
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



9 

Multidrug Resistence and Breast Cancer 

Gengyin Zhou and Xiaofang Zhang 
Shandong University of Medicine, 

China 

1. Introduction 

Millions of new cancer patients are diagnosed each year and over half of these patients die 
from this disease. As the second leading cause of cancer deaths, breast cancer is estimated to 
be diagnosed in over one million people worldwide and to cause more than 400,000 deaths 
each year [1]. Chemotherapy is part of a successful treatment to many cases; however, the 
development of multidrug resistance (MDR) to it becomes a major obstacle so as to as few as 
half of the breast cancer patients treated benefit from chemotherapy. 
MDR is a term used to describe the phenomenon characterized by the ability of drug resistant 
tumors to exhibit simultaneous resistance to a number of structurally and functionally 
unrelated chemotherapeutic agents [2]. The cytotoxic drugs that are most frequently associated 
with MDR are hydrophobic, amphipathic natural products, such as the taxanes (paclitaxel and 
docetaxel), vinca alkaloids (vinorelbine, vincristine, and vinblastine), anthracyclines 
(doxorubicin, daunorubicin, and epirubicin), epipodophyllotoxins (etoposide and teniposide), 
antimetabolites (methorexate, fluorouracil, cytosar, 5-azacytosine, 6-mercaptopurine, and 
gemcitabine) topotecan, dactinomycin, mitomycin C and so on[3]. 
At present, many mechanisms have been found to be responsible for it, including 
overexpression of the members of the adenosine triphosphate (ATP)-binding cassette (ABC) 
membrane transporter family, changes of apoptosis-related genes, the alteration of DNA-
repair gene, cancer stem cells and so on. And up to date, many methods were adopted to 
overcome MDR, for example natrual drugs, chemical drugs and genetic therapy. 
Herein, we will introduce the mechanisms and therapy of MDR of breast cancer briefly.  

2. Mechanisms of MDR 

2.1 The adenosine triphosphate (ATP)-binding cassette (ABC) membrane transporter 
family 

Elevated expression of ATP-binding cassette (ABC) transporters is considered to be the 

main cause of MDR in breast cancer. ATP-binding cassette (ABC) transporters are a family 

of transporter proteins that contribute to drug resistance via adenosinetriphosphate (ATP)-

dependent drug efflux pumps, which can result in an increased efflux of the cytotoxic drugs 

from the cancer cells, thus lowering their intracellular concentrations [4]. Up to date, more 

than 100 ABC transporters from prokaryotes to humans and 48 human ABC genes have 

been identified that share sequence and structural homology [3]. The proteins which are 

related to the MDR in breast cancer are mainly including p-glycoprotein (p-gp), multidrug 

resistence- related protein (MRP) and breast cancer resistence protein (BCRP). 
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In mammals, the functionally active typical ABC proteins consist of at least four core 
domains, two transmembrane domains (TMDs) and two nucleotide-binding domains 

(NBDs). The two TMDs of each ABC transporter consist of multiple membrane-spanning α- 

helices (typically, but not always, six α-helices per domain) and form the pathway through 
which substrate crosses the membrane. The two NBDs play a role in cleaving ATP 
(hydrolysis) to derive energy necessary for transporting cell nutrients such as sugars, amino 
acids, ions and small peptides [5]. Normally, they have important physiological function, 
such as the excretion of toxins from the liver, kidneys, and gastrointestinal tract [6]. 
Overexpression of these transporters has been observed in many types of human 
malignancies and correlated with poor responses to chemotherapeutic agents.  

2.1.1 P-glycoprotein 

In 1970s, a carbohydrate-containing protein, 170 kDa in molecular weight, was found in 
multidrug-resistant Chinese hamster ovary cells. The glycoprotein was named P-
glycoprotein (P-gp) because the protein can modulate membrane permeability with respect 
to a number of apparently unrelated drugs including actinomycin D, methotrexate, 
daunomycin, and colchicine [7]. The MDR mediated by P-gp is also called” classical MDR”.  
Gene sequence membrane analysis for mammalian P-gp has revealed the presence of two 
similar halves, each containing 6 putative transmembrane segments, and an ATP-binding 
consensus motif. The human protein is comprised of 1280 amino acids with 12 
transmembrane domains and 43% sequence homology between the two halves. Three 
glycosylation sites on the first extracytoplasmic domain are present [8]. The gene encoding 
p-glycoprotein was termed mdr1.The gene with 28 exon and 1.2 kb and is located on 
chromosome 7q21.12. 
There are three known isoforms of P-gp, namely, class I, II and III. Rodent cells have all 
three P-gp genes, whereas human cells only have class I and III P-gp [9]. Classes I and II P-
gp genes confer MDR when transfected into sensitive wild type (WT) cells, whereas the class 
III P-gp gene is not shown to be associated with drug resistance. All three types of P-gp 
expressed in several normal tissues. In mammalian tissues, class I P-gp is found in 
epithelium, intestinal, endothelial cells, bone marrow progenitor peripheral blood 
lymphocytes, natural killer cells and so on. The class III P-GP is localized in hepatocytes, 
cardiac and striated muscle [10]. The distribution displays that p-gp plays an important role 
in normal physiological function. Evident confirmed that P-gp take part in the 
transepithelial secretion of substrates into bile, urine, or gastrointestinal tract lumen. P-gp 
may also confer a protective role to mediate xenobiotic efflux in tissues such as the brain, 
testis, and placenta. 
P-gp substrates are widespread. Although their structures are very different, they share 
many physical properties including high hydrophobicity, an amphiphilic nature and a net 
positive charge[11]. It is important for us to understanding the modulation of P-gp. Evident 
shows that p-gp is phosphorylated by protein kinase C (PKC) and PKC blockers can reduce 
P-gp phosphorylation and increase drug accumulation. However, there is evidence that 
PKC inhibitors directly interact with P-gp and inhibit drug transport by a mechanism 
independent of P-gp phosphorylation [12]. Experiments using transient transfection of the 
MDR1 promoter region (linked to a reporter gene) into the cells as well as stable transfection 
of some other genes showed that genes p53, ras and raf can influence the activity of 
introduced MDR1 promoter or the expression of the endogenous cellular MDR1. Genes c-fos 
and c-jun also were shown to confer the regulation of  MDR1 activity [13].  
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For a long time, P-gp was believed to be the only protein capable of conferring MDR in 
mammalian tumor cells. Over 50% breast cancer expressed P-gp [14]. Moreover, prior 
exposure to chemotherapy or hormonal therapy has been shown to increase the proportion 
of breast cancers expressing P-gp by 1.8-fold [15]. However, pre-chemotherapy P-gp 
expression showed no association with shorter progression-free survival (PFS) so the clinical 
relevance of this observation in terms of screening patients and treatment selection remains 
unclear[16]. 

2.1.2 Multidrug resistence- related protein 1(MRP) 

In 1992, Susan Cole and Roger Deeley observed amplification and increased expression of a 

novel gene in non-P-gp expressing small cell lung cancer DOX resistant cell lines and this is 

the MRP1 (ABCC1) (MDR related protein) gene.The following study shows that the protein 

encoded by this gene is also a member of ABC transporters [17].  

The multidrug-resistance-associated protein (MRP or MRP1) is a 190 kDa protein and is 

constituted by 1531 amino acids. Like other members of ABC transporters, MRP1 has 3 

membrane spanning domains, 2 NBDs and extracellular N-terminal. Up to now, several 

isoforms of MRP1 have been identified. Included among these are five human MRP1-related 

proteins, designated MRP2, MRP3, MRP4, MRP5 and MRP6. MRP7, MRP8 and MRP9 are 

recent additions to the family which have not yet been characterised[18]. 

 Physiologiclly, MRP1 also plays a normal role in the ATP-dependent unidirectional 

membrane transport of glutathione conjugates, such as leukotriene C4, S-(2,4-

dinitrophenyl)glutathione and leukotriene receptor antagonists could inhibit this 

function[19]. Besides multidrug-resistance cancer cells, MRP is also expressed in normal 

human tissues, such as muscle, lung, spleen, bladder, adrenal gland and gall bladder [2]. 

MRP2 (or cannalicular multispecific organic anion transporter or cMOAT) was first shown 

to be expressed in the liver which functions in the excretion of glutathione and glucuronate 

conjugates across the cannalicular membrane into bile. In addition, MRP2/ cMOAT is also 

expressed in the human kidney proximal tubule epithelia on the apical side. Therefore, it is 

implicated that MRP2 may play a role in the renal excretion of endogenous substances and 

xenobiotics, in normal conditions. MRP3 is expressed in liver and involved in the efflux of 

organic anions from the liver into the blood in case of biliary obstruction. MRP4 and MRP5 

transport nucleosides and confer resistance to antiretroviral nucleoside analogs. MRP6 is a 

lipophilic anion pump with a wide spectrum of drug resistance. Among the members of 

MRP family, only MRP1 has been widely accepted to cause clinical drug resistance[3]. 

Like other members of ABC translporters, MRP1 can pump anti-tumor drugs out of the 
tumor cells, cause reduced intracellular accumulation of drugs and lead to resistance.  
Whereas P-gp transports neutral and positively charged molecules in their unmodified 
form, MRP1 overexpression is associated with an increased ATP-dependent glutathione-S 
conjugate transport activity. Reduced glutathione (GSH) has been suggested as an important 
component of MRP mediated MDR and drug transport. MRP1 is able to transport a range of 
substrates as such or conjugated to GSH, glucuronide, and sulfate [20]. The anticancer drugs 
that are substrates of MRP1 mainly include anthracyclines such as doxorubicin and 
daunorubicin, vinca alkaloids and etoposide. Several findings indicate that MRP1 reduces 
drug accumulation by effluxing drugs by a GSH co-transport mechanism or after their 
conjugation to GSH [21]. But the mechanism by which GSH facilitates transport of some 
compounds by MRP1 is still a matter of debate. 
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2.1.3 Breast cancer resistance protein (BCRP) 

Breast cancer resistance protein (BCRP) is the latest ABC transporter involved in MDR  and 
it was cloned by Ross and Doyle in 1998 from a mitoxantrone-resistant subline of the breast 
cancer cell line MCF-7/Adr/Vp which does not express other known multidrug efflux 
transporters such as P-glycoprotein (P-gp) or the multidrug resistance protein 1 (MRP1) [22]. 
Two almost identical proteins as BCRP with only a few amino acid differences were later 
discovered independently by other laboratories from mitoxantrone-resistant human cancer 
cell lines (so named as MXR) and humanplacenta (so named as ABCP)[23]. 
The BCRP gene is located on chromosome 4q22. The full length of BCRP gene is 66kb and 

the length of mRNA is about 2.4kb [23].The product of the gene is a 72KD protein with 655 

amino acid that contains an ATP-binding domain and six transmembrane domains, and it is 

a half transporter member of the ABCG subfamily [24]. As a half transporter, BCRP 

functions as a homodimeric/oligomeric efflux pump [25], and in a manner that is similar to 

other ABC transporters. Besides that, BCRP can also transport hydrophilic conjugated 

organic anions, particularly the sulfated conjugates with high affinity, for example BCRP 

can detoxify irinotecan and SN-38 by glucuronidation via the activity of UDP-

glucuronyltransferase [26]. BCRP substrates include not only chemotherapeutic agents such 

as mitoxantrone, methotrexate, topotecan, irinotecan and its active analog SN-38, and 

tyrosine kinase inhibitors imatinib and gefitinib, but non-chemotherapy drugs such as 

prazosin, glyburide, nitrofurantoin, dipyridamole, statins, and cimetidine as well as 

nontherapeutic compounds such as the dietary flavonoids, porphyrins, estrone 3-sulfate 

(E1S), and the carcinogen PhIP [27]. 

Similar to P-gp and MRP1, BCRP is widely expressed in normal cells and tissues including 

the capillary endothelial cells, the hematopoietic stem cells [28], the maternal–fetal barrier 

of the placenta and the blood-brain barrier [29]. In these tissues, BCRP play a protective role 

against xenobiotics and their metabolites. Whereas, the apical localization of BCRP in the 

intestinal epithelium and in the bile canalicular membrane also suggests the intestinal 

absorption and hepatobiliary excretion of BCRP substrates [30]. 

Unexpectedly, many mutant forms of BCRP proteins were found in drug-selected cells such 

as those of the S1-M1-80 and MCF7/AdVp3000 cell lines and up to now, more than 50 

mutations have been identified including natural variants and non-natrual mutations [27]. 

The most important natural variant is Q141K, which occurs in Japanese and Chinese 

populations at high allele frequencies (30 –60%) and in Caucasians and African-American 

populations at relatively low allele frequencies (5 – 10%) [27]. Several studies consistently 

revealed that Q141K had a lower protein expression level than wild-type BCRP in both 

transfected cells and human tissues. A recent study has revealed that Q141K undergoes 

increased lysosomal and proteasomal degradations than wild-type BCRP, possibly 

explaining the lower level of protein expression of the variant [31]. The R482T and R482G 

variants of BCRP detected from MCF7/ AdVp3000 and S1-M1-80 cells belong to non-natural 

mutants. The non-natural mutants have different effects on BCRP expression, distribution 

and functions. Some mutations do not affect plasma membrane expression, but alter 

substrate specificity and/or overall transport activity. For example, the R482T and R482G 

lose their methotrexate-transporting activity but at the same time confer increased 

mitoxantrone resistance, so they are highly resistant to both mitoxantrone and 

doxorubicin[32]. Wild-type BCRP does not transport Rhodamine 123 and Lyso-Tracker 

Green; however, the mutants R482T and R482G do [33]. These findings confirmed that the 
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transmembrane region of BCRP plays important roles in its activity. Some mutations affect 

biogenesis with decreased stability, lower expression and/or altered subcellular distribution 

of BCRP. A typical example is mutations of Arg383 which results in a significant decrease in 

the protein level, partial retention in the endoplasm reticulum, and altered glycosylation 

and the treatment with mitoxantrone assisted in protein maturation [34]. Some mutations 

influence the chemical modifications of BCRP such as N-linked glycosylation or disulfide 

bond formation in BCRP such as the mutation Asn596. Otherwise, there are also many 

mutations which do not have major effects on both plasma membrane expression and 

function of BCRP, including K473A and H630X. The research on the mutations of BCRP 

could help us to further understand the structures and functions of ABC transportes. 

Up to date, BCRP was detected in many resistance tumor cells such as human colon cancer 
cell line S1-M1-80, prostate cancer cell lines and breast cancer cell line MCF7/AdVp3000 
[35]. Many clinical sample were also found BCRP expression, including acute myelogenous 
leukemia (AML), acute lymphocytic leukemia (ALL), non-small cell lung cancer and so 
on[36-38]. And it has been suggested that the expression of BCRP is associated with a poor 
response to cancer chemotherapy and may be responsible for clinical drug resistance. 
However, the studies on the expression characters of BCRP in breast cancer clinical samples 
are still very few. 

2.2 Apoptosis and MDR 
2.2.1 P53 

As a tumor suppressor, p53 plays a pivotal role in inducing apoptosis in response to cellular 

damage, including DNA damage. However, mutant P53 plays an opposite role in the 

regulation of apoptosis, that is mutant p53 is an anti-apoptosis factor. In a study from the 

National Cancer Institute (NCI), the majority of breast cancer cell lines were mutant for p53 

[39]. About 50% of all tumours have an approximately 25% occurrence of deletions and 

point mutations in sporadic breast cancers[40]. Many anti-tumor drugs can lead cellular 

death by inducing cellular apoptosis. When p53 mutations or deletions occur, the cellular 

apoptosis can be inhibited and the cells exhibit MDR phenotype. Mutations in p53 have 

been verified to be related with resistance to doxorubicin in breast cancer patients[41]. 

   Many data show the correlation of P53 and ABC transporters. The first experiments 

implied that a mutant p53 (mtP53)specifically stimulated the MDR1 promoter and wild-type 

p53(wtP53) exerted specific repression[42]. In the follow-up study, a p53 consensus binding 

sequence was also found in the promoter of the rat ABCB1 gene. Both promoter function 

and endogenous mdr1b expression were shown to be up-regulated by wtp53[43]. More 

studies displayed that the mutations of p53 can dramatically activate the ABCB1 promoter 

in multiple cell lines including Saos-2, Caco-2, MCF-7 and so on[44]. Linn et al. assessed the 

status of p53 and ABCB1 in both primary operable and advanced-staged tumors and their 

results revealed that nuclear p53 accumulation and coexpression of ABCB1 were more 

prevalent in locally advanced breast cancers and that these markers provided a strong 

prognostic indication of shorter survival[45,46]. Similar results were also found in other 

studies. 

Recently, Wang et al investigated the effects of wild-type and mutant p53, and nuclear factor 
kappa-B (NF-kappaB) (p50) on BCRP promoter activity in MCF-7 cells, and the results show 
that wild-type p53 induced transcriptional suppression of breast cancer resistance protein 
(BCRP) through the NF-kappaB pathway in MCF-7 cells[47]. 
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2.2.2 Other apoptosis related genes and MDR 

Mitochondrial (intrinsic pathway) and cell surface receptor (Fas) mediated (extrinsic 
pathway) apoptosis are the two main routes leading to programmed cell death. MCF-7 cells 
can undergo apoptosis by the sequential activation of caspases-9 (associated with 
mitochondrial mediated apoptosis), -7, and -6. Recently, a splice variant form of caspase-3 
has been shown to be overexpressed in chemoresistant, locally advanced breast cancers, and 
is particularly associated with response to cyclophosphamide[48]. 
Bcl-2 is a member of a large family of genes coding both anti-apoptotic proteins (for 
example, Bcl-2, Bcl-XL ) and pro-apoptotic proteins (Bax, Bad Bic, etc.). Bcl-2 protein is able 
to inhibit the apoptosis induced by p53 in response to genotoxic stress. There are data 
showing that Bcl-2 overexpression results in the resistance of cells to different drugs, 
including DOX, taxol, etoposide, camptothecin, mitoxantrone and cisplatin[49] . When Bcl-2 
is over expressed and contributes as a resistance mechanism, it has been shown that the 
anticancer drugs promote cell cycle arrest; however, their effects are cytostatic rather than 
cytotoxic[2]. The phosphorylation state of the Bcl-2 oncoproteins has been shown to 
modulate response to taxanes[50]. 
Survivin is another apoptosis-related gene which has been confirmed to confer MDR in 
tumors. It is a structurally unique inhibitor of apoptosis (IAP), substances which block 
apoptosis induced by a variety of nonrelated apoptosis triggers. Survivin is known to 
directly or indirectly bind and inhibit the terminal effector cell death protease cascades, 
caspase 3 and 7, as well as inhibit the activation of caspase 9[51]. Furthermore, it has been 
reported that the expression of survivin was significantly higher after treatment with anti-
cancer drugs in many cancer cells and may be involved in radio- and chemo-resistance[52]. 
Liu et al. documented that survivin might modulate the turnover of P-gp or transport by P-
gp in the cell, which then resulted in anti-apoptosis and drug resistance in breast cancer 
cells[51]. However, the role of survivin in MDR breast cancer in the presence of P-gp is still 
not clear. 
In addition, some other apoptosis-related genes were found to take part in the regulation of 
MDR, such as CD95, TRAIL and so on. 

2.3 MDR-related enzyme 
2.3.1 Glutathione S-transferase (GST) 

GST is a member of phase II detoxification enzymes that catalyses the conjugation of 
glutathione (GSH) to a wide variety of endogenous and exogenous electrophilic 
compounds. Because of their capacity to react with electrophiles, radicals and reactive 
oxygen species, GSTs, together with GSH, have a major role in the protection against 
oxidative stress [53]. 
GSTs are divided into two super-family members: the membrane microsomal and cytosolic 
GSTs(c-GSTs). Microsomal GSTs (m-GSTs) are structurally distinct from the cytosolic in that 
they homo- and heterotrimerize rather than dimerize to form a single active site and the 
microsomal GSTs are mainly involved in the metabolism of endogenous compounds, like 
leukotrienes and prostaglandins. The cytosolic GSTs also conjugate exogenous compounds 
and the cytosolic GSTs are subject to significant genetic polymorphisms in human 
populations. Up to date, the cytosolic GSTs are divided into seven classes, Alpha (A), Mu 
(M), Omega (O), Pi (P), Sigma (S), Teta (T) and Zeta (Z) which have a promiscuous substrate 
specificity and are localized in different tissues with organ specific expression patterns [54].  
The GST-Pi have been confirmed to be closely related with MDR. 
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Many data show that GST confers the development and expression of MDR. Increased 
expression of GSTpi—detected as strong immunoreactivity—has been documented to 
contribute to drug resistance of ovarian carcinomas, head and neck cancer, lung squamous-
cell carcinoma, breast cancers and so on[55]. Cells with GST isozyme transfections yield 
mild increases in resistance (mostly in the 2–5 fold range) to a number of different anticancer 
drugs [54]. While inhibition of GST expression by antisense cDNA increased the sensitivity 
to several anticancer drugs [56]. Besides, exposure of cells to a specific inhibitor of c-GCS, 
buthionine sulfoximine (BSO), decreases multidrug resistance to doxorubicin and 
vincristine[57]. The substrates of GST reported include chlorambucil, melphalan, nitrogen 
mustard, phosphoramide mustard, acrolein, carmustine, hydroxyalkenals, ethacrynic acid 
and steroids. And the MDR mediated by GST is related to mitomycin C, adriamycin, 
cisplatin and carboplatin. 
How GSTs affect MDR in tumor cells? There are mainly two mechanisms found now. First, 
GST-Pi plays a key role in regulating the MAP kinase pathway via protein: protein 
interactions. GST-Pi was shown to be an endogenous inhibitor of c-Jun N-terminal kinase 1 
(JNK1), a key member of MAP pathway which involved in stress response, apoptosis, and 
cellular proliferation [58]. In nonstressed cells, low JNK activity is observed due to the 
sequestration of the protein in a GST- Pi : JNK complex. Direct protein : protein interactions 
between the C-terminal of JNK and GST-pi were reported with a binding constant of 
approximately 200 nm. The second, there is a coordinate action of phase II enzymes and 
MRP in MDR[59]. The already mentioned connection between a MRP drug resistance profile 
and an increased GST-pi expression, shown in many cell lines, is indeed indicative for a 
shared regulatory mechanism of MRP and GSTs expression [60]. Studies demonstrated that 
Nrf2 may be play a key role between MRP and GSTs. A study on Nrf2 knockout mice 
displayed that: disruption of the Nrf2 gene decreased both the constitutive as well as the 
inducible expression of class Alpha, class Mu and class Pi glutathione transferases[61]. 
Meanwhile, Nrf2 was also shown to be necessary for the constitutive and inducible 
expression of MRP1 in mouse embryo fibroblast[62]. 
GSTpi immunoreactivity was reported not to correlate with response to chemotherapy in 
cervical carcinoma, but many data show that in primary breast cancers, expression of GST-
Pi was associated with poor prognosis. Fengxi Su et al analyzed the relationship between 
GST-Pi and the FAM (5-fluorouracil, adriamycin, mitomycin) protocol and the result 
showed that the presence of GSTpi in breast cancer tissue was a bad prognostic indicator, 
and these tumors were largely resistant to chemotherapy[55]. In cultured breast cancer cells, 
GST-pi is exclusively expressed in estrogen receptor-negative (ER−) cells but not in receptor-
positive (ER+) cells [63]. In 1997, Mona S. Jhaveri verified that that methylation status of the 
promoter contributes significantly to the levels of GSTP1 expressed in ER− and ER+ breast 
cancer cell lines [64]. 

2.3.2 DNA topoisomerase II (topo II) 

DNA topoisomerase II (topo II) is a nuclear phosphoprotein involved in DNA replication 
and chromosome dynamics. These enzymes catalyse the ATP-dependent passage of one 
DNA duplex (the transport or T-segment) through a transient, double-stranded break in 
another (the gate or G-segment), navigating DNA through the protein using a set of 
dissociable internal interfaces, or 'gates' [65,66]. The family of DNA topoisomerase II 

includes two related but genetically distinct isoforms isforms TOPIIα and IIβ in mammalian 
cells. 
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The human topoisomerase IIｚ gene (TOP2ｚ) is localized on chromosome 17q21-22 [67] 

whereas TOPIIβ maps to chromosome 3p24 [68]. The cDNAs for the human α and β 
isoforms encode p170 and p180 proteins of 1531- and 1621-amino-acid [68], respectively. 

TOP2α lies close to the epidermal growth factor-like receptor gene ERBB2 (HER2) and the 
retinoic acid receptor locus RARK in a region of chromosomal 17 which is amplified in some 
human breast cancer [69]. The two enzymes are closely similar in structure each comprising 
three functional domains de¢ned by sites of cleavage by trypsin or staphylococcal V8 
proteases: an N-terminal ATPase domain (approximately residues 1-400); a DNA breakage-
reunion region (400-1220); and the C-terminal domain which carries a multitude of 
phosphorylation sites[70]. 

In addition to its role in cell division, TOP2α is also found to be related to the MDR in 
tumor.It is the major molecular target for a large group of clinically relevant, structurally 

different cytotoxic agents known as TOP2α inhibitors including the anthracycline class of 

antitumor cytotoxic agents [71]. These drugs all act by forming covalent bonds with TOP2α, 
creating a complex that introduces permanent double-strand breaks in DNA leading to 
apoptosis. Reduced topoisomerase II expression or function can contribute to resistance to 
agents such as anthracyclines and epipodophyllotoxins [72]. In vitro studies of breast tumor 

cell lines have shown that amplification of the TOP2α gene leads to protein overexpression 

and sensitivity to anthracyclines [73,74]. Similarly, deletion of TOP2α genomic alterations in 

breast cancer leads to a marked decrease in TOP2α protein expression, which results in 

chemoresistance to TOP2α inhibitor anticancer drugs in cell culture.  
The HER-2 gene is another gene on chromosome 17 and it encodes for a ligandless, 
transmembrane glycoprotein receptor with intrinsic tyrosine–kinase activity. HER-2 gene 
amplification or protein overexpression occurs in about 20% of patients with breast cancer 
and is a recognized poor prognostic marker, often associated with endocrine resistant, high 

grade disease[75]. Recently research reported that the expression of TOP2α is closely related 
to the expression of HER2 gene and co-expression of them may be a useful tool in predicting 

benefit from chemotherapy. Top IIα is reported to be either amplified or deleted in nearly 
90% of HER-2 amplified primary breast cancers[76]. Recent review of the Canadian-MA.5 
trial assessed TOP2ǂ alterations and HER-2 amplification by FISH on tissue microarrays in 

438 patients [77]. Top IIα alterations occurred in 18% patients (12% amplification, 6% 
deletions) and were more common in large tumors and in HER-2 positive tumors. In 

patients with Top IIα alterations, relative benefits of therapy were seen with CEF having 

statistical superiority over CMF in terms of RFS (adjusted HR 0.35, 95% CI 0.17–0.73, p = 

0.005) and OS (adjusted HR 0.33, 95% CI 0.15–0.75, p = 0.008). However, there are also 
diffusing evidents. An analysis displayed topo IIa mRNA overexpression in 19% of HER-2 
negative patients [78]. In conclusion, the relationship between TOP II, HER2 and 
chemosensitivity needs further investigation. 

2.3.3 Glucosylceramide synthase  

Sphingolipids, which include ceramides and sphingosine, were first isolated and 

characterized in the late 1800s. Recent years, many studies have shown that they are not 

only structural and insert components of cell membranes but also  associated with myriad 

process of cells including the proliferation, survival and death of cells. As an important 

member of sphingolipid metabolism, ceramide have been proven to be a second messager of 

apoptosis [79, 80]. Cellular stress is known to increase ceramide levels in cells. So it is easily 
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to understand that increased ceramide has been oberserved in response to many anti-cancer 

drugs, such as doxorubicin, vincristine, paclitaxel, etoposide, PSC 833 and fenretinide. 

Many enzymes have been confirmed to be responsible for the regulation of ceramide levels, 

such as ceramide synthase and sphingomyelinase which are responsible for the ceramide 

generation, and sphingomyelin synthase and ceramidase which take part in the ceramide 

metabolization[81]. Glucosylceramide synthase (GCS) is one of them. As an enzyme which 

catalyzes the first step in glycosphingolipid synthesis, GCS transfers UDP–glucose to 

ceramide to form glucosylceramide, which have been found to involve in many cellular 

processes such as cell proliferation, oncogenic transformation, differentiation, and tumor 

metastasis[82].In additon, many studies show that GC was related with MDR in many 

tumor cells. In 1996, Lavie Y et al first reported that chemotherapy resistant MCF-7-AdrR 

breast cancer cells accumulate GC in comparison to wild-type MCF-7 cells[83].After that, GC 

was found to confer to MDR in many other cancers [84-86].So some people guessed that 

elevated GCS activity may be a novel form of multidrug resistance. 

Then, Liu etc found that increased competence to glycosylate ceramide conferred 

adriamycin resistance in MCF-7 breast cancer cells by transfection with GCS cDNA[8], while 

using GCS inhibitor 1-phenyl-2-palmitoylamino-3- morpholino-propanol (PPMP) or 

transfection of doxorubicin-resistant MCF-7-AdrR cells with GCS antisense both restored 

cell sensitivity to doxorubicin or vinblastine and paclitaxeland[86,87]. Ladisch found that 

blocking GCS with D, L-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1- propanol 

(PPPP), was able to elevate ceramide levels and enhance vincristine cytotoxicity via 

programmed cell death[88]. All the following works demonstrated that GCS was potentially 

one MDR-related drug resistance mechanism.  

Recently, Yong-Yu Liu et al reported that glucosylceramide synthase upregulates MDR1 

expression in the regulation of cancer drug resistance through cSrc andぁ-catenin signaling 

in the ovarian cell line NCI/ADR-RES which was ever named MCF-7/AdrR [89]. This study 

revealed the importance of GCS in the mechanism of cancer drug resistance. 

Further studies demonstrated that a GC-rich/Sp1 promoter binding region was of 

importance in the regulation of GCS expression and doxorubicin could induce activation of 

Sp1 and up-regulation of GCS and apoptosis in Leukimia drug-resistance cell line HL-

60/ADR and ovarian cell line NCI/ADR-RES [81,90]. 

In 2009, Eugen Ruckhäberle et al analyzed microarray data of GCS expression in 1,681 breast 

tumors and found that expression of GCS was associated with a positive estrogen receptor 

(ER) status, lower histological grading, low Ki67 levels and ErbB2 negativity (P < 0.001 for 

all) [91]. This study revealed the expression profile of GCS in breast cancer.But, the study 

also found that GCS has no clearly correlation with mdr1.So the relationship between GCS 

and mdr1 in breast cancer is still a puzzle. 

2.4 Cancer stem cells and MDR 

Stem cells are defined as cells with both self-renewal capacity and the ability to produce 
multiple distinct differentiated cell types to form all the cell types that are found in the 
mature tissue[92]. Thus, these two characteristics of stem cells confer the unique property of 
asymmetric division. Stem cells are quiescent or slowly cycling cells maintained in an 
undifferentiated state until normal functioning of the organism needs their participation. 
Stem cells are classified into two principal types: embryonic and adult stem cells[93]. 
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Recent studies have revealed that they play important role in cancer biology. Cancer stem 

cells (CSC) have been detected in many tumors, such as retinoblastoma and melanoma 

[94,95]. In breast cancer, a CD44+/CD24-or low/Lin- cell population was first identified as 

CSC [96].Later, aldehyde dehydrogenase (ALDH) 1 activity was reported to be associated 

with stem/progenitor properties in breast cancer [97].  

Although the origin of cancer stem cells has not yet been elucidated, researchers proposed 

that the malignant transformation of a normal stem cell, or a progenitor cell that has 

acquired self-renewal ability may be the reason. Up to now, Three major pathways have 

been identified to be related with the regulation and maintenance of stem cells in adult life: 

Wnt, Hedgehog, and Notch[92]. 

It is well known that cancer chemotherapy targets dividing cells. Because stem cells are 
quiescent or slowly cycling cells under normal situation, it is easy to understand that cancer 
stem cells could escape from the killing of anti-tumor drugs. 
Besides, the side-population (SP) cells may be another reasons why stem cells become multi-

drug resistant. The isolation of SP cells is based on the technique described by Goodell et al. 

in 1996 [98]. While experimenting with staining of murine bone marrow cells with the vital 

dye, Hoechst 33342, they discovered that the display of Hoechst fluorescence 

simultaneously at two emission wavelengths (red 675 nm and blue 450 nm) localizes a 

distinct, small, nonstained cell population (0.1% of all cells) that express stem cells markers 

(Sca1+linneg/low), which were named SP cells. At first, they thought the exclusion of 

Hoechst 33342 by SP cells is an active process involving multidrug resistance transporter 1 

(MDR1). But the following study show that MDR1 can not be taken as a single marker to 

identify and isolate SP cells. Zhou et al. have demonstrated the breast cancer resistance 

protein (BCRP) may also attend the SP phenotype[28]. The SPs from breast cancer contain 

primitive stem cell-like cells that can differentiate into epithelial tumors in vitro and in vivo 

and express stemness genes [28,99]. The characterization of cells within SP demonstrates 

that they are immature, poorly differentiated, and highly tumorigenic. Gene expression 

profiles of SP show that these cells are less differentiated than non-SP cells [100]. 

The ABC transporters may play three functions in CSCs. First, the ABC transporters can 

protect the CSCS against exogenous products able to penetrate the cell membrane barrier by 

active exclusion.Second, there is mounting speculation that ABC transporters repress the 

maturation and differentiation of stem cells. For example, the overexpression of ABCG2 

inhibits hematopoietic development.The last, protection from hypoxia appears to be another 

function of ABC transporters in CSCS[101]. 

In conclusion, although the mechanisms of cancer stem cell are still unclear, the cancer stem 

cells must become target of chemotherapy. 

2.5 Sex hormones and MDR 
2.5.1 ER 

Estrogens play key roles in development and maintenance of normal sexual and 

reproductive function. The most potent estrogen produced in the body is 17ǃ-estradiol(E2). 

Two metabolites of E2, estrone and estriol, although they are high-affinity ligands are much 

weaker agonists on estrogen receptors (ERs)[102]. Up to now, two type of ERs have been 

found which named ERǂ(NR3A1) and ERǃ(NR3A2). At the regulation of some genes, 

particularly those involved in proliferation, ERǂ and ERǃ can have opposite actions [103], a 
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finding which suggests that the overall proliferative response to E2 is the result of a balance 

between ERǂ and ERǃ signaling.  

The expression of ERǂ is closely associated with breast cancer biology, especially the 
development of tumors; estrogen hormones induce expression of c-myc and c-fos 
protooncogenes sufficient for cell division and breast cancer progression[104].Many studies 
demonstrated that breast carcinomas which lack ERǂ expression often reveal more 
aggressive phenotypes. Furthermore, ERǂ expression in tumor tissues is a favorable 
predictor of prognosis in endocrine treatment[105]. ERǂ typically functions as a 
transcription factor to regulate specific gene expression which binds to estrogen response 
elements (ERE)upstream of the target genes. The study of Lisa D. Coles et al. demonstrated 
that E2 could up-regulate the expression of p-gp in P-gp Overexpressing Cells (NCI-ADR-
RES) [106]. 
Anti-estrogens, designed to block ERǂ, are widely and effectively used clinically in the 
treatment of breast cancer.The most common drugs including tamoxifen and 
toremifene.Some researches show that antiestrogens such as tamoxifen, metabolites of 
tamoxifen (4-hydroxytamoxifen and N-desmethyltamoxifen), droloxifen, and toremifene 
stimulated the p-gp ATPase activity and are substrates of p-gp. These results suggest that 
the antiestrogens may be potent drugs that reverse the multidrug-resistant phenotype 
mediated by P-gp[107]. However, another study displayed that tamoxifen activates CYP3A4 
and MDR-1 genes through steroid and xenobiotic receptor (SXR) in breast cancer cells 
[108].But, some other anti-estrogens seem to be more effective on reversing MDR. A study 
shows that the pure anti-oestrogen ICI 164 could enhance doxorubicin and VBL toxicity to 
MCF-7/Adr cells 25- and 35-fold, respectively and the pure anti-oestrogens iodotamoxifens 
completely reversed VBL resistance in the mdr1 transfected lung cancer cell line [109]. 
Besides affection on p-gp, there are many data showing the relationship between anti-
estrogens and BCRP. Imai et al. demonstrated that BCRP mRNA expression was induced by 
17b-estradiol in T47D:A18 cells [110].Our research indicated that BCRP expression is 
upregulated by 17 ǃ -estradiol via a novel pretranscriptional mechanism which might be 
involved in 17ǃ-estradiol-ER complexes binding to the ERE of BCRP promoter via the 
classical pathway to activate transcription of the BCRP gene[111]. Besides, we also found 
that tamoxifen and toremifene could reverse MDR mediated by BCRP in breast cancer 
cells[104]. 

2.5.2 Progesterone receptor (PR) 

Like estrogens, the physiological effects of progesterone are mediated by interaction of the 
hormone with the progesterone receptor. Up to now, two types of PRs were detected, 
named as PRA and PRB, respectively. The two PRs are expressed from a single gene as a 
result of transcription from two alternative promoters[112]. In general, PRB acts as a 
stronger transcriptional activator, whereas PRA functions as a transcriptional inhibitor of 
PRB and ER[113]. PR expression in breast cancer is also an important indicator of likely 
responsiveness to endocrine agents. It has been shown that PRA and PRB are expressed in 
similar amounts in most breast tumors[114]. Some data indicated that progesterone via PRs 
may be related to the regulation of MDR in breast cancer. 
In 1994, Rao US et al found that at 50 microM, progesterone stimulated the P-gp ATPase 
activity as effectively as verapamil and is a potent drugs inducing p-gp mediated MDR[115]. 
Recently study displays that transcriptional regulation by E2 and progesterone (P4) likely 
contributes to the modulation of P-gp levels[116]. 
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Besides that, the relationship between PR and BCRP has also been focus on. Wang et al 
found there were progesterone response elements on the upstream of BCRP promoter[114] 
and they note that the identified PRE is exactly the same as the estrogen response element 
published by Ee et al[117]. They found that PRB is a strong activator of transcription of the 
BCRP promoter, and PRA represses the PRB activity in the human placental 
choriocarcinoma BeWo cells. But the real situation in breast cancer may be complex. Because 
17ぁ-estradiol can induce PRB expression and down-regulate BCRP expression through 

posttranscriptional modification[118]; On the other hand, PRA can repress the estrogen 
receptor activity[113]. So the relationship between progesterone receptor and BCRP needs 
further data. 

2.6 EMT and MDR 

Tumor invasiveness, and metastasis, as well as MDR are still great puzzle in the 

development and treatment of tumors. The interconversion between epithelial and 

mesenchymal cells (designated as epithelialmesenchymal or mesenchymal-epithelial 

transition, EMT or MET, respectively) has received special attention and emerging evidence 

suggests that epithelial-mesenchymal transitions (EMTs) may take part in the above 

processes. An epithelial-mesenchymal transition (EMT) is a biologic process that allows a 

polarized epithelial cell, which normally interacts with basement membrane via its basal 

surface, to undergo multiple biochemical changes that enable it to assume a mesenchymal 

cell phenotype, which includes enhanced migratory capacity, invasiveness, elevated 

resistance to apoptosis, and greatly increased production of ECM components[119]. 

Kalluri R and Weinberg RA divided EMT into three types[119]. Type 1 EMTs can generate 

mesenchymal cells (primary mesenchyme) that have the potential to subsequently undergo 

a MET to generate secondary epithelia during implantation, embryogenesis, and organ 

development. Type 2 EMTs, the program begins as part of a repair-associated event that 

normally generates fibroblasts and other related cells in order to reconstruct tissues 

following trauma and inflammatory injury.  

Type 3 EMTs occur in neoplastic cells that have previously undergone genetic and 
epigenetic changes, specifically in genes that favor clonal outgrowth and the development of 
localized tumors. Envidents show that EMT is critically linked with up-regulated invasion, 
metastasis, and angiogenesis. Figure 1 displays the relationship between EMT and 
progression of tumors. During the acquisition of EMT characteristics, cells loose epithelial 
cell–cell junctions, undergo actin cytoskeleton reorganization and decrease in the expression 
of proteins that promote cell–cell contact such as E-cadherin and ǃ-catenin, and gain in the 
expression of mesenchymal markers such as vimentin, fibronectin,Ǆ-smooth muscle actin 
(SMA), N-cadherin as well as increased activity of matrix metalloproteinases (MMPs) like 
MMP-2, MMP-3 and MMP-9, associated with an invasive phenotype[120]. 
The modulation of EMT is complicated. Many genes or signal transduction pathways are 

confirmed to take part in the regulation, such as hepatocyte growth factor (HGF)[121], 

transforming growth factor beta (TGF-ǃ)[122], epidermal growth factor (EGF)[123], MMP-

3[124] and so on. In addition, some transcriptional factors including snail and twist also play 

important role in EMT[125,126]. 

Recent studies have shown an intimate relationship between the EMT phenotype and MDR. 
Kajiyama et al. found that paclitaxel-resistant ovarian cancer cells showed phenotypic 
changes consistent with EMT[127]. These results were confirmed in other types of tumors 
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like gemcitabine-resistant pancreatic cancer cells, oxaliplatin-resistant colorectal cancer cells, 
lapatinib-resistant breast cancer[120]. In addition, tamoxifen-resistant breast cancer cells 
undergone EMT with altered ǃ-catenin phosphorylation[128]. It has been indicated that 
mesenchymal-like cancers might be more sensitive to DNA damaging agents such as 
doxorubicin, whereas epithelial-like cancers are more sensitive to targeted therapies, such as 
EGFR and HER2 antagonists [129].That may be the reason why mesenchymal-like, basal 
breast cancers are initially more sensitive to chemotherapy than epithelial-like luminal 
breast cancers[130]. However, it was discussed that basal, mesenchymal-like breast cancers 
possibly would be more prone to develop drug resistance. So more works need to do to 
investigate the links of EMT and MDR. 
 

 

Fig. 1. The relationship between EMT and progression of tumors. Nomal epithelial cells 
transform to tumor cells. After EMT,tumor cells invade into surrounding normal tissues and 
distant organs. Then, MET reverse the cells into epithelial cells in the metastasis. 

2.7 Methylation and MDR 

Cancer is known as a genetic disease. Gain, loss, and mutation of genetic information have 

long been known to contribute to cancer development and progression. It is being 

increasingly recognized that epigenetic alterations in cancer often serve as potent surrogates 

for genetic mutations. Methylation of CpG dinucleotides is an important pattern of 

epigenetics.  

Methylation can directly interfere with the binding of transcription factors to inhibit 
replication and/or methyl-CpG binding proteins that can bind to methylated DNA, as well 
as regulatory proteins to inhibit transcription[131]. The patterns of CpG methylation are 
specie and tissue specific. The biological machinery of this system comprises a variety of 
regulatory proteins including DNA methyltransferases, putative demethylases, methyl-CpG 
binding proteins, histones modifying enzymes and chromatin remodeling complexes. 
Alterations in DNA methylation participate in the development of some human diseases, 
including tumor [132]. 
Then whether DNA methylation takes part in the modulation of MDR? The answer is yes. 
El-Osta et al. used inhibitors of DNA methyltransferase (5-azacytidine [5aC]) and histone 
deacetylase (trichostatin A [TSA]) to examine gene transcription, promoter methylation 
status, and the chromatin determinants associated with the MDR1 promoter and their result 
displayed that  5aC  and  TSA induced DNA demethylation, leading to reactivation of 
methylated MDR1[133] . Nakayama et al. demonstrated the hypomethylation status of the 
MDR1 promoter region might be a necessary condition for MDR1 gene overexpression and 
establishment of P-glycoprotein-mediated multidrug resistance in AML patients[134]. 
Detailed mapping of MDR1 promoter showed that its promoter is always hypermethylated 
in drug-sensitive cells, while the drugresistant cells have hypomethylated MDR1 
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promoter[135]. Gayatri Sharma et al used methylation-specific PCR to investigate the 
promoter methylation status of MDR1 in tumor and serum of 100 patients with invasive 
ductal carcinomas of breast (IDCs) and MDR1 was hypomethylated in 47% tumors and 44% 
paired serum  of IDC patients [136]. 
The methylation of BCRP has also been focus on. To et al. have shown an active CpG island 

within the proximal ABCG2 promoter region contributing to inactivation of ABCG2[137]. A 

follow-up research by Turner et al. demonstrated that ABCG2 expression in multiple 

myeloma patients and in cell lines is regulated in part by promoter methylation[138].  

DNA methylation has been found to anticipate the regulation of other MDR-related genes. 

Chekhun VF et al. found that the promoter regions of MDR1, GST-pi, genes were highly 

methylated in MCF-7 cell line but not in its MCF-7/R drug resistant variant. The results 

suggests that acquirement of doxorubicin resistance of MCF-7 cells is associated with DNA 

hypomethylation of the promoter regions of the MDR1, GST-pi[139].  

3. Strategies to reverse MDR 

Since MDR phenomena have been recognised, the war fighting against it has been 

continuing. Many strategies have been devised to overcome it and mainly divided into three 

types: modulators, immunotherapy and genetic therapy.  

3.1 Modulators of MDR 

Because P-gp is the best characterized gene conferring MDR and its wide effects, most 
modulators target for it. So herein, we divide the modulators into two types: modulators 
targeting P-gp and targeting other genes. 

3.1.1 Modulators of P-gp 

Up to now, numerous compounds have been shown to inhibit the drug efflux function of P-

gp and therefore, reverse cellular resistance. Since P-gp was first detected in 1976, three 

generation of modulators are found or synthesis. The process of chemosensitization involves 

the co-administration of a MDR modulator with an anticancer drug in order to cause 

enhanced intracellular accumulation via impairing the P-gp function[2]. 

3.1.1.1 First generation modulators 

The first compounds documented to reverse MDR was verapamil (VRP), one of the calcium 
channel blocker[140]. Studies displayed that VRP enhanced intracellular accumulation of 
many anticancer drugs, including DOX in numerous cell lines. Subsequent studies revealed 
that this MDR reversing character is shared by many other calcium channel blockers, 
clinically available calcium antagonists, and calmodulin antagonists, such as felodipine and 
trifluorperazine[141]. Indole alkaloids, the anti-malarial quinine and the anti-arrhythmic 
quinidine, have also been shown to reverse MDR in vitro in experimental cell lines 
[142].Cyclosporin A, a commonly used immunosuppressant for organ transplantation, 
remains one of the most effective first generation of MDR modulators[2]. 
A number of these first generation MDR modulators, such as VRP and CsA, displayed 

excellent MDR reversal activities both preclinically and clinically. However, a unique 

property shared by most first generation modulators is that they are therapeutic agents and 

typically reverse MDR at concentrations much higher than those required for their 
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individual therapeutic activity and at these elevated doses, both compounds exhibited 

severe and sometimes life-threatening toxicities[2]. 

3.1.1.2 Second generation modulators 

In order to solve the high toxicity of the first generation modulators, many newer analogs of 
the first generation are researched which were more potent and considerably less toxic.  
Analogs of VRP, including dexverapamil (less cardiotoxic R-enantiomer of VRP), emopamil, 
gallopamil, and Ro11-2933 (a tiapamil analog) which reversed MDR in vitro to a degree 
equivalent to VRP, but with marginal toxicity in animal models were documented[2]. The 
non-immunosuppressive analog of CsA, PSC 833, has demonstrated superior MDR reversal 
efficacy in conjunction with daunorubicin, DOX, vincristine, vinblastine, taxol, or 
mitoxantrone in many cell lines in vitro at concentrations of 0.5–2 mM[143]. 
Although these agents circumvented many of the problems experienced with first 
generation MDR modulators, when these agents were co-administered with anticancer 
agents for modulating P-gp-based MDR, they influenced the pharmacokinetics and 
biodistribution properties of the anticancer drugs, which resulted in increased toxicity to 
normal organs such as liver and kidney[144].  

3.1.1.3 Third generation modulators 

The third generation modulators of p-gp have recently been developed using structure–
activity relationships and combinatorial chemistry approaches. These agents required low 
doses (in the nanomolar range (20–100 nM)) to achieve effective reversing concentrations in 
vivo. 
The cyclopropyldibenzosuberane LY 335979 is the representative and is currently under 
investigation in phase II clinical trials. This substance is highly effective on P-gp-mediated 
MDR at the concentration of 0.1–0.2μM and shows a very strong affinity for P-gp[145]. 
Compared to CsA, LY 335979 is characterized by a 10-fold increased potency, latent 
modulating activity and a blockade specific for P-gp. Another drug the 
acridonecarboxamide GF 120918 exihibits similar characteristics to LY 335979, but seems to 
be more effective than LY 335979[146]. The effective concentration of it is 20–100 nM and is 
one of the most potent and selective MDR modulators disclosed thus far. Both of them are 
specific for P-gp-mediated MDR since it does not modulate MRP-mediated resistance. In 
addition, some bispecific chemosensitizers that block both P-gp and MRP were found, such 
as VX-710 and VX-853[2]. 
In summary, all the modulators of p-gp can be divided into 10 classifications. Table 1 

selected list the modulators of p-gp of each classification reported. 

3.1.2 Modulators of other genes 

Besides agents targeting P-gp, drugs that inhibit other genes have also been developing. 

Table 2 displays the selected list of modulators that inhibit other MDR-related genes. 

Although these agents appear to be well tolerated in combination with anticancer drugs 

such as DOX, the lack selectivity for the tumor tissue P-GP is still their deficiency which is 

the cause of adversely affect therapy. 

3.2 Immunotherapy of MDR 

Another method of MDR reversal is the use of monoclonal antibodies, several of which can 

inhibit P-gp-mediated drug efflux in vitro. The monoclonal antibody (mAb) MRK16 is the  
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Immunosuppressant  
Cyclosporin A 
Valspodar (PSC833) 
HIV protease inhibitors  
Ritonavir  
Saquinavir  
Nelfi navir 
Calcium channel blocker  
Verapamil  
Bepridil 
Diltiazem 
Flunarizine 
Progesterone antagonist  
Mifepristone (RU486) 

Anti-arrhythmic agent 
Quinidine 
Antifungal agent 
Ketoconazole 
Sedative 
Midazolam 
Acridone carboxamide 
LY 335979(zosoquidar) 
GG918 (GF120918) 
Peptide chemosensitiser  
Reversin 121 
Reversin 205   
Anti-oestrogen 
Tamoxifen 

Table 1. Selected list of P-gp modulators[149] 

 

Name                                     inhibitors  

MRP1[3]                             MS-209
                                                 XR-9576 (tariquidar) 
                                                 VX-710 (biricodar) 
                                                 Isothiocyanates 
                                                 tRA 98006 
                                                 Agosterol A 
                                                 Rifampicin 
                                                 NSAIDs 
BCRP(ABCG2)[3]                     GF-120918 (elacridar) 
                                                 tRA 98006 
                                                 Flavonoids 
                                                 Phytoestrogens 
                                                 Imatinib mesylate 
                                                 Fumitremorgin C 
                                                 TAG- 139 
GST-pi[150]                              Clofibrate  
                                                 Ethacrynic acid 
                                                 GSH analogs 
                                                 Gossypol 
                                                 Indomethacin 
                                                 Misonidazole 
                                                 Piriprost 
                                                 Quinones  
                                                 Quercetin 
                                                 Sulfasalazine 
GCS[91]                                    PDMP 
                                                 PPMP 
                                                Miglustat                          

Table 2. Selected list of modulator targeting other MDR-related genes  
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first antibody used for reversing MDR by Hamada and Tsuruo[147]. The results found that 
MRK16 increased intracellular accumulation and cytotoxicity of vincristine and actinomycin 
D in some MDR cell lines, but had no effect on doxorubicin cytotoxicity. An increase in the 
accumulation ofvincristine and actinomycin D was also observed with two other anti-Pgp 
mAbs, HYB-241 and HYB-612[148]. 

3.3 Genetic therapy of MDR 

The genetic therapy of MDR mainly includes two methods.The first method was established 
by Gottesman et al.They produced multidrug resistant bone marrow cells by transfecting 
them with vectors carrying the MDR1 cDNA and this process allowed bone marrow cells to 
apply a chemotherapeutic regimen at otherwise unacceptable doses, and thus overcoming 
MDR[149].  
The other method is inhibiting MDR proteins including transcriptional/translational 
inhibition through the introduction of antisense oligonucleotides or ribozymes or RNA 
interference.Recently, researchers has done many work targeting different genes, such as 
mdr1, MRP1, BCRP, GCS and so on. These techniques were proved to have considerable 
effects on overcoming MDR in vitro and in animal models. However, as many of these 
methods require gene targeting and transfer, they are unlikely to produce any really 
significant in vivo applications anytime soon[149]. 
In summary, although many approaches have been adopted to battle with MDR, it will be 
for a long time to ovecome it completely. 
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