addition and multiplication of two bicomplex numbers defined in the obvious way,
the set T makes up a commutative ring.

2.1.1 Complexification

In addition to the formal definition, it is instructive to see how the set of bicomplex numbers

can be construct. Let us define the action k−→ that add up an imaginary part (with respect to
k) to all the real variables. For x, y ∈ R, we thus have

x
i−→ x + yi ∈ C, (7)

x
i1−→ x + yi1 ∈ C(i1) ≃ C, (8)

x
i2−→ x + yi2 ∈ C(i2) ≃ C. (9)

The action k−→ will be call a complexification. Let us now applied a complexification on x + yi1.
There are essentially two possibilities, the first one is (s, t ∈ R)

x + yi1
i1−→ (x + si1) + (y + ti1)i1 = (x − t) + (s + y)i1 ∈ C(i1). (10)

This complexification is trivial in the sense that it maps C(i1) to C(i1). The second one is more
interesting

x + yi1
i2−→ (x + si2) + (y + ti2)i1 = x + yi1 + si2 + ti2i1. (11)

Here, because i1 and i2 are two independent imaginary units, we cannot write i2i1 = −1.
However, one can remark that

(i2i1)
2 = i2i1i2i1 = i2

2i2
1 = (−1)(−1) = 1. (12)

This means that i2i1 have the same behavior as an hyperbolic unit and then, we can write
j := i2i1 = i1i2. We finally ends with

x + yi1
i2−→ x + yi1 + si2 + tj, (13)

which is the set of bicomplex numbers.

41The Bicomplex Heisenberg Uncertainty Principle
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4 Will-be-set-by-IN-TECH

The complexification process can be applied again to generate the tricomplex numbers, and so
on. For n successive complexification, we talk of a multicomplex number of order n, and we
noted it by MCn (Garant-Pelletier & Rochon, 2009; Price, 1991; Vaijac & Vaijac, to appear).
Then, it is not hard to see that

MC0 ≡ R, MC1 ≡ C and MC2 ≡ T. (14)

For an arbitrary multicomplex number s ∈ MCn>0, s is 2n-dimensionnal (in the sense that we
need 2n real numbers to specify it), posses 2n−1 independent imaginary units, and 2n−1 − 1
independent hyperbolic units.
The set T of bicomplex numbers can also be construct by applying the complexification
process on the set of hyperbolic numbers, or by applying an hyperbolisation process (the process
that add up an hyperbolic term instead of a imaginary one) on the set of complex numbers.
In Fig. 1, we give a sketch of some generalization of the real numbers. The set P stand for the
set of parabolic or dual numbers defined by

P :=
{

p = x + yε | x, y ∈ R, ε2 = 0
}

. (15)

Reals (R)

Hyperbolics (D) Duals (P) Complex (C)

?

Bicomplex (T)

Tricomplex (MC3)

...

Multicomplex (MCn)
...

Quaternions (H)Biperbolics ?

... Octonions (O)

Sedenions (S)
...

Clifford Algebras (CLp,q(·)), Grassman Algebras (Grn(·)), . . .

Fig. 1. Generalization of real numbers
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The Bicomplex Heisenberg Uncertainty Principle 5

2.1.2 Algebraic properties of bicomplex numbers

Bicomplex algebra is considerably simplified by the introduction of two bicomplex numbers
e1 and e2 defined as

e1 :=
1 + j

2
and e2 :=

1 − j

2
. (16)

One easily checks that

e2
1 = e1, e2

2 = e2, e1 + e2 = 1 and e1e2 = 0. (17)

Any bicomplex number w can be written uniquely as

w = z1̂e1 + z2̂e2, (18)

where z1̂ and z2̂ both belong to C(i1). Specifically,

z1̂ = (we + wj) + (wi1
− wi2

)i1 and z2̂ = (we − wj) + (wi1
+ wi2

)i1. (19)

The numbers e1 and e2 make up the so-called idempotent basis of the bicomplex numbers (Price,
1991). Note that the last of (17) illustrates the fact that T has zero divisors which are nonzero
elements whose product is zero. The caret notation (1̂ and 2̂) will be used systematically
in connection with idempotent decompositions, with the purpose of easily distinguishing
different types of indices.
As a consequence of (17) and (18), one can check that if n

√z1̂ is an nth root of z1̂ and n
√z2̂ is an

nth root of z2̂, then n
√z1̂ e1 + n

√z2̂ e2 is an nth root of w.
The uniqueness of the idempotent decomposition allows the introduction of two projection
operators as

P1 : w ∈ T �→ z1̂ ∈ C(i1), (20)

P2 : w ∈ T �→ z2̂ ∈ C(i1). (21)

The Pk (k = 1, 2) satisfy

[Pk]
2 = Pk, P1e1 + P2e2 = Id, (22)

and, for s, t ∈ T,

Pk(s + t) = Pk(s) + Pk(t) and Pk(s · t) = Pk(s) · Pk(t). (23)

The product of two bicomplex numbers w and w′ can be written in the idempotent basis as

w · w′ = (z1̂e1 + z2̂e2) · (z′1̂e1 + z′
2̂
e2) = z1̂z′

1̂
e1 + z2̂z′

2̂
e2. (24)

Since 1 is uniquely decomposed as e1 + e2, we can see that w · w′ = 1 if and only if z1̂z′
1̂
= 1 =

z2̂z′
2̂
. Thus w has an inverse if and only if z1̂ 	= 0 	= z2̂, and the inverse w−1 is then equal to

z−1
1̂

e1 + z−1
2̂

e2. A nonzero w that does not have an inverse has the property that either z1̂ = 0
or z2̂ = 0, and such a w is a divisor of zero. Zero divisors make up the so-called null cone
(NC). That terminology comes from the fact that when w is written as z + z′i2, zero divisors
are such that z2 + (z′)2 = 0.

43The Bicomplex Heisenberg Uncertainty Principle
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6 Will-be-set-by-IN-TECH

2.1.3 Bicomplex numbers are not quaternions

We would like to point out that even if bicomplex numbers and quaternions are both given
by four real elements, they form two completely different algebras. First, bicomplex numbers
are commutative while quaternions are not. Secondly, quaternion numbers form a division
algebra, but not the bicomplex numbers. A division algebra is characterized by the fact that
every nonzero element have a multiplicative inverse. Let us give the multiplication table of
the two algebra to clearly see the difference. Let x1 . . . x4 ∈ R,

Bicomplex T Quaternions H

x1 + x2i1 + x3i2 + x4j, x1 + x2i + x3j + x4k,

∃ a, b ∈ T | a · b = 0, a 	= 0 	= b, ∀a, b ∈ H | a · b = 0 ⇔ a = 0 or b = 0,

· 1 i1 i2 j

1 1 i1 i2 j

i1 i1 −1 j −i2

i2 i2 j −1 −i1

j j −i2 −i1 1

· 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

(25)

For a complete treatment of quantum mechanics define over the field of quaternions, the
reader can consult (Adler, 1995).

2.1.4 Conjugation of bicomplex numbers

Three different conjugation can be defines on bicomplex numbers, consistent with the fact that
we have two independent imaginary unit (we can conjugate one unit, the other or the two at
the same time). However, in the present work, we will consider only one of them.
We define the conjugate w† of the bicomplex number w = z1̂e1 + z2̂e2 as

w† := z1̂e1 + z2̂e2, (26)

where the bar denotes the usual complex conjugation on C(i1). Operation w† was denoted
by w†3 in (Gervais Lavoie et al., 2010a; 2011; Rochon & Tremblay, 2004; 2006), consistent with
the fact that at least two other types of conjugation can be defined with bicomplex numbers.
Making use of (24), we immediately see that

w · w† = z1̂z1̂e1 + z2̂z2̂e2. (27)

Furthermore, for any s, t ∈ T,

(s + t)† = s† + t†, (s†)† = s and (s · t)† = s† · t†. (28)

It can be noted that with our choice of conjugation, we have j† = (i2)(i1) = (−i2)(−i1) = j
(another choice of conjugation would have lead us to a different expression here). This also
imply that e†

k = ek, k = 1, 2.

The real modulus |w| of a bicomplex number w can be defined as

|w| :=
√

w2
e + w2

i1
+ w2

i2
+ w2

j =
√
(z1̂z1̂ + z2̂z2̂)/2 =

√
Re(w · w†) . (29)

44 Theoretical Concepts of Quantum Mechanics
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The Bicomplex Heisenberg Uncertainty Principle 7

This coincides with the Euclidean norm on R4. Clearly, | · | : T → R, |w| ≥ 0, with |w| = 0 if
and only if w = 0 and for any s, t ∈ T,

|s + t| ≤ |s|+ |t| and |λ · t| = |λ| · |t|, (30)

for λ ∈ C(i1) or C(i2). Moreover,

|s · t| ≤
√

2|s| · |t|. (31)

As the reader can see in the last of (30), we will used the same symbol | · | to designated the
Euclidean norm on different set. For example here, |t| is the Euclidean R4-norm on T while
|λ| is the Euclidean R2-norm on C(ik).
In the idempotent basis, any hyperbolic number can be written as x1̂e1 + x2̂e2, with x1̂ and x2̂
in R. We define the set D+ of positive hyperbolic numbers as

D
+ := {x1̂e1 + x2̂e2 | x1̂, x2̂ ≥ 0}. (32)

Clearly, w · w† ∈ D+ for any w in T.

2.2 T-Module, scalar product and linear operators

The set of bicomplex numbers is a commutative ring. Just like vector spaces are defined
over fields, modules are defined over rings. A module M defined over the ring of bicomplex
numbers is called a T-module (Gervais Lavoie et al., 2010a; 2011; Rochon & Tremblay, 2006).
Let {|ul〉 | l = 1 . . . n} be a T-basis (a set of elements of M that form a basis), then the
T-module M is given by the set

M =

{
n

∑
l=1

wl |ul〉
∣∣∣∣∣ wl ∈ T

}
. (33)

For k = 1, 2, we define Vk as the set of all elements of the form ek|ψ〉, with |ψ〉 ∈ M. Succinctly,
V1 := e1 M and V2 := e2 M. In fact, Vk, k = 1, 2 are vector spaces over C(i1) and any element
|vk〉 ∈ Vk satisfies |vk〉 = ek|vk〉.
For arbitrary T-modules, vector spaces V1 and V2 bear no structural similarities. For more
specific modules, however, they may share structure. It was shown in (Gervais Lavoie et al.,
2011) that if M is a finite-dimensional free T-module, then V1 and V2 have the same dimension.
For any |ψ〉 ∈ M, there exist a unique decomposition

|ψ〉 = e1P1 (|ψ〉) + e2P2 (|ψ〉) , (34)

where ekPk (|ψ〉) ∈ Vk, k = 1, 2. One can show that ket projectors and idempotent-basis
projectors (denoted with the same symbol) satisfy the following, for k = 1, 2:

Pk (s|ψ〉+ t|φ〉) = Pk (s) Pk (|ψ〉) + Pk (t) Pk (|φ〉) , s, t ∈ T. (35)

It will be useful to rewrite (34) as

|ψ〉 = e1|ψ1̂〉+ e2|ψ2̂〉, (36)

45The Bicomplex Heisenberg Uncertainty Principle
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where

|ψ1̂〉 := P1 (|ψ〉) and |ψ2̂〉 := P2 (|ψ〉) . (37)

The T-module M can be viewed as a vector space M′ over C(i1), and M′ = V1 ⊕ V2. From
a set-theoretical point of view, M and M′ are identical. In this sense we can say, perhaps
improperly, that the module M can be decomposed into the direct sum of two vector spaces
over C(i1), i.e. M = V1 ⊕ V2.

2.2.1 Bicomplex scalar product

A bicomplex scalar product maps two arbitrary kets |ψ〉 and |φ〉 into a bicomplex number
(|ψ〉, |φ〉), so that the following always holds (s ∈ T):

1. (|ψ〉, |φ〉+ |χ〉) = (|ψ〉, |φ〉) + (|ψ〉, |χ〉);
2. (|ψ〉, s|φ〉) = s(|ψ〉, |φ〉);
3. (|ψ〉, |φ〉) = (|φ〉, |ψ〉)†;

4. (|ψ〉, |ψ〉) = 0 ⇔ |ψ〉 = 0.

Property 3 implies that (|ψ〉, |ψ〉) ∈ D, while properties 2 and 3 together imply that
(s|ψ〉, |φ〉) = s†(|ψ〉, |φ〉). However, in this work we will also require the bicomplex scalar
product (·, ·) to be hyperbolic positive, i.e.

(|ψ〉, |ψ〉) ∈ D
+, ∀|ψ〉 ∈ M. (38)

This is a necessary condition if we want to recover the standard quantum mechanics from the
bicomplex one.
Noted that the following projection of a bicomplex scalar product:

(·, ·)k̂ := Pk((·, ·)) : M × M −→ C(i1) (39)

is a standard scalar product on Vk, for k = 1, 2. One easily shows (Gervais Lavoie et al., 2010a,
(3.12)) that

(|ψ〉, |φ〉) = e1P1
(
(|ψ1̂〉, |φ1̂〉)

)
+ e2P2

(
(|ψ2̂〉, |φ2̂〉)

)

= e1

(
|ψ1̂〉, |φ1̂〉

)
1̂ + e2

(
|ψ2̂〉, |φ2̂〉

)
2̂ . (40)

As the reader can see, the caret notation ( k̂ ) will be used systematically to distinguish
idempotent projection of ket, scalar product as well as scalar. In fact, this notation is simply a
convenient way to deal with the idempotent representation Pk(·) in a more compact form.
We point out that a bicomplex scalar product is completely characterized by the two standard
scalar products (·, ·)k̂ on Vk. In fact, if (·, ·)k̂ is an arbitrary scalar product on Vk, for k = 1, 2,
then (·, ·) defined as in (40) is a bicomplex scalar product on M.
In this work, we will used the Dirac notation

(|ψ〉, |φ〉) = 〈ψ|φ〉 = e1〈ψ1̂|φ1̂〉1̂ + e2〈ψ2̂|φ2̂〉2̂ (41)

46 Theoretical Concepts of Quantum Mechanics
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The Bicomplex Heisenberg Uncertainty Principle 9

for the scalar product. The one-to-one correspondence between bra 〈·| and ket |·〉 can be
establish from the bicomplex Riesz theorem (Gervais Lavoie et al., 2010a, Th. 3.7) that we
will present in section 3.

2.2.2 Bicomplex linear operators

A bicomplex linear operator A is a mapping from M to M such that, for any s, t ∈ T and any
|ψ〉, |φ〉 ∈ M

A(s|ψ〉+ t|φ〉) = sA|ψ〉+ tA|φ〉. (42)

A bicomplex linear operator A can always be written as A = e1 A1̂ + e2 A2̂ and then,

A|ψ〉 = e1 A1̂|ψ1̂〉+ e2 A2̂|ψ2̂〉 (43)

where

Ak̂|ψk̂〉 := Pk (A) |ψk̂〉 = Pk (A|ψ〉) , ∀|ψ〉 ∈ M, k = 1, 2. (44)

The bicomplex adjoint operator A∗ of A is the operator defined so that for any |ψ〉, |φ〉 ∈ M

(|ψ〉, A|φ〉) = (A∗|ψ〉, |φ〉). (45)

One can show that in finite-dimensional free T-modules, the adjoint always exists, is linear
and satisfies (Rochon & Tremblay, 2006, Sec. 8.1)

(A∗)∗ = A, (sA + tB)∗ = s† A∗ + t†B∗ and (AB)∗ = B∗A∗. (46)

The reader can noted that we will used the same symbol for the adjoint operator in M or in
Vk ;

A∗ = e1 A∗
1̂
+ e2 A∗

2̂
. (47)

We shall say that a ket |ψ〉 belongs to the null cone (NC) if either |ψ1̂〉 = 0 or |ψ2̂〉 = 0, and
that a linear operator A belongs to the null cone (NC) if either A1̂ = 0 or A2̂ = 0.
A bicomplex self-adjoint operator is a linear operator H such that

(|ψ〉, H|φ〉) = (H|ψ〉, |φ〉) (48)

for all |ψ〉 and |φ〉 in M.
Let A : M → M be a bicomplex linear operator. If there exists λ ∈ T and a ket |ψ〉 ∈ M such
that |ψ〉 /∈ NC and that

A|ψ〉 = λ|ψ〉 (49)

holds, then λ is called a bicomplex eigenvalue of A and |ψ〉 is called an eigenket of A
corresponding to the eigenvalue λ. It was shown in (Rochon & Tremblay, 2006, Th. 14) that the
eigenvalues of a self-adjoint operator acting in a finite-dimensional free T-module, associated
with eigenkets not in the null cone, are hyperbolic numbers.

47The Bicomplex Heisenberg Uncertainty Principle
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Moreover, the eigenket equation (49) is equivalent to the system of two eigenket equations
given by

Ak̂|ψk̂〉 = λk̂|ψk̂〉 , k = 1, 2, (50)

where λ = e1λ1̂ + e2λ2̂, λ1̂, λ2̂ ∈ C(i1) and |ψ〉 = e1|ψ1̂〉 + e2|ψ2̂〉. We say that |ψ〉 is an
eigenket of A rather then an eigenvector because element of M are modules instead of vectors.
For a complete treatment of the Module Theory, see (Bourbaki, 2006).
The reader can remark that the element |ψk̂〉 was noted by |ψ〉k̂ in (Gervais Lavoie et al., 2010a;
2011). However, the notation |ψk̂〉 is more appropriated here with scalar product in the Dirac
notation.

3. Infinite-dimensional bicomplex Hilbert spaces

The mathematical structure of standard quantum mechanics (SQM) consists in Hilbert spaces,
frequently infinite-dimensional ones, defined over the field of complex numbers (Birkhoff
& Von Neumann, 1936). In the case of bicomplex quantum mechanics (BQM), the natural
extension is to deal with infinite-dimensional bicomplex Hilbert spaces. We will sketched
some important results here but proof and additional material can be found in (Gervais Lavoie
et al., 2010a).

Result 1. Let M be a T-module and let (·, ·) be a bicomplex scalar product define on M. The space
{M, (·, ·)} is called a T-inner product space, or bicomplex pre-Hilbert space. When no confusion
arise, we will noted {M, (·, ·)} as M.

We defined a bicomplex Hilbert space as a T-inner product space (bicomplex pre-Hilbert space)
which is complete (with respect to the T-norm induced by the bicomplex scalar product (·, ·)).
Result 2. Because M = V1 ⊕ V2, and (·, ·) = (·, ·)1̂e1 + (·, ·)2̂e2, we have that {M, (·, ·)} is a

bicomplex Hilbert space if and only if
{

Vk, (·, ·)k̂

}
is complete, k = 1, 2.

As a corollary of this result, if {M, (·, ·)} is a bicomplex Hilbert space, then
{

Vk, (·, ·)k̂

}
is a

complex (in C(i1)) Hilbert space for k = 1, 2.
A direct application of this corollary leads to the bicomplex Riesz representation theorem as
follow.

Result 3 (Riesz). Let {M, (·, ·)} be a bicomplex Hilbert space and let f : M → T be a continuous
linear functional on M. Then, there exist a unique |ψ〉 ∈ M such that ∀|φ〉 ∈ M, f (|φ〉) =
(|ψ〉, |φ〉) = 〈ψ|φ〉.
The bicomplex Riesz theorem means that for an arbitrary bicomplex Hilbert space M, the
dual space M∗ of continuous linear functionals on M can be identified with M through the
bicomplex scalar product (·, ·).
Let us take a look at the orthonormalization of elements of M. Let {|sl〉} be a countable basis
of M. Then, {|sl〉} can always be orthonormalized.
It is interesting to note that the normalizability of kets requires that the scalar product belongs
to D+. To see this, let us write (|m1〉, |m1〉) = a1̂e1 + a2̂e2 with a1̂, a2̂ ∈ R, and let

|m′
1〉 = (z1̂e1 + z2̂e2)|m1〉,
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with z1̂, z2̂ ∈ C(i1) and z1̂ 	= 0 	= z2̂. We get

(
|m′

1〉, |m′
1〉
)
= (|z1̂|

2e1 + |z2̂|2e2) (|m1〉, |m1〉)
= (|z1̂|

2e1 + |z2̂|2e2)(a1̂e1 + a2̂e2)

= c1̂a1̂e1 + c2̂a2̂e2, (51)

with ck̂ = |zk̂|2 ∈ R+. The normalization condition of |m′
1〉 becomes

c1̂a1̂e1 + c2̂a2̂e2 = 1, (52)

or c1̂a1̂ = 1 = c2̂a2̂. This is possible only if a1̂ > 0 and a2̂ > 0. Hence, in particular
(|m1〉, |m1〉) ∈ D+.
In fact, we will show here that the bicomplex normalization is a more restricting condition
than the complex one. Let us try to normalized a ket |m2〉 ∈ NC. Suppose that |m2〉 =
e1|m2〉 (which means that the part in e2 is |0〉) and let us write (|m2〉, |m2〉) = a1̂e1 + a2̂e2 as
previously. From the properties of the bicomplex scalar product 2.2.1, we can write

(|m2〉, |m2〉) = (|m2〉, e1|m2〉) = e1(|m2〉, |m2〉), (53)

which directly imply that

a1̂e1 + a2̂e2 = e1

(
a1̂e1 + a2̂e2

)
= a1̂e1. (54)

In other words, a2̂ = 0, but in this case, we cannot satisfy the condition (52) (e1 is not
invertible) and then, |m2〉 is not normalizable.
To state this another way, the requirement to be not in the NC is embedded in the
normalization requirement. In this sense, we can say that the bicomplex normalization is more
restrictive than the complex one, because it exclude an infinite number of elements of M, those
in the NC instead of only one in the complex case, the vector |0〉. However, in practice, this
is not a big glitch because we naturally avoid the NC to avoid the “trivial” situation where
M ≃ ekVk.

4. Bicomplex quantum mechanics

Bicomplex quantum mechanics was first investigated in (Rochon & Tremblay, 2004; 2006).
In (Rochon & Tremblay, 2004), the bicomplex Schrödinger equation was introduced and the
continuity equations and symmetries was derived. The bicomplex Born probability formulas
was studied by extracting some real moduli. In (Rochon & Tremblay, 2006), the concept of
free modules over the ring of bicomplex numbers was developed, bicomplex scalar product,
Dirac notation and linear operator was also investigated.
Motivated by these results, the problem of the bicomplex quantum harmonic oscillator was
worked out in details in (Gervais Lavoie et al., 2010b), and the eigenvalues and eigenfunctions
was obtained. The section 4.1 is a summary of important results on the bicomplex harmonic
oscillator.
First of all, we will state a fundamental postulate on which the BQM stands.
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Postulate 1. There exist two operators X and P (called the bicomplex position and momentum
operators respectively) in M such that X and P are self-adjoint and their commutation relation is a
multiple of the identity.

Mathematically, this postulate means that

[X, P] = wI, w ∈ T, X, P, I ∈ M, X∗ = X and P∗ = P. (55)

Without lost of generality, we can rewrite w as i1 h̄ξ, ξ ∈ T. Let |E〉 /∈ NC be a normalizable
element of M. The properties of the bicomplex scalar product 2.2.1 allow us to write

i1 h̄ξ(|E〉, |E〉) = (|E〉, i1 h̄ξ I|E〉)

= (|E〉, XP|E〉)− (|E〉, PX|E〉)

= (X|E〉, P|E〉)− (P|E〉, X|E〉)

= (PX|E〉, |E〉)− (XP|E〉, |E〉)

= (−i1 h̄ξ I|E〉, |E〉)

= i1 h̄ξ†(|E〉, |E〉). (56)

Because |E〉 is normalizable, (|E〉, |E〉) /∈ NC and we have that ξ = ξ† which signify that
ξ ∈ D, or ξ = ξ1̂e1 + ξ2̂e2 with ξ1̂, ξ2̂ ∈ R.
As the reader can see, the assumptions made here on X, P, ξ and |E〉 are very general ones,
and are closely related to the assumptions made in SQM. The main idea beyond all this is to
build the BQM standing on as least assumptions as possible. For example, we could postulate
that in BQM, [X, P] = i1 h̄I as in the standard case, without questioning itself. However, as we
see later, if we had done that, we would have neglected an apparently nontrivial part of the
solution.

4.1 The bicomplex quantum harmonic oscillator

We start this section with a little calculation that allow us to restrict further the constant ξ.
This derivation is given in (Gervais Lavoie et al., 2010b), but we think that it is instructive to
give it again here.
First of all, to work out the quantum harmonic oscillator problem, we need an Hamiltonian.
We will consider the following

H =
1

2m
P2 +

1
2

mω2X2, (57)

as the Hamiltonian of the bicomplex harmonic oscillator, where m and ω are positive real
numbers and X and P are the bicomplex self-adjoint operators defined previously. Clearly,
this imply H : M → M and that H is self-adjoint.
Secondly, we will ask the following: Is it possible to further restrict meaningful values of ξ,
for instance by a simple rescaling of X and P? To answer this question, let us write

X = (α1̂e1 + α2̂e2)X′, P = (β1̂e1 + β2̂e2)P′, (58)
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with nonzero αk̂ and βk̂ (k = 1, 2). For X′ and P′ to be self-adjoint, αk̂ and βk̂ must be real.
Making use of (57) we find that

H =
1

2m
(β2

1̂
e1 + β2

2̂
e2)(P′)2 +

1
2

mω2(α2
1̂
e1 + α2

2̂
e2)(X′)2

=
1

2m′ (P′)2 +
1
2

m′(ω′)2(X′)2. (59)

For m′ and ω′ to be positive real numbers, α2
1̂
e1 + α2

2̂
e2 and β2

1̂
e1 + β2

2̂
e2 must also belong to

R+. This entails that α2
1̂
= α2

2̂
and β2

1̂
= β2

2̂
, or equivalently α1̂ = ±α2̂ and β1̂ = ±β2̂. Hence

we can write

i1 h̄(ξ1̂e1 + ξ2̂e2)I = [X, P]

= [(α1̂e1 + α2̂e2)X′, (β1̂e1 + β2̂e2)P′]

= (α1̂β1̂e1 + α2̂β2̂e2)[X′, P′]. (60)

But this in turn implies that

[X′, P′] = i1 h̄

(
ξ1̂

α1̂β1̂
e1 +

ξ2̂
α2̂β2̂

e2

)
I = i1 h̄(ξ ′

1̂
e1 + ξ ′

2̂
e2)I. (61)

This equation shows that α1̂, α2̂, β1̂ and β2̂ can always be picked so that ξ ′
1̂

and ξ ′
2̂

are positive.
Furthermore, we can choose α1̂ and β1̂ so as to make ξ ′

1̂
equal to 1. But since |α1̂β1̂| = |α2̂β2̂|,

we have no control over the norm of ξ ′
2̂
. The upshot is that we can always write H as in (57),

with the commutation relation of X and P given by

[X, P] = i1 h̄ξ I = i1 h̄(ξ1̂e1 + ξ2̂e2)I with ξ1̂, ξ2̂ ∈ R
+. (62)

We also have the freedom of setting either ξ1̂ = 1 or ξ2̂ = 1, but not both. In all this work, we
assumed that ξ /∈ NC (which means ξ k̂ 	= 0, k = 1, 2). Otherwise, BQM is reduced to SQM
time a constant.
In (Gervais Lavoie et al., 2010b), we work out the bicomplex harmonic oscillator problem in
the algebraic way in full details. Here, to present our results, we will give a sketch of the
differential solution and show that it’s lead to the same eigenfunctions.
First of all, we need to compute the action of the operators X and P in their functional form.
To do this, let us assume that

X|x〉 = x|x〉, X : M → M, |x〉 ∈ M and x ∈ R. (63)

This signify that |x〉 is an eigenket of X and that x is the real eigenvalue of X associate with the
ket |x〉. Because |x〉 is an eigenket of the position operator, it is reasonable to write 〈x|x′〉 =
δ(x − x′), with δ(x − x′) the real Dirac delta function. Let us now consider the following

〈x|[X, P]|x′〉 = 〈x|i1 h̄ξ I|x′〉 = i1 h̄ξδ(x − x′). (64)
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On the other hand,

〈x|[X, P]|x′〉 = 〈x|XP|x′〉 − 〈x|PX|x′〉
= 〈x′|PX|x〉† − x′〈x|P|x′〉
= x†〈x|P|x′〉 − x′〈x|P|x′〉
= (x† − x′)〈x|P|x′〉
= (x − x′)〈x|P|x′〉. (65)

Putting the two results together, we get

(x − x′)〈x|P|x′〉 = i1 h̄ξδ(x − x′). (66)

In SQM, we know that (x − x′) d
dx δ(x − x′) = −δ(x − x′) (Marchildon, 2002, chap. 5). But we

can also use this result here because x ∈ R. This lead to

〈x|P|x′〉 = −i1 h̄ξ
d

dx
δ(x − x′). (67)

At this point, it is easy to see that the functional form of the position and momentum
bicomplex oparators are given by

X → x, P → −i1 h̄ξ
d

dx
. (68)

With these representations, we can rewrite the Hamiltonian (57) as a differential equation. Let
φn(x) be a normalisable eigenfunction of H (in the coordinate representation). Then, we have

1
2m

P2φn(x) +
1
2

mω2X2φn(x) = Hφn(x)

⇒ − h̄2ξ2

2m
d2

dx2 φn(x) +
1
2

mω2x2φn(x) = Enφn(x). (69)

A priori, this equation is a bicomplex equation of the real variable x. Taking ξ = e1ξ1̂ + e2ξ2̂,
En = e1En1̂ + e2En2̂ and φn(x) = e1φn1̂(x) + e2φn2̂(x), we get

−
h̄2ξ2

k̂
2m

d2

dx2 φnk̂(x) +
1
2

mω2x2φnk̂(x) = Enk̂φnk̂(x) with k = 1, 2. (70)

In this equation, ξ k̂ ∈ R+ because of (62), Enk̂ ∈ R because En is the eigenvalue of a self-adjoint
operator, and φnk̂(x) is a complex function of the real variable x. In fact, (70) is exactly the
differential equation of the standard quantum harmonic oscillator with h̄ replaced by h̄ξ k̂.
This also mean that we already know the solutions for φnk̂(x) and for Enk̂, they are given by
(Marchildon, 2002, chap. 5)

φnk̂(x) =

[√
mω

πh̄ξ k̂

1
2nn!

]1/2

exp

{
− mω

2h̄ξ k̂
x2

}
Hn

(√
mω

h̄ξ k̂
x

)
, (71)

Enk̂ = h̄ξ k̂ω

(
n +

1
2

)
, (72)
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with Hn(x) the Hermite polynomial of order n in the real variable x. Let us define the variable
θk̂ for convenience as

θk̂ :=

√
mω

h̄ξ k̂
x for k = 1, 2. (73)

It can be shown (Price, 1991) that for any bicomplex number w = z1̂e1 + z2̂e2,

ew = e1ez1̂ + e2ez2̂ . (74)

This holds also for any polynomial function Q(w), that is,

Q(z1̂e1 + z2̂e2) = e1Q(z1̂) + e2Q(z2̂). (75)

Moreover, if ξ = ξ1̂e1 + ξ2̂e2 with ξ1̂ and ξ2̂ positive, we have

1
ξ1/4 =

e1

ξ1/4
1̂

+
e2

ξ1/4
2̂

. (76)

From (72), we have that the energy En of the bicomplex harmonic oscillator is given by

En = En1̂e1 + En2̂e2 = e1 h̄ξ1̂ω

(
n +

1
2

)
+ e2 h̄ξ2̂ω

(
n +

1
2

)
= h̄ω

(
n +

1
2

)
ξ. (77)

For the eigenfunctions, (71) imply that φn(x) will be given by

φn(x) = φn1̂(x)e1 + φn2̂(x)e2

= e1

[√
mω

πh̄ξ1̂

1
2nn!

]1/2

e−θ2
1̂
/2Hn

(
θ1̂

)
+ e2

[√
mω

πh̄ξ2̂

1
2nn!

]1/2

e−θ2
2̂
/2Hn

(
θ2̂

)

=

⎧
⎨
⎩e1

[√
mω

πh̄ξ1̂

1
2nn!

]1/2

+ e2

[√
mω

πh̄ξ2̂

1
2nn!

]1/2
⎫
⎬
⎭

·
{

e1e−θ2
1̂
/2 + e2e−θ2

2̂
/2
} {

e1 Hn(θ1̂) + e2 Hn(θ2̂)
}

. (78)

Moreover, we the help of (74) and (76), we obtain

φn(x) =
[√

mω

πh̄ξ

1
2nn!

]1/2
e−θ2/2Hn(θ), (79)

where

Hn(θ) := e1 Hn(θ1̂) + e2 Hn(θ2̂) (80)

is a hyperbolic Hermite polynomial of order n.
Equation (79) expresses normalized eigenfunctions of the bicomplex harmonic oscillator
Hamiltonian purely in terms of hyperbolic constants and functions, with no reference to a
particular representation like {ek}. Indeed ξ can be viewed as a D+ constant, θ is equal to√

mω/h̄ξ x and Hn(θ) is just the Hermite polynomial in θ.
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In (Gervais Lavoie et al., 2010a), we show that the set {φn(x) | n = 0, 1, . . .} form a T-basis of
M, and that M is a bicomplex Hilbert space with the following decomposition for an arbitrary
ψ(x) ∈ M;

ψ(x) = ∑
n

wnφn(x) with wn ∈ T. (81)

Moreover, in (Gervais Lavoie et al., 2010b), we show that the most general eigenfunction of H
is given by a linear combination, in the idempotent basis, of two functions φnk̂(x) with some
coefficient, and possibly different order n, such as

φ(x) = e1wl1̂φl1̂(x) + e2wn2̂φn2̂ (82)

with wl1̂ and wn2̂ in C(i1) and l, n = 0, 1, . . . . The associated energy is then

E = h̄ω

{(
l +

1
2

)
e1ξ1̂ +

(
n +

1
2

)
e2ξ2̂

}
. (83)

The eigenfunction (82) can be written explicitly as

φ(x) =
[mω

πh̄

]1/4

⎧
⎪⎪⎨
⎪⎪⎩

e1

wl1̂e−θ2
1̂
/2

√
2l l!

√
ξ1̂

Hl(θ1̂) + e2
wn2̂e−θ2

2̂
/2

√
2nn!

√
ξ2̂

Hn(θ2̂)

⎫
⎪⎪⎬
⎪⎪⎭

. (84)

The function φ is normalized, i.e. (φ, φ) = 1, if

|wl1̂|
2e1 + |wn2̂|2e2 = 1. (85)

φ(x) can also be rewrite in term of 1 and j. From (16), we only have to rewrite the idempotent
basis in term of 1 and j to find (we take φ normalized for simplicity)

φ(x) =
1
2

[mω

πh̄

]1/4

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

e−θ2
1̂
/2

√
2l l!

√
ξ1̂

Hl(θ1̂) +
e−θ2

2̂
/2

√
2nn!

√
ξ2̂

Hn(θ2̂)

⎞
⎟⎟⎠

+j

⎛
⎜⎜⎝

e−θ2
1̂
/2

√
2l l!

√
ξ1̂

Hl(θ1̂)−
e−θ2

2̂
/2

√
2nn!

√
ξ2̂

Hn(θ2̂)

⎞
⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭

. (86)

This last equation however is a kind of hybrid between the representation {1, j} and {e1, e2}.
Indeed, θk̂ and ξ k̂ are define in the idempotent basis. But, from (19), it is not hard to see that
we can rewrite ξ k̂ in term of new parameters α and β (that have nothing to do with those of
(58)) as

ξ1̂ = α + β, ξ2̂ = α − β such that ξ = α + βj, α, β ∈ R. (87)

From this, we have that

θ1̂ =

√
mω

h̄(α + β)
x and θ2̂ =

√
mω

h̄(α − β)
x. (88)
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Using (87) and (88) in (86), we can rewrite φ(x) purely in term of 1 and j, without any allusion
to the idempotent basis. We find

φ(x) =
1
2

[mω

πh̄

]1/4

·

⎧
⎨
⎩

⎛
⎝

exp
{

−mω
2h̄(α+β)

x2
}

√
2l l!

√
α + β

Hl

(√
mω

h̄(α + β)
x
)
+

exp
{

−mω
2h̄(α−β)

x2
}

√
2nn!

√
α − β

Hn

(√
mω

h̄(α − β)
x
)⎞
⎠

+j

⎛
⎝

exp
{

−mω
2h̄(α+β)

x2
}

√
2l l!

√
α + β

Hl

(√
mω

h̄(α + β)
x
)
−

exp
{

−mω
2h̄(α−β)

x2
}

√
2nn!

√
α − β

Hn

(√
mω

h̄(α − β)
x
)⎞
⎠
⎫
⎬
⎭ .

(89)

One can remark that the conditions ξ ∈ D+ and ξ /∈ NC are express as α + β > 0 and
α − β > 0 for the parameters α and β.
Another way to express our eigenfunctions in term of real and hyperbolic part is to rewrite
the hyperbolic exponential e−θ2/2 in term of real hyperbolic sinus and cosinus. Indeed, from
(Rochon & Tremblay, 2004), we can write

e−θ2/2 = e−
(θ2

1+θ2
2 )

2 e−θ1θ2j

= e−
(θ2

1+θ2
2 )

2 {cosh θ1θ2 − j sinh θ1θ2} with θ = θ1 + θ2j. (90)

Taking

ξ = α + βj, (91)

we have that

ξ−1/4 =
(α + β)−1/4 + (α − β)1/4

2
+ j

(α + β)−1/4 − (α − β)1/4

2
= α′ + β′j. (92)

For the normalized eigenfunction (79), we can then write

φn(x) =
[√

mω

πh̄
1

2nn!

]1/2

e−
(θ2

1+θ2
2 )

2

·
{[(

α′ cosh θ1θ2 − β′ sinh θ1θ2
)
Re (Hn(θ)) +

(
β′ cosh θ1θ2 − α′ sinh θ1θ2

)
Hy (Hn(θ))

]

j

[(
α′ cosh θ1θ2 − β′ sinh θ1θ2

)
Hy (Hn(θ)) +

(
β′ cosh θ1θ2 − α′ sinh θ1θ2

)
Re (Hn(θ))

]}
, (93)

where Re (Hn(θ)) and Hy (Hn(θ)) stand for the real and the hyperbolic part of Hn(θ),
respectively.
Finally, it is not so hard to see that if we take ξ1̂ = 1 = ξ2̂ (resp. α = 1 and β = 0) and l = n
(indirectly X1̂ = X2̂, P̂1 = P̂2 and so on), we recover the usual eigenfunctions and energy of
the standard quantum harmonic oscillator.
We end this section with some plots of the eigenfunction φ(x) for different value of ξ1̂, ξ2̂, l
and n. In Fig. 2 to 4, the dashed line stands for the real part, the dotted line for the hyperbolic
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part and the full line is the probability density |φ(x)|2 = |φ1̂(x)|2/2 + |φ2̂(x)|2/2. We also
take mω/h̄ = 1 on the y-axe for simplicity.

(a) l = 0 = n and ξ1̂ = 1 = ξ2̂, (b) l = 0 = n and ξ1̂ = 0.2, ξ2̂ = 1.

Fig. 2. Eigenfunction (86) with l = 0 = n. Fig. (a) show that eigenfunctions of the harmonic
oscillator of the SQM can be recover from the bicomplex eigenfunction (86).

(a) l = 0 and n = 1. (b) l = 1 and n = 0.

Fig. 3. Eigenfunction (86) with ξ1̂ = 0.2, ξ2̂ = 1.

(a) ξ1̂ = 1 and ξ2̂ = 1. (b) ξ1̂ = 1 and ξ2̂ = 0.1.

Fig. 4. Eigenfunction (86) with l = 2, n = 1.
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5. The bicomplex Heisenberg uncertainty principle

The uncertainty principle, due to Heisenberg, is a fundamental principle in quantum
mechanics, but also in post-classical physics in general. The uncertainty principle establish
a lower limit on the theoretical precision that one can, even in principle, reach about two
non-commuting observable of a physical system. This limit on the absolute precision that can
be achieve is one of the biggest cut between the classical and deterministic physics, and the
probabilistic post-classical quantum physics.
From the fundamental aspect of the uncertainty principle, it seems natural that all the
extensions of standard quantum mechanics try to establish their own. For example, in
quaternionic quantum mechanics, the uncertainty principle can be formulated as (Adler, 1995)
(∆A)2 (∆B)2 ≥ 1

4 |〈C〉|2, with [A, B] = IC, where A, B and C are self-adjoint (left-acting)
operators and I is a left-acting anti-self-adjoint operator. Even if A, B, C and I are quaternionic
operators, the quaternionic uncertainty principle have essentially the same form as the
Heisenberg uncertainty principle in SQM.
In this section, we find, in an algebraic way, the bicomplex uncertainty principle of two
non-commuting bicomplex self-adjoint operators. Let A′ and B′ be these two bicomplex
self-adjoint operators. With none of the eigenkets of A′ nor B′ in the null-cone, we assumed
that the eigenvalues of A′ and B′ are hyperbolic numbers.
We start with the same definition of the mean value of an operator as in SQM, that is a sum
over the eigenvalues times the probability. However, we used the bicomplex Born formula
(Rochon & Tremblay, 2004, Th. 1) P( · ) = |ψ|2, with | · |2 the Euclidean R4-norm, to define
the probability. Let A′ : M → M be such that A′|a′i〉 = a′i |a′i〉, with {a′i} the set of hyperbolic
eigenvalues and {|a′i〉} an orthonormalized T-basis of eigenkets of A. We define

〈A′〉BQM = ∑
i

a′iP
(

A′ → a′i
)
= ∑

i
a′i
∣∣〈a′i |ψ〉

∣∣2 ∈ D. (94)

The reader can remark that P
(

A′ → a′i
)
=

∣∣〈a′i |ψ〉
∣∣2 is a real probability because it is restricted

to [0, 1] as long as |ψ〉 is normalized, and the sum of all probability is equal to 1. We know from
(29) that | · |2 = 1

2 |P1 (·)|2 + 1
2 |P2 (·)|2. From the property of the bicomplex scalar product 2.2.1

(particularly (40)), we can write

〈A′〉BQM = ∑
i

a′i

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣
2
+

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

2

=
1
2 ∑

i
a′i
{
〈a′

i1̂
|ψ1̂〉1̂〈a′

i1̂
|ψ1̂〉1̂ + 〈a′

i2̂
|ψ2̂〉2̂〈a′

i2̂
|ψ2̂〉2̂

}

=
1
2 ∑

i

(
e1a′

i1̂
+ e2a′

i2̂

) {
〈ψ1̂|a

′
i1̂
〉1̂〈a′

i1̂
|ψ1̂〉1̂ + 〈ψ2̂|a′i2̂〉2̂〈a′

i2̂
|ψ2̂〉2̂

}

=
1
2

{
e1 ∑

i
a′

i1̂
P1

(
〈ψ1̂|a

′
i1̂
〉〈a′

i1̂
|ψ1̂〉

)
+ e2 ∑

i
a′

i2̂
P1

(
〈ψ1̂|a

′
i1̂
〉〈a′

i1̂
|ψ1̂〉

)

+ e1 ∑
i

a′
i1̂

P2

(
〈ψ2̂|a′i2̂〉〈a′

i2̂
|ψ2̂〉

)
+ e2 ∑

i
a′

i2̂
P2

(
〈ψ2̂|a′i2̂〉〈a′

i2̂
|ψ2̂〉

)}
. (95)

The · stand for the standard complex conjugation because 〈·|·〉k̂ ∈ C(i1). We want to warn

the reader here that we can write
∣∣∣〈a′

ik̂
|ψk̂〉k̂

∣∣∣
2
= 〈a′

ik̂
|ψk̂〉k̂〈a′

ik̂
|ψk̂〉k̂ only because 〈a′

ik̂
|ψk̂〉k̂ ∈
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C(i1), in other word, 〈·|·〉k̂ is a standard complex scalar product. Otherwise, we cannot write
∣∣〈a′i |ψ〉

∣∣2 = 〈a′i |ψ〉〈a′i |ψ〉 for |a′i〉, |ψ〉 ∈ M. Indeed, (29) imply that |w|2 = Re
(
w · w†) instead

of |w|2 = w · w† for arbitrary w ∈ T.
Using the properties of the projections operators, the fact that a′

ik̂
∈ R and the standard

spectral theorem on Vk, we can write

∑
i

a′
ik̂

Pk

(
〈ψk̂|a

′
ik̂
〉〈a′

ik̂
|ψk̂〉

)
= Pk

(
〈ψk̂|

[

∑
i

a′
ik̂
|a′

ik̂
〉〈a′

ik̂
|
]
|ψk̂〉

)

= Pk

(
〈ψk̂|A

′
k̂
|ψk̂〉

)
= 〈ψk̂|A

′
k̂
|ψk̂〉k̂. (96)

Then, we obtain
(
keeping in mind that 〈ψ|A′|ψ〉 = e1〈ψ1̂|A′

1̂
|ψ1̂〉1̂ + e2〈ψ2̂|A′

2̂
|ψ2̂〉2̂

)

〈A′〉BQM =
1
2

{
〈ψ|A′|ψ〉+ e1 ∑

i
a′

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2
+ e2 ∑

i
a′

i2̂

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣
2
}

. (97)

Noted that the last two terms of (97) represent a bicomplex (hyperbolic in fact) interaction or
coupling between V1 and V2. Indeed, if we want to restrict BQM → SQM, we only have to
take a′

i1̂
= a′

i2̂
and |a′

i1̂
〉 = |a′

i2̂
〉, and if we do that in (97), it is not hard to see that we recover

the standard equation 〈A〉SQM = 〈ψ|A|ψ〉.
For the term 〈A′2〉BQM, the same steps will give us

〈A′2〉BQM =
1
2

{
〈ψ|A′2|ψ〉+ e1 ∑

i
a′2

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2
+ e2 ∑

i
a′2

i2̂

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣
2
}

. (98)

Let us now evaluate the product 〈A′2〉〈B′2〉, with B′ the bicomplex self-adjoint operator
defined previously

({
b′i
}

and
{
|b′i〉

}
are defined the same way as for A′). For convenience,

we will remove the BQM index

〈A′2〉〈B′2〉 = 1
4

{
〈ψ|A′2|ψ〉〈ψ|B′2|ψ〉+ e1〈ψ1̂|A

′2
1̂
|ψ1̂〉1̂ ∑

i
b′2

i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣
2

+ e2〈ψ2̂|A′2
2̂
|ψ2̂〉2̂ ∑

i
b′2

i2̂

∣∣∣〈b′i1̂|ψ1̂〉1̂

∣∣∣
2

+ e1〈ψ1̂|B
′2
1̂
|ψ1̂〉1̂ ∑

i
a′2

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

+ e2〈ψ2̂|B′2
2̂
|ψ2̂〉2̂ ∑

i
a′2

i2̂

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣
2

+ e2 ∑
i,j

a′2
i2̂

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣
2

b′2
j2̂

∣∣∣〈b′j1̂|ψ1̂〉1̂

∣∣∣
2

+ e1 ∑
i,j

a′2
i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣
2
}

. (99)

We would like to apply the bicomplex Schwartz inequality (Gervais Lavoie et al., 2010a, Th.
3.8) directly to the first term on the right hand side of (99). However, it is not so clear how we
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can do that. The reason is that in bicomplex quantum mechanics, the (real) “length” of the ket
|ψ〉 is not given by 〈ψ|ψ〉, but by |〈ψ|ψ〉|. In consequence, the bicomplex Schwartz inequality
apply to |〈ψ|ψ〉| |〈φ|φ〉| rather than 〈ψ|ψ〉〈φ|φ〉. From the properties of the Euclidean norm
on bicomplex, it doesn’t seems possible, at first look, to inject a norm in (99) to build the term∣∣〈ψ|A′2|ψ〉

∣∣ ∣∣〈φ|B′2|φ〉
∣∣.

One way to avoid this difficulty is to work with idempotent projection. We will noted 〈·〉k̂ the
projection Pk (〈·〉). From (99), we find

〈A′2〉1̂〈B′2〉1̂ =
1
4

{
〈ψ1̂|A

′2
1̂
|ψ1̂〉1̂〈ψ1̂|B

′2
1̂
|ψ1̂〉1̂

+ 〈ψ1̂|A
′2
1̂
|ψ1̂〉1̂ ∑

i
b′2

i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣
2

+ 〈ψ1̂|B
′2
1̂
|ψ1̂〉1̂ ∑

i
a′2

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣
2
}

, (100)

and equivalently for 〈A′2〉2̂〈B′2〉2̂.
From the definition of the bicomplex scalar product 2.2.1, we know that 〈ψk̂|ψk̂〉k̂ is a standard
complex (in C(i1)) scalar product. This imply that 〈ψk̂|ψk̂〉k̂ is the (real) “length” of the ket
|ψk̂〉. From this, it becomes clear that we can apply the standard complex Schwartz inequality
to the first term of (100), where the two kets are A′

1̂
|ψ1̂〉, B′

1̂
|ψ1̂〉 respectively. This leads to

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

{ ∣∣∣〈ψ1̂|A
′
1̂
B′

1̂
|ψ1̂〉1̂

∣∣∣
2
+ 〈ψ1̂|A

′2
1̂
|ψ1̂〉1̂ ∑

i
b′2

i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣
2

+ 〈ψ1̂|B
′2
1̂
|ψ1̂〉1̂ ∑

i
a′2

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣
2
}

. (101)

It is important to remark that the ≥ sign is well used here because (101) is an equation over
reals numbers. Indeed, on the left hand side, as long as A′ and B′ are bicomplex self-adjoint
operators, theirs eigenvalues are hyperbolic numbers, and then, according to (94), the mean
valued of the operators A′ and B′ (equivalently for A′2 and B′2) are hyperbolic numbers. This
also means that the projections 〈·〉k̂ are real numbers.
On the right hand side of (101), | · |2 is the Euclidean R2-norm and is undoubtedly real. As we
said previously, 〈·|·〉k̂ is a standard complex scalar product. Then 〈ψ1̂|A′2

1̂|ψ1̂〉1̂ is real. Finally,
the idempotent projection of hyperbolic numbers, the eigenvalues of A′ and B′, are also real
numbers.
Let us introduce four new operators

M′
k̂

:=
1
2

[
A′

k̂
, B′

k̂

]
, N′

k̂
:=

1
2

(
A′

k̂
B′

k̂
+ B′

k̂
A′

k̂

)
for k = 1, 2. (102)
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It is easy to see that M′∗
k̂
= −M′

k̂
and N′∗

k̂
= N′

k̂
. Let us write (k = 1, 2)

∣∣∣〈ψk̂|A
′
k̂
B′

k̂
|ψk̂〉k̂

∣∣∣
2
=

∣∣∣Pk

(
〈ψk̂|M

′
k̂
+ N′

k̂
|ψk̂〉

)∣∣∣
2

=
∣∣∣〈ψk̂|M

′
k̂
|ψk̂〉k̂ + 〈ψk̂|N

′
k̂
|ψk̂〉k̂

∣∣∣
2

=
∣∣∣〈ψk̂|M

′
k̂
|ψk̂〉k̂

∣∣∣
2
+ 〈ψk̂|M

′
k̂
|ψk̂〉k̂〈ψk̂|N′

k̂
|ψk̂〉k̂

+
∣∣∣〈ψk̂|N

′
k̂
|ψk̂〉k̂

∣∣∣
2
+ 〈ψk̂|M′

k̂
|ψk̂〉k̂〈ψk̂|N

′
k̂
|ψk̂〉k̂

=
∣∣∣〈ψk̂|M

′
k̂
|ψk̂〉k̂

∣∣∣
2
+ 〈ψk̂|M

′
k̂
|ψk̂〉k̂〈ψk̂|N

′
k̂
|ψk̂〉k̂

+
∣∣∣〈ψk̂|N

′
k̂
|ψk̂〉k̂

∣∣∣
2
− 〈ψk̂|M

′
k̂
|ψk̂〉k̂〈ψk̂|N

′
k̂
|ψk̂〉k̂

=
∣∣∣〈ψk̂|M

′
k̂
|ψk̂〉k̂

∣∣∣
2
+

∣∣∣〈ψk̂|N
′
k̂
|ψk̂〉k̂

∣∣∣
2

. (103)

Here again, in the third line, we can use the property |x|2 = x · x only because 〈ψk̂|M′
k̂
|ψk̂〉k̂

and 〈ψk̂|N′
k̂
|ψk̂〉k̂ are element of C(i1). The argument is the same as for (95).

Now, using (103) in (101), we have

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

{ ∣∣∣〈ψ1̂|M
′
1̂
|ψ1̂〉1̂

∣∣∣
2
+

∣∣∣〈ψ1̂|N
′
1̂
|ψ1̂〉1̂

∣∣∣
2

+ 〈ψ1̂|A
′2
1̂
|ψ1̂〉1̂ ∑

i
b′2

i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣
2

+ 〈ψ1̂|B
′2
1̂
|ψ1̂〉1̂ ∑

i
a′2

i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′
i2̂
|ψ2̂〉2̂

∣∣∣
2

b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣
2
}

. (104)

Because (104) is an inequality, we can remove strictly positives terms form the right-hand side,
exactly as we do in SQM (Marchildon, 2002, chap. 6). It is not hard to see that in fact, all the
right-hand side term’s are strictly positive. Then, by choice, we can write

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

∣∣∣〈ψ1̂|M
′
1̂
|ψ1̂〉1̂

∣∣∣
2

. (105)

Let us now redefined the self-adjoint operator A′. We take A′
k̂

:= Ak̂ − 〈A〉k̂ I, with Ak̂
self-adjoint and I the identity on Vk or M depending on context. Explicitly, for A′

1̂
, we have

A′
1̂
= A1̂ −

1
2

{
〈ψ1̂|A1̂|ψ1̂〉1̂ + ∑

i
ai1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2
}

I. (106)

As we said previously, and from the definition of the means value of an operator (94), we
know that 〈A〉k̂ ∈ R and 〈A2〉k̂ ∈ R. Because we modify the operator A′ by only a constant
operator (〈A〉k̂ I), it seems clear that the eigenkets of A′ will be the same as the eigenkets of
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A (this simply correspond to a rescaling of the operator), and we write |a′i〉 = |ai〉. Moreover
(k = 1, 2),

A′
k̂
|aik̂〉 =

(
Ak̂ − 〈A〉k̂ I

)
|aik̂〉 =

(
aik̂ − 〈A〉k̂

)
|aik̂〉 = a′

ik̂
|aik̂〉. (107)

Then, the eigenvalues of A′
k̂

will be transform as a′
ik̂
= aik̂ − 〈A〉k̂ ∈ R. For A′, we have

A′ = e1

(
A1̂ − 〈A〉1̂ I

)
+ e2

(
A2̂ − 〈A〉2̂ I

)
= A − 〈A〉I. (108)

Let us rewrite (98) in term of A and 〈A〉;

〈A′2〉 = 1
2

{
〈ψ| (A − 〈A〉I)2 |ψ〉+ e1 ∑

i

(
ai1̂ − 〈A〉1̂

)2 ∣∣〈ai2̂|ψ2̂〉2̂

∣∣2

+ e2 ∑
i

(
ai2̂ − 〈A〉2̂

)2 ∣∣〈ai1̂|ψ1̂〉1̂

∣∣2
}

. (109)

Using the normalization of the kets {|ψ〉} and
{
|aik̂〉

}
(in fact, the orthonormalization can be

assumed from (Gervais Lavoie et al., 2011, Sec. 4.3) and (Gervais Lavoie et al., 2010a, Sec. 3.2))
and the fact that ∑i |〈aik̂|ψk̂〉k̂|2 = 1, we can write

〈A′2〉 = 1
2

{
〈ψ|A2|ψ〉+ 〈A〉2 − 2〈A〉〈ψ|A|ψ〉

+ e1 ∑
i

a2
i1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2 + e1〈A〉2
1̂
− 2e1〈A〉1̂ ∑

i
ai1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2

+ e2 ∑
i

a2
i2̂

∣∣〈ai1̂|ψ1̂〉1̂

∣∣2 + e2〈A〉2
2̂
− 2e2〈A〉2̂ ∑

i
ai2̂

∣∣〈ai1̂|ψ1̂〉1̂

∣∣2
}

. (110)

With the help of (97) and (98), we find

〈A′2〉 = 〈A2〉 − 〈A〉2 = (∆A)2 , (111)

and clearly, 〈A′2〉k̂ = (∆A)2
k̂
.

By doing the same with the operator B′, that is B′
k̂

:= Bk̂ − 〈B〉k̂ I, we find the same equation

as for A. Moreover, it is not hard to verify that those definitions leads to M′
k̂
= Mk̂. From this,

(105) becomes

(∆A)2
1̂ (∆B)2

1̂ ≥ 1
4

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣2 . (112)

Because (99) is symmetrical in ek, the term (∆A)2
2̂ (∆B)2

2̂ will be identical at (∆A)2
1̂ (∆B)2

1̂ but
with all the index 1 replaced by 2.
It is tempting to simply build the term (∆A) (∆B) from (112) and say that this is the bicomplex
uncertainty principle. However, we must recall that an inequality can only stand on real
number and the term (∆A) (∆B) is hyperbolic. The simplest way, maybe not the only,
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to express our result in term of a simple bicomplex equation is to consider the norm of
(∆A) (∆B). Then, from (29), we have

|(∆A) (∆B)| = 1√
2

√∣∣(∆A)1̂ (∆B)1̂

∣∣2 +
∣∣(∆A)2̂ (∆B)2̂

∣∣2

≥ 1√
2

√∣∣∣∣
1
2

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣
∣∣∣∣
2
+

∣∣∣∣
1
2

∣∣〈ψ2̂|M2̂|ψ2̂〉2̂

∣∣
∣∣∣∣
2

=
1√
2

√
1
4

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣2 + 1
4

∣∣〈ψ2̂|M2̂|ψ2̂〉2̂

∣∣2

=
1
2
|〈ψ|M|ψ〉| , (113)

or, finally

|(∆A) (∆B)| ≥ 1
4
|〈ψ|[A, B]|ψ〉| . (114)

This equation is the general bicomplex uncertainty principle of two non-commuting linear
self-adjoint operator.
It can be remarked that (114) has the same form as the standard uncertainty principle,
except that the 1/2 factor replaced by 1/4 here, and that it apply on |(∆A) (∆B)| instead
of (∆A) (∆B). We would like to warn the reader that, according to (97), the right hand side of
(114) cannot be written in the usual shorter form 1

4 |〈[A, B]〉|.

5.1 Application: Position-momentum operators

We would now apply eq. (114) to the case of the position and momentum self-adjoint
bicomplex linear operator X and P.
In section 4, we have seen that the commutator of X and P is given by

[X, P] = i1 h̄(ξ1̂e1 + ξ2̂e2)I, (115)

with ξ1̂, ξ2̂ ∈ R+. From this, we find that

|(∆X) (∆P)| ≥
∣∣〈ψ|i1 h̄(ξ1̂e1 + ξ2̂e2)I|ψ〉

∣∣
4

=
h̄
∣∣e1ξ1̂ + e2ξ2̂

∣∣
4

=
h̄
√

ξ2
1̂
+ ξ2

2̂

4
√

2
=

h̄|ξ|
4

. (116)

As the eigenfunctions of the harmonic oscillator, the bicomplex uncertainty principle is
completely determined by the two parameters ξ1̂ and ξ2̂ of our model. As we do in section
4.1, we can decompose ξ in the basis {1, j} instead of {e1, e2} by taking ξ = α + βj and then
ξ1̂ = α + β and ξ2̂ = α − β. This leads to

|(∆X) (∆P)| ≥ h̄
√
(α + β)2 + (α − β)2

4
√

2
=

h̄
√

α2 + β2

4
. (117)

It is interesting to note that if we restrict BQM to SQM by setting ξ1̂ = 1 = ξ2̂ or α = 1, β = 0(
and indirectly X1̂ = X2̂, P̂1 = P̂2 and |ψ1̂〉 = |ψ2̂〉

)
, we find

|(∆X) (∆P)|BQM �→SQM ≥ h̄
4

, (118)
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that is 1/2 times the standard result. Then, from bicomplex quantum mechanics, we generated
a lower bound for the Heisenberg uncertainty principle that is in accord with the standard
quantum mechanics. In fact, the 1/2 factor comes from the three last terms of (104) that we
neglected. Indeed, the terms that we neglected in (104) would have contributed for h̄/4 to the
uncertainty principle but only when we do the restriction BMQ→SQM.
In other words, we can say that computing the standard uncertainty principle from BQM
(in the SQM approximation) give a 1/2 time poorer bound, compare with the complex
(standard) way of computation. This, however, doesn’t imply in any way that (114) is a poor
approximation in the BQM.

6. Conclusion

With the results presented here, quantum mechanics was successfully extended to bicomplex
numbers in two concrete problems, the harmonic oscillator and the Heisenberg uncertainty
principle. We strongly believe that bicomplex quantum mechanics can be extended to other
significant problems of standard quantum mechanics and such investigations are actually in
progress. However, we think it is too early to try to give a physical interpretation to our
results. We hope that this work will motivate the reader to consider generalizations of complex
numbers in other significant problem of physics. We also believe that if those generalized
theory do not end with some new predictions, they will at least give some crucial insight
about the apparent requirement of complex numbers in physics.
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