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1. Introduction  

Aggregatibacter actinomycetemcomitans is a gram-negative bacterium that is present in the oral 
cavity of a large proportion of the human population (Zambon et al., 1983; Henderson et al., 
2010) The bacterium is acquired through transmission from infected individuals and 
thought to initially colonize oral mucosa as a facultative intracellular pathogen (Fine et al., 
2006). When the bacteria translocate to a site in the subgingival crevices, a persistent 
colonization may lead to periodontal destruction and development of periodontitis in 
susceptible individuals (Fig. 1) (Philstrom et al., 2005; Darveau 2010). The prevalence of this 
bacterium shows a great variation depending on geographic origin, age and life stile of the 
examined population (Kinane et al., 2008; Habek 2010). A. actinomycetemcomitans is a part of 
the normal flora in many healthy individuals but it is also a major agent in some aggressive 
forms of periodontitis (Fine et al., 2006). Periodontitis is a chronic infection characterized by 
the destruction of tooth-supporting structures (Darveau 2010). The number and composition 
of bacteria in the subgingival dental plaque, as well as life stile and genetic predisposition 
are factors that determine the outcome of the disease activity (Philstrom et al., 2005; Darveau 
2010). The genetic diversity among different isolates of A. actinomycetemcomitans is great and 
its ability to express and release virulence factors varies (Henderson et al., 2010). The 
different adhesins and fimbriae expressed by this bacterium have been shown to be 
important factors that promote colonization at the various ecological niches of the human 
oral cavity (Fine et al., 2006).  
A. actinomyctemcomitans expresses two exotoxins, a cytolethal distending toxin (Cdt) and a 
leukotoxin. Cdt´s are expressed by a number of gram-negative bacteria and causes death of 
the host cells by blocking their proliferation (Belibasakis et al., 2004). The leukotoxin 
selectively affects human cells of hematopoetic origin by binding to the lymphocyte function 
associated receptor 1 (LFA-1) and cause disruption of the membrane integrity (Lally et al., 
1999). Leukotoxin belongs to the Repeat in Toxin family (RTX) and shares genomic 
organization and molecular structures with RTX proteins produced by a number of other 
gram-negative bacteria (Linhortavá et al., 2010). The expression of leukotoxin and Cdt varies 
among different A. actinomycetemcomitans isolates and high leukotoxin expression has been 
shown to correlate with disease while the role of Cdt still is more unclear (Henderson et al., 
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2010). The genetic features and the molecular structure of leukotoxin have recently been 
described in detail (Kachlany 2010; Johansson 2011). This chapter focuses on the functional 
aspects of the leukotoxin as a virulence factor associated with pathogenic cellular 
mechanisms. 
 

 
Fig. 1. Schematic illustration of cells and tissues involved in the pathogenesis of periodontal 
diseases. Microbes adhere to the epithelium and tooth surface and form a biofilm (microbial 
plaque). Persistent presence of this biofilm activates an inflammatory response in the 
surrounding tissues, which recruits a substantial number of immune cells from the 
peripheral circulation to the inflamed site. An imbalance in the host response might lead to 
degradation of the tooth supporting tissues, bone and connective tissue, and finally to tooth 
loss. A large number of microbial components, such as toxins and proteases that are 
released from the biofilm can affect the cellular response of the host. 
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2. Aggregatibacter actinomycetemcomitans and its association to disease 

As mentioned, periodontitis is a chronic inflammatory condition in the periodontal tissues, 
which leads to periodontal attachment loss and destruction of the alveolar bone that houses 
the teeth. Based on clinical characteristics, several forms of periodontitis are recognized. 
Most prevalent is the slowly progressing chronic periodontitis while the so called aggressive 
form shows a more rapid tissue loss and often occurs in young subjects (Pihlstrom et al., 
2005).  
 

 
Fig. 2. Papillon-Lefèvre syndrome in a 6-year old child. A. Clinical manifestation of the 
extended periodontal inflammation affecting the primary dentition. B. Hyperkeratotic 
palmo-plantar skin lesions  C-F. Radiographs showing the severe bone loss (arrows) around 
the teeth. Cultures of samples from the periodontal pockets revealed the rich presence (up to 
70% of the total sample flora) of A. actinomycetemcomitans. (unpublished data of author SK). 
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Periodontitis can also be developed in conjuction with systemic diseases or medication and 
its severity depends on the underlying condition, the most severe forms being found in 
patients with disorders in the cellular defense, mostly in neutrophils, e.g. Papillo-Lefèvre 
syndrome, Kostmann syndrome, various neutropenias, and Chediak-Higashi syndrome 
(Fig. 2) (Reichart & Dornow 1978; Deasy et al. 1980; Deas et al. 2003; Tempel et al. 1972; 
Saglam et al. 1995; Defraia & Marinelli 2001; De Vree et al. 2000). 
The etiology of periodontitis is microbial. The infection is caused in most cases by consortia 
of bacteria with a predominance of gram-negative anaerobic rods that colonize the 
periodontal pocket (Pihlstrom et al., 2005; Darveau 2010). Approximately 700 different 
bacterial species can be detected in samples from the subgingival plaque biofilm (Socransky 
& Haffajee 2005). The majority of these species can be isolated from samples of both healthy 
and periodontally diseased subjects. In plaque samples from diseased sites, the number and 
proportion of pathogenic organisms are elevated (Berezew & Darveau 2011; Nishihara & 
Koseki 2004).  
In some forms of aggressive periodontitis A. actinomycetemcomitans is often found in high 
numbers in subgingival plaque samples from the affected tooth sites (Fine et al., 2007). 
Especially in patients with certain neutrophil disorders, A. actinomycetemcomitans is the main 
pathogen colonizing the periodontal area (Stabholz et al. 1995; Kleinfelder et al. 1996; 
Velazco et al. 1999; Pütsep et al., 2002). These epidemiological data indicate that 
establishment of A. actinomycetemcomitans in the periodontium as the main pathogen and 
development of inflammation depends on the lack of functional neutrophils in this area.  
Besides the pathogens in the oral biofilm, genetic and environmental host factors 
contribute to periodontitis development (Nishihara & Koseki 2004). Furthermore, an 
association between periodontal infections and other inflammatory systemic diseases, 
such as cardiovascular diseases and diabetes, is well established, but the underlying 
specific mechanism is still unknown (Pihlstrom et al., 2005). 
The prevalence of A. actinomycetemcomitans in subgingival plaque samples can be 
estimated by traditional culture methods, as well as by molecular (PCR-based) techniques 
(Fine et al., 2007). In an examined population, the proportion of A. actinomycetemcomitans 
positive individuals varies with periodontal status, age, ethnicity and geographic origin 
(Fine et al., 2007). Genetic differences of both patients and potential pathogens are of 
importance for a better insight into the etiology of periodontal diseases (Rylev & Kilian 
2008). Longitudinal studies have shown that periodontally healthy children that harbour 
A. actinomyctemcomitans have an increased risk to develop Localized aggressive 
periodontitis (LAP) (Van der Velden et al., 2006; Fine et al., 2007). A specific clone (JP2) is 
strongly associated with LAP in subjects of African origin, and differs from other clones of 
this species by several genetic peculiarities, including a 530-bp deletion in the promotor 
region of the leukotoxin gene operon, which results in an enhanced expression of 
leukotoxin (Brogan et al. 1994; Haubek et al., 2007 & 2008). Healthy adolescents harbouring 
this clone were shown to have an 18-fold increased risk to develop periodontal attachment 
loss within a 2-year follow up period compared to the A. actinomycetemcomitans negative 
controls (Haubek et al., 2008). In contrast to the promoter deletion in the JP2, in a Japanese 
strain was shown that an insertion mutation increases the expression of the leukotoxin 
operon (He et al., 1999). However, no reports are yet available that associates the presence 
of this specific highly toxic clone with the onset and progression of aggressive 
periodontitis in this population. 
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3. Genetic characteristics of Aggregatibacter actinomycetemcomitans  

A. actinomycetemcomitans is a member of the bacterial family Pasteurellaceae (Kilian et al., 
2006). Recently, it was reclassified in the new genus Aggregatibacter together with its close 
relatives Aggregatibacter (Haemophilus) aphrophilus and Aggregatibacter (Haemophilus) segnis  
(Nørskov-Lauritsen & Kilian 2006). Molecular genetics has demonstrated a degree of 
biodiversity in the oral microflora and A. actinomycetemcomitans is genetically heterogeneous 
and comprises distinct clonal lineages that may have different virulence potentials 
(Kittichotirat et al., 2011). Seven serotypes have been identified among A. 

actinomycetemcomitans isolates; each serotype represents a distinct clonal lineage (Kaplan et 
al., 2002; Kilian et al., 2006; Takada et. al., 2010). The complete genome sequence of A. 

actinomycetemcomitans serotype b strain HK1651 from the JP2 clone has been available since 
2002 (http://www.genome.ou.edu/act.html). Genome sequencing of 14 different strains 
from A. actinomycetemcomitans species have identified a pangenome consisting of 3301 genes, 
including 2034 core genes and 1267 flexible genes (Kittichotirat et al., 2011). The natural 
competence of this bacterium for horizontal gene transfer might explain the substantial 
genetic diversity shown within this species (Wang et al., 2002). The within-species variable 
virulence may be attributed to a strain-to-strain variation in genome content and regulation 
of virulence gene expression (Kittichotirat et al., 2011). Future work with genomic 
characterization of A. actinomycetemcomitans might contribute to identify specific virulent 
clones other than the already well characterized highly leukotoxic JP2 clonal types (Haubek 
2010; Kittichotirat et al., 2011). In addition, population genetic analyses of this bacterium 
have been giving information about global dissemination of this species and its strict 
horizontal transfer pattern together with the presence of several genetic peculiarities give 
also information about population trades (Kilian et al., 2006; Habek et al., 2007). 

4. Expression and secretion of A. actinomycetemcomitans leukotoxin  

The leukotoxin operon consists of four coding genes designated ltxC, ltxA, ltxB and ltxD and 
an upstream promoter gene (Lally et al., 1989; Kraig et al., 1990). ltxA is encoding for the 
structure of the toxin, ltxC for components required for posttranslational acylation of the toxin 
and ltxB and D for transport of the toxin to the bacterial outer membrane. The leukotoxin 
operon is organized as illustrated in fig. 3, this pattern being similar to the gene organization 
found for other proteins of the RTX-family (Welch et al., 2001; Linhartová et al., 2010). 
 

 
Fig. 3. Schematic illustration of the operon organization of A. actinomycetemcomitans 
leukotoxin. 

There is a great variation in leukotoxin expression in vitro (Fig. 4), although all A. 

actinomycetemcomitans strains harbor a complete leukotoxin operon (Henderson et al., 2010). 
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Zambon and co-workers (1983) showed that A. actionomycetemcomitans isolated from 
periodontally diseased subjects exhibited significantly enhanced leukotoxicity compared 
with isolates from periodontally healthy subjects. Interestingly, certain clones of the 
bacterium with enhanced leukotoxin expression have been shown to have a modified 
promoter in the leukotoxin operon (Brogan et al., 1994; He et al., 1999). The cellular and 
molecular mechanisms in which a modified leukotoxin promoter enhances the expression of 
leukotoxin are not known. The most well known phenomenon is the highly leukotoxic JP2 
clonal strains of A. actinomycetemcomitans characterized by a 530-bp deletion in the promoter 
of the leukotoxin operon (Haubek 2010). Hypertonic NaCl extracts of bacteria from this 
clone analyzed by SDS-PAGE and Comassie staining reveald a protein pattern that was 
dominated by a 116 kDa band shown to be the leukotoxin (Johansson et al., 2000a) (Fig. 6). 
Presence of the JP2 clone is highly associated to aggressive forms of periodontitis and shown 
to correlate with disease onset of adolescents in Morocco (Haubek et al., 2008). This highly 
leukotoxic clone (JP2) has recently been reported to also colonize subjects with, by 
genotyping confirmed, North-European origin (Claesson et al., 2011). Clonal diversity 
analysis of JP2-like isolates have shown that all strains of this clone have a common ancestor 
from Northern Africa (Haubek et al., 2007). The high accumulation of this clone in subjects 
of African origin has indicated a possible host tropism, but could also be a result of the strict 
vertical transmission pattern of this bacterium (Kilian et al., 2006; Haubek 2010).  
 

 
Fig. 4. The left figure shows NaCl extracts from different strains of A. actinomycetemcomitans 
separated on 8% SDS-PAGE and stained with Comassie blue. The left lane contain the 
purified leukotoxin and the other 4 lanes contain extract from 3 strains representing 3 
different serotypes (SUNY AB75 serotype a, Y4 serotype b and NCTC 9710 serotype c) and 
having intact leukotoxin promoter and 1 strain serotype b from the highly leukotoxic JP2 
clonal type (strain HK1519). The right figure shows the same SDS-PAGE separated extracts 
blotted on a PVDF membrane and visualized by western blot technique with a leukotoxin 
specific rabbit antiserum. 

The expression of leukotoxin is also regulated by environmental factors, such as growth 
conditions and substrates (Kachlany et al., 2010). The expression of leukotoxin by various 
strains of A. actinomycetemcomitans at the infected site of the host is still unknown. 
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The expressed leukotoxin is transported to the bacterial outer membrane by a type I 
secretion system (Kuhnert & Christensen 2008). Three proteins, LtxB, LtxD and TdeA, are 
reported to be required for export of the toxin to the bacterial outer membrane and are 
organized in accordance to the figure below (Fig. 5) (Crosby & Kachlany 2007). 
 

 
Fig. 5. Schematic illustration of the type I secretion system required for export of the 
expressed A. actinomycetemcomitamns leukotoxin to the bacterial outer membrane (OM).  
IM = Inner membrane and TdeA = a TolC like proten. 

In addition, presence of serum proteins also mediates a similar release of the toxin from 
the bacterial outer membrane, which indicates involvement of competitive mechanisms 
(Johansson et al., 2003). Different culture conditions have been shown to determine  
the distribution of the expressed toxin between the bacterial outer membrane and the 
culture supernatant (Kachlany et al., 2000; 2010). Whether leukotoxin remains associated 
to the bacteria in the periodontal pocket is not known. However, the serum mediated 
release of the toxin (Johansson et al., 2003), as well as the intense systemic immune response 
to the toxin (Brage et al., 2011), possibly indicate a release of the toxin from bacteria in the 
biofilm in vivo. Among the different proteins of the RTX family, A. actinomycetemcomitans 
leukotoxin differ from the other toxins by its high isoelectric point, as well as the membrane 
association of the expressed protein (Welch 2001; Linhortavá et al., 2010). This property of 
leukotoxin further supports the importance of electrostatic forces for its association to the 
bacterial outer membrane. 
The secreted leukotoxin has been shown to be easily inactivated by environmental proteases 
and superoxide radicals (Johansson et al., 2000b, 2001; Balashova et al., 2007). This 
degradation of the toxin molecule can be inhibited by the presence of superoxide dismutase 
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(SOD) produced by A. actinomycetemcomitans and the naturally occurring protease inhibitors 
of human serum (Johansson et al., 2001; de Haar et al., 2006; Balashova et al., 2007). In 1981, 
McArthur and co-workers showed that the activity of leukotoxin in interaction with 
polymorphonuclear leukocytes (PMNs) was enhanced by the presence of human serum 
(McArthur et al., 1981). This phenomenon could later be explained by the protective effect of 
the serum protease inhibitors on leukotoxin degradation caused by lysosomal enzymes 
released by the affected PMNs (Johansson et al., 2001). 
 

 
Fig. 6. Surface extract of bacteria from a highly leukotoxic (JP2) strain of A. 
actinomycetemcomitans (HK1619) separated by SDS-PAGE and stained with Comassie blue. 
The 116 kDa leukotoxin is released from the bacterial surface at NaCl concentration ≥300 mM, 
becoming the dominant band in the protein profile of the extracts (Johansson et al., 2000a). 

5. Molecular aspects of A. actinomycetemcomitans leukotoxin 

5.1 Structure 
Leukotoxin (LtxA) expressed by A. actinomycetemcomitans is a large pore-forming protein 
that belongs to the RTX family of proteins. Leukotoxin consists of 1055 amino acids encoded 
by the leukotoxin gene in the leukotoxin operon (Lally et al., 1989; Kraig et al., 1990). The 
molecule can be divided into four regions based upon analysis of the amino acid sequence, 
the N-terminal region, the central region, the repeat region and the C-terminal region (Fig. 
7) (Lally et al., 1996).  
The N-terminal region at residues 1-408 exhibits alternating hydrophobic and hydrophilic 
clusters. The pore-forming regions of RTX proteins have been suggested to be mediated by 
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the hydrophobic clusters located between residues 175-400 (Welch et al., 2001). The central 
region at residues 409-729 contains large hydrophilic domains and the two acylation sites of 
leukotoxin located at lysine562 and lysine687 (Balashova et al., 2009). The fatty acids at these 
positions have been shown necessary for the activity of the toxin and suggested to 
contribute to the anchorage at the target cell membrane. The repeat region consists of 
tandem repeats of a cassette with nine amino acids located between residues 730-900 and 14 
such repeats have been identified in this region of leukotoxin (Stanley et al., 1994). The 
target cell receptor LFA-1 binds to the repeat region and this interaction has been shown to 
determine the host cell specificity of leukotoxin (Stanley et al., 1994; Lally et al., 1994). In 
addition, the glycine rich repeats in this region have a strong capacity to bind Ca2+ and 
presence of these cations mediates increased binding of the toxin to leukotoxin-sensitive 
LFA-1 expressing cells (Lally et al., 1997). Finally, residues 901-1055 at the C-terminal end 
have been shown to be needed for export of the toxin to the bacterial outer membrane by 
interactions with secretory proteins (Stanley et al., 1991; Sato et al., 1993). This region of 
leukotoxin contains 20 additional basic amino acid residues, which differs the leukotoxin 
from the other RTX-proteins and confers its high isoelectric point (9.7) (Kraig et al., 1990). 
The four regions of leukotoxin described above are shared among the various toxins in the 
diverse family of pore forming RTX proteins but their amino acid sequence homology is 
limited to about 40-50%, with the highest homology between their repeat regions and the 
lowest between their C-terminal regions (Kraig et al., 1990). A partial denaturation of the 
leukotoxin molecule has been reported to enhance its leukotoxicity, which indicates that 
conformational changes affect the activity of the toxin (Lear et al., 2000). Some minor 
differences have been identified on the leukotoxin genes between different A. 

actinomycetemcomitans isolates but whether these differences interfere with leukotoxicity is 
not known (Lally et al., 1989; Kraig et al., 1990; Chen et al., 2009, Kittichotirat et al., 2011). 
The crystalline structure of leukotoxin has not yet been solved, which limits the available 
information about the molecular structures of the protein. 
 

 
Fig. 7. Schematic illustration of the molecules involved in the interaction between A. 
actinomycetemcomitans leukotoxin and the target cell membrane. 
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5.2 Interaction with the target cell membrane 
Leukotoxin exhibits a unique specificity to cells of haematopoetic origin from humans and 
some other primates (Lally et al., 1994). This restricted host cell specificity indicates that the 
species-specific effect of leukotoxin is mediated through a unique receptor on the target cells 
and that a precise region in the toxin recognizes and interacts with the receptor (Dileepan et 
al., 2007; Kieba et al., 2007). The principal feature of this species recognition region of 
leukotoxin is a series of 14 tandemly repeated amino acid sequences in the repeat region of 
the toxin (Stanley et al., 1994). 
The leukotoxin has been shown to bind to surfaces of toxin-sensitive LFA-1-expressing 
cells, as well as toxin-resistant cells without LFA-1 expression (Lally et al., 1997). It has 
been suggested that the role of LFA-1 in leukotoxin-mediated cell lysis is to help the 
protein to have a correct orientation on the target cell membrane (Fig. 7) (Lally et al., 
1999). Further, the two fatty acids strengthen the anchorage of the toxin when inserted in 
the target cell membrane and the hydrophobic domain forms small pores in the 
membrane. It has been stated that low concentration of the toxins might induce apoptosis 
through loss of membrane integrity caused by the small pores and that higher 
concentration of the toxin allows oligomerization of leukotoxin-LFA-1 complexes on the 
target cell membrane mediating a rapid and complete membrane collapse (Lally et al., 
1999). In addition, leukotoxin has been shown to require lipid rafts for target cytotoxicity, 
which also indicates the importance of a high mobility on the target cell membrane (Fong 
et al., 2006). 
The domain of leukotoxin that recognizes the target cell receptor has been determined to 
residues 688-941 examined by epitope mapping with monoclonal antibodies (Stanley et al., 
1994). The LFA-1 molecule identified as the leukotoxin target cell receptor is a heterodimer 
consisting of the αL (CD11a) and β2 (CD18) subunits. The residues 1-128 on human CD11a 
has been shown to determine the human specificity of leukotoxin-induced cell lysis (Kieba 
et al., 2007). In addition, the extracellular region of human CD18 (residues 500-600) has been 
shown critical for conferring susceptibility to leukotoxin-induced cell lysis (Dileepan et al., 
2007). The most important ligand of LFA-1 is the intercellular adhesion molecule 1 (ICAM-
1), but this interaction does not coincide with the residues identified for leukotoxin binding 
(Dileepan et al., 2007; Kieba et al., 2007, Dustin et al., 2004). This finding indicates that the 
intracellular signaling mediated by the LFA-1 ligand binding is not activated by the 
leukotoxin binding. Three different affinity states (low, intermediate, high) of LFA-1 that 
interfere with ligand binding have been described (Shimaoka et al., 2003). If these different 
affinity states of the leukotoxin receptor interfere with the interactions between leukotoxin 
and its target cells is not known.  

6. Cellular and molecular host response against A. actinomycetemcomitans 
leukotoxin 

The ability of A. actinomycetemcomitans extracts to cause death of leukocytes was first shown 
more than 30 years ago (Baehni et al., 1979; Tsai et al., 1979). A protein named leukotoxin 
was indentified as the responsible molecule for this effect that was restricted to affect human 
PMNs and monocytes (Baehni et al., 1979; Tsai et al., 1979; Taichman et al., 1980). It has later 
been shown that leukotoxin also can affect human lymphocytes and erythrocytes from 
human and animal origin, however, at higher toxin concentrations than those lysing 
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PMNs and monocytes (Mangan et al., 1991; Balashova et al., 2006). Even though 
leukotoxin affects all subsets of human immune cells it is highly immunogenic and 
induces a specific acquired systemic immune response in the infected host (Ebersole 2003; 
Brage et al., 2011). 

6.1 Acquired humoral immune response against leukotoxin 
The specific role of humoral immunity in periodontal disease progression has not been fully 
elucidated, although the production of antibody response is suggested to be beneficial to the 
host in fighting periodontal infections (Ebersole 2003). On the other hand, the acquired 
immune response against periodontal pathogens has been shown to mediate disease 
associated mechanisms, such as bone resorption (Taubman et al., 2005; Teng 2003). It has 
clearly been shown that leukotoxin specific antibodies are present in the peripheral 
circulation of both periodontally healthy and diseased subjects (Kachlany et al., 2000; 
Califano et al., 1997). Plasma samples from the subjects with specific immunoreactivity 
against leukotoxin have been shown to neutralize leukotoxin activity and have also 
enhanced antibody titers against whole cells of A. actinomycetemcomitans in comparison with 
samples from subjects without immunoreactivity to leukotoxin (Califano et al., 1997). It has 
also been shown that systemic leukotoxin neutralization is correlated to the presence of this 
bacterium in the subgingival plaque (Källestål et al., 1991; Sjödin et al., 1995; Carlsson et al., 
2006). The prevalence of systemic leukotoxin antibodies has been shown to be present in 
>50% in samples from adults and without significant differences in relation to periodontitis 
(Brage et al., 2011; Johansson et al., 2011). Interestingly, systemic leukotoxin neutralization 
correlates to decreased risk of the incidence of stroke in woman (Johansson et al., 2005). The 
mechanism behind this phenomenon has not yet been determined but a possible role of 
leukotoxin is suggested in the association seen between peridontitis and cardiovascular 
diseases (Pihlstrom et al., 2005). 
A general opinion is that the humoral immune response against antigens of the oral 
subgingival microbiota is both local and systemic (Ebersole 2003). Whether the leukotoxin 
activity can be neutralized in the gingival pocket by specific antibodies is not known and 
there has been no report about the presence of leukotoxin neutralizing antibodies in the 
gingival crevicular fluid. The strong correlation between prevalence of higly leukotoxic A. 

actinomycetemcomitans and the development of attachment loss (Haubek et al., 2008) 
indicates a minor role of neutralizing antibodies in the infected periodontal pocket. 
However, it can be assumed that systemic leukotoxin neutralizing antibodies are an 
important protection against the systemic side effects, such as increased risk for diabetes 
and cardiovascular diseases that are associated with periodontitis. It has previously been 
shown that systemic antibodies against leukotoxin completely neutralize its activity even at 
high dilutions of the positive sera (Brage et al., 2011). In addition, the systemic leukotoxin-
neutralizing capacity negatively associates to stroke while the systemic immunoreactivity to 
A. actinomycetemcomitans also shows a negative association to rheumatoid arthritis 
(Johansson et al., 2005; Okada et al., 2011). The mechanism behind these negative 
associations has not been elucidated. It could be speculated that the ability of leukotoxin to 
specifically affect the immune cells, in particular the antigen presenting 
monocytes/macrophages, causes a delayed acquired immune response in a primary A. 

actinomycetemcomitans infection. 
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6.2 Polymorphonuclear leukocytes 
PMNs are the first defense cells to be recruited in the acute phase of an inflammation, as 
in a periodontal infection (Kantarci & van Dyke 2005). These defense cells are often found 
at high numbers in the infected periodontal pocket, attracted from the peripheral 
circulation through chemotaxis towards a gradient of molecules released from the dental 
plaque, as well as activated host cells. Although PMNs are crucial for phagocytizing and 
killing bacteria, they also release substances that mediate tissue destruction in aggressive 
forms of periodontitis (Kantarci et al., 2003). PMNs in the periodontium have been 
described as a "double-edged sword", capable of producing periodontal disease as well as 
protecting against the disease (Lamster et al., 1992). Leukotoxin as well as leukotoxic 
bacteria have been shown to efficiently cause death of human PMNs and consequently the 
leukotoxin is assumed to protect A. actinomycetemcomitans against phagocytic killing 
(Henderson et al., 2010). The protection occurs in relation to the leukotoxin production of 
the bacterial population (Johansson et al., 2000c). In a mixture of low-leukotoxic bacteria, 
human serum and PMNs (25 bacteria/PMN), which is agitated at 37°C under anaerobic 
condition, the bacteria are efficiently phagocytized and killed (Johansson et al., 2000c). In 
contrast, in the presence of highly leukotoxic (JP2-clone) bacteria and under the same 
conditions, the PMNs failed to phagocytize and kill the bacteria. Transmission electron 
microscopy pictures of the exposed PMNs showed a peripheral translocation of the 
granules in cells exposed to the highly leukotoxic bacteria (Fig. 8). Further analysis of 
PMNs exposed to leukotoxin showed an extracellular release of proteolytic enzymes from 
both primary and secondary granules (Johansson 2000b). More over, the interaction 
between leukotoxin and PMNs mediates activation and release of matrix 
metalloproteinase 8 (Claesson et al., 2002). Taken together these findings indicate that 
leukotoxin before causing death of the PMNs induces activation and release of proteolytic 
enzymes from these cells, which can contribute to periodontal tissue destruction. 
Whether leukotoxin can exist as a biologically active protein in the infected periodontal 
pocket has not yet been examined. The presence of serum proteins and the relatively high 
pH (≈8) in the pocket indicates that leukotoxin is released from the bacterial surface in this 
ecological niche (Kraig et al., 1990; Johansson et al., 2003). The released toxin is an easy 
target for inactivation by several of the components present in the periodontal pocket, 
such as superoxide radicals and proteinases released from the host defense cells or the 
colonizers of the subgingival biofilm (Johansson et al., 2000a, 2003; Balashova et al., 2007). 
In addition, systemic leukotoxin specific antibodies neutralize leukotoxic activity, but if 
these antibodies are functional in the environment of the infected periodontal pocket is 
not known (Brage et al., 2011).  There are also molecules that can protect leukotoxin from 
inactivation, such as the serum proteinase inhibitors and SOD expressed by A. 

actinomycetemcomitans (Johansson et al., 2001; Balashova et al., 2007). Probably, the great 
variation over time in the balance between these factors and the leukotoxin produced at a 
site of infection affects the progression of periodontal destruction. 
As mentioned above, impaired PMN function is closely associated with periodontitis and 
functional PMNs seem to be of certain importance for combating A. actinomycetemcomitans 
establishment in the subgingival biofilm (de Haar et al., 2006; Kantarci et al., 2003; Carlsson 
et al., 2006; Pütsep et al., 2002). For instance, PMNs of subjects with Kostmann´s syndrome 
are immature and expresses truncated LL37, a cathelicidin with antibacterial effect against 
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A. actinomycetemcomitans (Pütsep et al., 2002). Furthermore, subjects with Papillon-Lefèvre 
syndrome have truncated PMN serine proteases, this causing an enhanced leukotoxin 
sensitivity due to impaired capacity to degrade extracellular leukotoxin by the released 
lysosomal PMN enzymes (de Haar  et al., 2006). 
 

 
Fig. 8. PMNs exposed to alive A. actinomycetemcomitans (25 bacteria/PMN) for 10 min in the 
presence of 10% human non-immune sera. The mixture was gently agitated  at 37°C in an 
anaerobic atmosphere. The minimally leukotoxic bacteria are phogocytized and killed by 
the PMN, while the highly leukotoxic bacteria (JP2) resist PMN phagocytosis and causes 
extracellular release of lysosomal components (Johansson et al., 2000c). 

6.3 Lymphocytes 
The lymphocytes were initially described as leukotoxin resistant cells (Baehni et al., 1979; 
Tsai et al., 1979). The first observation of leukotoxin susceptible cells of lymphocytic origin 
was by Simpson and co-workers (Simpson et al., 1988) who showed that several lymphoid 
cell lines were killed in the presence of leukotoxin. In addition, leukotoxin was shown to 
suppress function of peripheral blood lymphocytes (Shenker et al., 1994). A few years later, 
Mangan and co-workers (1991) showed that T-cells isolated from human peripheral blood 
were affected by leukotoxin. This leukotoxin-induced T-cell death was a slow process 
compared to the lysis of human cells of myeloid origin, the death being caused through 
apoptosis (Mangan et al., 1991). Human natural killer (NK) cells are affected by leukotoxin 
in a similar way as the T-cells, while the effects of leukotoxin to human B-cells or plasma-
cells have not been studied (Shenker et al., 1994). Human lymphocytes show a great 
heterogeneity in regard to leukotoxin sensitivity and a subgroup of these cells are shown to 
be lysed at approximately the same concentrations as human PMNs (Kelk et al., 2003). The 

Minimally-leukotoxic Highly-leukotoxic 
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lymphocytes with different leukotoxin sensitivity was not further characterized in this study 
but analysis of CD11a expression on the cell membrane showed a heterogenic distribution 
pattern for this cell population. The reason for the variation in leukotoxin sensitivity 
between PMNs and lymphocytes is not known. The suggested oligomerization of 
leukotoxin-LFA-1 complex and the need of lipid rafts on the target cell membrane may 
indicate that the composition of membrane molecules on the target cells determines the 
source of leukotoxin-induced death mechanisms (Lally et al., 1999). In cells from the human 
myeloid carcinoma cell line HL-60, low concentrations of leukotoxin cause apoptosis while 
higher concentrations lead to necrosis (Korostoff et al., 1998). 
Cells of lymphoid origin are rare in the infected periodontal pocket but they reside at high 
numbers in the surrounding tissues as well as in the lymph glands (Kinane et al., 2002). It 
has been known for >30 years that the development of periodontitis involves a switch from 
a T cell lesion to one involving large numbers of B-cells and plasma cells. A shift in the 
balance between Th1 and Th2 subsets of T-cells is found in periodontal inflammation, with 
the Th2 cells to associate with chronic periodontitis (Ohlrich et al., 2009). More recently, T 
regulatory (Treg) and Th17 cells have been detected in periodontal tissues indicating that 
these cells also are of importance in the host response and pathogenesis of periodontal 
disease (Garlet 2010). The strong humoral immune response induced by leukotoxin 
indicates direct contact between this molecule and cells of lymphoid origin (Brage et al., 
2011; Califano et al., 1997). The ability of leukotoxin to induce apoptosis in lymphocytes 
might impair the acquired immune response of periodontal infections. The ability of 
leukotoxin to affect the lymphocytes also indicates a possible role of this molecule in 
Th1/Th2/Th17 differentiation, a process that seems to be of importance in the pathogenesis 
of inflammatory diseases. 

6.4 Monocytes/macrophages 
It was early shown that human monocytes were as sensitive to leukotoxin, as human PMNs 
(Tsai et al., 1979). Killing of monocytes by the toxin proceeds  through three distinct phases 
1) cessation of the membrane undulating folding and an accumulation of granulae in the 
perinuclear area, 2) abnormal membrane movement and strings of cytoplasm projecting 
from the cell, and 3) explosive release of cytoplasmic material from the cells (Taichman et 
al., 1980). However, it should be taken into consideration that these studies were made 
with a crude leukotoxin extract that contained a lot of other bacterial components. Rabie 
and co-workers (Rabie et al., 1988) showed that purified leukotoxin caused a rapid death 
of human monocytes in mixtures of the toxin with peripheral blood mononuclear 
leukocytes (MNL). 
More recently, analyses of different subsets of leukocytes separated from peripheral blood 
of a single donor showed that monocytes had an enhanced sensitivity to leukotoxin 
compared to PMNs and lymphocytes (Kelk et al., 2003). The leukotoxin-induced monocyte 
lysis was shown to involve activation of caspase-1, which indicates involvement of pro-
inflammatory intracellular signalling (Fig. 9). Caspase-1 is a cytosolic cysteine proteinase 
that specifically induces activation and secretion of the pro-inflammatory cytokines 
interleukin-1β (IL-1β) and interleukin-18 (IL-18) (Dinarello, 2009a, 2010). The two cytokines 
are expressed as biologically inactive precursors and have to be cleaved by caspase-1 for 
activation and secretion. Caspase-1 is activated by incorporation in a cytosolic multimer 
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complex named the inflammasome (Latz 2010). The intracellular signalling pathways 
involved in leukotoxin-induced inflammasome activation in human monocytes/macrophages 
have not yet been determined. A partial characterization of this process indicates 
involvements of activation of the purogenic receptor P2X7 (Kelk et al., 2011). Caspase-1 
activation is also caused by several other gram-negative pathogens, such as Salmonella and 
Shigella species, and has been shown to be an important innate immune effector mechanism 
against intracellular bacteria (Miao et al., 2010). 
 

 
Fig. 9. Schematic illustration of the leukotoxin interaction with macrophages. Leukotoxin 
adheres to the cell membrane through binding to the LFA-1 dimer and it further anchors by 
inserting the fatty acid into the membrane lipid bilayer. The hydrophobic domain of the 
toxin is thought to cause small pores in the cell membrane. Through still undefined 
intracellular signalling pathways, this interaction with the target cell causes activation of 
caspase-1 and IL-1β that is secreted in a bioactive form from the affected cell. 

IL-1β is a key component involved in acute and chronic inflammation, which makes the 
discovery of the leukotoxin induced IL-1β activation relevant and important (Kelk et al., 
2005; Dinarello, 2011).  IL-1 is an important regulator of bone resorption, which associates 
this cytokine to the alveolar bone loss seen in periodontitis (Schett, 2011; Dinarello, 2011; 
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Preshaw & Taylor, 2011). Analysis of gingival exudates have shown increased IL-1 
concentration associated to periodontitis (Reinhardt et al., 2010; Preshaw & Taylor, 2011). 
Periodontal pockets examined from the same subject have indicated an association 
between high levels of A. actinomycetemcomitans and increased IL-1β concentration (Kelk 
et al., 2008). 
The finding that leukotoxin induces activation of caspase-1 in human inflammatory defence 
cells indicates a new role of this virulence factor as a mediator of pro-inflammatory host 
response. Human macrophages (adherent blood monocytes) exposed to leukotoxin activates 
a rapid and abundant secretion of bioactive IL-1β (Kelk et al., 2005). Culture supernatants of 
leukotoxin-exposed macrophages activate bone resorption in cultured mouse calvaria, while 
presence of monoclonal antibodies against IL-1β abolishes this activation. This data indicate 
that bone resorption caused by culture supernatants of leukotoxin-exposed macrophages is 
mainly caused by released IL-1β. Moreover, exposure of human macrophages to 
components of gram-negative oral pathogens causes an increased accumulation of 
cytosolic pro-IL-1β that was not activated and released (Kelk et al., 2008). Leukotoxin or 
leukotoxic A. actinomycetemcomitans activates cleavage and secretion of this accumulated 
macrophage IL-1β, while A. actinomycetemomitans mutants without leukotoxin expression 
fail to cause this phenomenon. IL-1β secretion was activated already at a ratio of 1 
bacterium/macrophage when using a highly leukotoxic A. actinomycetemcomitans strain or  
at a 10 times higher ratio when strains with low leukotoxicity were used (Kelk et al., 2008). 
Taken together, these data show that leukotoxin is the major A. actinomycetemcomitans 
component that induces activation and release of IL-1β from human macrophages and 
that this effect is further enhanced by priming the macrophages with other bacterial 
components. 
Macrophages are rare cells in the healthy periodontium but are often found in high numbers 
in tissues from periodontal lesions (Kinane & Lappin, 2002). These cells are recruited to the 
infected site from the peripheral blood monocytes that are attracted by ICAM-1 expressing 
endothelial cells. The monocytes are passing through the vessel wall and are migrating in 
the connective tissue towards a gradient of chemoattractants that are released from the 
biofilm and the activated host cells (Geissmann et al., 2010). During diapedesis the 
monocytes differentiate into macrophages with a concomitant up-regulation of their 
inflammatory machinery, which continues during the migration. This process involves an 
accumulation of pro-inflammatory precursor molecules, such as IL-1β and IL-18, in the 
migrating macrophages (Dinarello, 2009b). A secondary stimulus is needed to induce 
activation and release of the accumulated precursors of IL-1β and IL-18 in the primed 
macrophages (Dinarello, 2010). In the case of an infection containing A. 

actinomycetemcomitans, the gradient of bioactive components in the connective tissue will 
contain leukotoxin, and the migrating macrophages will sooner or later meet leukotoxin 
concentrations that activate secretion of cytokines in the surrounding tissues. If this process 
is activated in the tooth supporting tissues in vicinity to the infection it might cause 
imbalance in the host inflammatory response and it might promote pathogenic cellular 
mechanisms. Some preliminary results indicate an association between enhanced IL-1β 
levels in gingival crevicular fluid and high number of A. actinomycetemcomitans in the 
periodontal pocket (Kelk et al., 2008). Interestingly, recent results suggest that IL-1β is 
transported into the A. actinomycetemcomitans cells and binds to the trimeric form of 

www.intechopen.com



 
Virulence Mechanisms of Leukotoxin from Aggregatibacter actinomycetemcomitans 

 

181 

intracellular ATP synthase subunit β (Paino et al., 2011). This specific mechanism might 
universally enhance biofilm resistance to host defence by binding IL-1β during 
inflammation. 
The strong systemic immune response of the host to leukotoxin in A. actinomycetemcomitans 
infected subjects indicates direct contact between the antigent-presenting macrophages and 
leukotoxin (Califano et al., 1997; Brage et al., 2011). The enhanced leukotoxin-sensitivity of 
human macrophages indicates that these antigen presenting cells might be affected during a 
primary infection with leukotoxic A. actinomycetemcomitans, which might cause a delayed 
acquired immune response. 
The pro-inflammatory response associated to degenerative diseases is at focus of research in 
many different medical disciplines (Dinarello, 2010). A variety of safe and effective anti-
inflammatory agents are available today and commonly used in treatments of many 
autoimmune or auto-inflammatory disorders, neurodegenerative disease, or cancer. 
Increased knowledge of the cellular and molecular mechanisms involved in the 
pathogenesis of periodontitis might open up possibilities for new specific therapeutic agents 
and strategies in the future. The cellular and molecular targets for specific blockage of the 
inflammatory response to infection, as well as the possible therapeutic agents now and in 
the future, have recently been extensively reviewed (Dinarello, 2011).  

6.5 Erythrocytes 

The ability of some strains of A. actinomycetemcomitans to cause β-hemolysis on blood agar 
plates has been known for many years (Kimuzuka et al., 1996). Later, it was found that 
red blood cell lysis caused by A. actinomycetemcomitans involved an interaction with 
leukotoxin (Balashova et al., 2006). Different strains of the bacterium with various 
expressions of leukotoxin show a specific pattern when cultured on blood agar plates 
containing fresh horse blood. Red blood cells lack the receptor LFA-1, a key molecule for 
leukotoxin-induced leukocyte lysis (Lally et al., 1994). The cellular and molecular 
mechanisms for the hemolytic effect of leukotoxin are unknown. The lysis of erythrocytes 
by the leukotoxin has recently been reviewed (Kachlany 2010). It remains to be answered 
whether the hemolytic capacity of leukotoxin is an important virulence factor in 
periodontitis. 

7. Conclusions 

The ability of leukotoxin to cause death of all subsets of cells with hematopoetic origin 
might contribute to help the bacterium to survive the host immune response and also to 
release compounds essential for bacterial growth (Fig. 10). The more recent discoveries that 
leukotoxin mediates activation and release of proteolytic enzymes from PMNs and pro-
inflammatory cytokines from monocytes/macrophages indicate a more direct role of 
leukotoxin in the disease pathogenesis. Unfortunately there is no animal model available for 
studying the virulence mechanisms of leukotoxin because of its specificity against defense 
cells of human or old world monkey origin. However, the strong correlation between 
presence of highly leukotoxic (JP2-clone) A. actinomycetemcomitans and development of 
attachment loss in adolescents indicates an important role of leukotoxin in the pathogenesis 
of aggressive periodontitis (Haubek, 2010).  
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Fig. 10. Effects of importance for development of periodontal inflammation and local tissue 
destruction derived from the interactions of A. actinomycetemcomitans leukotoxin with 
human blood cells. 
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