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1. Introduction 

Green plants and photosynthetic bacteria are responsible for storing solar energy in 
chemical bonds via photosynthesis. Photosynthesis is not only the major source of food, fuel 
and oxygen on earth, but it is also the key player in the global carbon cycle by converting 
120 gigatonnes of carbon per year.  
Conversion of solar energy into chemical energy through utilization of inorganic materials 

by photocatalytic CO2 reduction; which is also known as ‘Artificial Photosynthesis’ is the next 

challenge for a sustainable development. In the present state-of-the art artificial 

photosynthesis processes, nature is so far mimicked only to the extent that CO2 is reduced 

by water to valuable 1- carbon chemicals, not to the multi-carbon equivalents of glucose or 

cellulose yet. Although mimicking nature is viable by photocatalytic means, enhancing 

photocatalytic CO2 reduction rates is vital in order to achieve artificial photosynthesis in 

industrial scales. To illustrate the gap between photosynthetic and photocatalytic rates, we 

will compare the turnover frequencies of water oxidation process below.  

Water oxidation is the key step both in photocatalysis and photosynthesis for being the 

carbon free hydrogen source and also for providing oxygen for the oxygen consuming 

organisms. Completion of an S cycle taking place in a Mn4 cluster which is responsible for 

water oxidation was reported to last for 1.59 ms in order to produce one molecule of oxygen 

at that one particular site (Haumann et al., 2005). In other words, molecular oxygen is 

produced in photosynthesis, with a turn over frequency of 630 molecule/site/s. On the 

other hand, typical rates of photocatalytic synthesis of hydrocarbons are of the order of 30-

µmoles/g cat/h, (Ozcan et al., 2007; Uner et al., 2011) which amounts to 1.11*10-5 

molecule/site/s if the typical surface areas of 45 m2/g cat and typical site densities of 

1015/cm2 are used. Of course the remarkable rates of 9 µmoles of O2/cm2/s (Kanan & 

Nocera, 2008), giving a turn over frequency of 5400 molecule/site/s for an oxygen evolving 

cobalt- phosphate catalyst operating at neutral water is keenly followed by the academic 

community. Considering the huge gap between photosynthetic and photocatalytic rates 

reported above, one can easily claim that there is room for further investigation and 

development in photocatalytic CO2 reduction systems. 

It is also important to see the thermodynamic energy demand of the some of the reactions 
between CO2 and H2O. For this, a number of products are chosen and the standard Gibbs 
free energy of formation values are listed in Table 1.1 for comparison. The interesting 
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observation that we make in this table is the following: when compared per mole of 
hydrocarbon formed, the Gibbs free energies of formation increase with increasing carbon 
chain length. But when the Gibbs free energy formation values are normalized per mole O2 
formed, one can compare the energy demand of the reactions on a common basis. A close 
examination of the data in the last column reveals the fact that energetically almost all of the 
reactions are similar. The second conclusion we can arrive at is that once the water splitting 
reaction is possible, the formed hydrogen can drive the subsequent reduction reactions, 
almost spontaneously.  
 

Reaction Gf (kJ/mol HC product) Gf (kJ/mol O2) 

CO2+2H2O  CH4+ 2 O2 801.0 400.5 

CO2+2H2O  CH3OH+ 1½ O2 689.2 459.5 

2 CO2+3H2O  C2H5OH+ 3 O2 1306.6 435.5 

H2O + CO21/6 C6H12O6 + O2 2880.0 480.0 

H2O  H2+ ½ O2 228.6 457.2 

Table 1.1. The thermodynamics of the reactions involved in carbon dioxide reduction  

2. Photosynthesis 

2.1 Overview 

Photosynthesis is the world’s most abundant process with an approximate carbon turnover 

number of 300- 500 billion tons of CO2 per year. In this vital process, green plants, algae and 

photosynthetic bacteria are converting CO2 with water into carbohydrates and oxygen (in 

oxygenic photosynthesis), both of which are essential for sustaining life on earth. Oxygenic 

photosynthesis is believed to be started 2.5 billion years ago by the ancestors of cyano 

bacteria. In this remarkable process, energy need for converting stable compounds (CO2 and 

H2O) into comparably less stable arranged molecules ((CH2O)n and O2) is supplied from 

solar energy in which highly sophisticated protein complexes embedded in an internal 

chloroplast membrane (called thylakoid membrane) are major players. ͸ܱܥଶ + ͳʹ	ܪଶܱ + ݕ݃ݎ݁݊ܧ	ݐℎ݃݅ܮ → ଵଶܱ଺ܪ଺ܥ + ͸ܱଶ + ͸ܪଶܱ  

ΔG0= 2880 kJ /mol C6H12O6 

Harnessing solar energy into chemical bonds in this process is achieved by light absorption 
and sequential electron and proton transport processes in which a great deal of number of 
light harvesting pigments, protein complexes and intermediate charge carriers are involved. 
CO2 is being reduced with the indirect products of water oxidation; supplying required 
energy in the form of redox free energy (from NADPH) and high energy Pi bonds (from 
ATP). 
Overall process can be shown in the reaction scheme below where D: electron donor, A: 
electron acceptor and T: energy trap (Govindjee, 1975). 

Water oxidation:   ܦା · ܶ · ܣ + ଵଶ ଶܱܪ → ܦ · ܶ · ܣ + ଵସ ܱଶ +   ାܪ

NADP+ reduction:  ܦା · ܶ · ିܣ + ଵଶ ାܲܦܣܰ + ାܪ → ାܦ · ܶ · ܣ + ଵଶ ܪܲܦܣܰ + ଵଶ   ାܪ

Cyclic Photophosphorylation:  ܦା · ܶ · ିܣ + ܲܦܣ + ௜ܲ → ܦ · ܶ · ܣ +   ܲܶܣ
CO2 reduction:   ܱܥଶ + ܪܲܦܣܰ	ʹ + ܲܶܣ	͵ → ሺܪܥଶܱሻ + ାܲܦܣܰʹ + ܲܦܣ	͵ + ͵ ௜ܲ  
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2.2 Reactions 

Photosynthesis includes a series of photophysical, photochemical and chemical reactions 
realized by highly sophisticated protein complexes, energy carriers and enzymes. With all 
the complexity of their mechanisms, reactions involved in photosynthesis are mainly 
divided into two stages: (i) light dependent reactions including water oxidation and 
chemical energy generation through electron and proton transport and (ii) light 
independent reactions including CO2 fixation, reduction and regeneration of ribulose 1,5 
biphosphate (Calvin Cycle).  

2.2.1 Light induced reactions 

The light induced reactions occur in a complex membrane system (thylakoid membrane) via 
electron transfer through light induced generation of cation- anion radical pairs and 
intermediate charge carriers such as plastoquinone, plastocyanin and ferrodoxin. Light 
dependent reactions in green plants follow a Z scheme which was first proposed by Hill & 
Bendall, 1960 (Figure 2.1). In this scheme, light energy is absorbed by light harvesting 
molecules and funneled to two special reaction center molecules; P680 and P700 which are 
acting as major electron donors in PS II and PSI respectively. Electron transport from PSII to 
PS I is realized by intermediate charge carriers and electron need of P680+ (strong oxidant 
with E0 = 1.1 eV) in PSII is compensated from water molecules (water oxidation).  
Electron transport through thylakoid membrane and water oxidation reactions results in a 

proton concentration gradient across the thylakoid membrane. Energy created by proton 

electrochemical potential resulting from this proton gradient is used by ATP synthase to 

produce ATP from ADP and Pi. The net reaction in light dependent reaction system is the 

electron transport form a water molecule to a NADP+ molecule with the production of ATP 

molecules (Figure 2.2).In this complex electron transport system, PS II alone is composed of 

more than 15 polypeptides and nine different redox components including chlorophylla and 

b, pheophytin, plastoquinone.  

 

 

Fig. 2.1. Z scheme electron transfer in terms of redox potentials (Ke, 2001) 
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Photosystem II is the only protein complex with the capability of oxidizing water into O2 and 
protons. In PS II, water is oxidized with an Oxygen Evolving Complex whose components are 
revealed to be in the form of Mn4CaO5 (Umena et al., 2011). This inorganic core oxidizes two 
water molecules in Kok cycle, comprised of five oxidation states (S states) of PSII donor site. In 
this model, oxygen formation requires successive four light flashes for four-electron and four-
proton release. Recently, presence of an intermediate S4’ state and kinetics of completion of 
final oxidation cycle responsible for O- O bond formation was revealed with time resolved X 
ray study of Haumann et al. (Figure 2.3) (Haumann et al., 2005). 
 

 

Fig. 2.2. Schematic illustrations of electron and proton transport processes and ATP 
synthesis in light dependent reactions (Hankamer et al., 1997) 

 

 

Fig. 2.3. Extension of classical S state cycle of the manganese- calcium complex  
(Haumann et al., 2005) 
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This high energy requiring water oxidation reaction with four- proton, four- electron 
extraction and an oxygen- oxygen bond formation (with a standard free energy 
requirement of 312 kJ/mol of O2) necessitates the regeneration of the oxygen evolving 
complex at every half an hour in order to repair the damage caused by the oxygen 
production (Meyer, 2008).  
In electron transfer from the oxygen evolving complex (OEC) to P680+ molecule, tyrosine 
(Yz*) acts as intermediate electron carrier. Protons evolved from OEC are deposited in lumen 
phase contributing proton concentration gradient (ΔpH) mentioned in ATP synthesis part. 
Excited electron upon light absorption is transferred to the cytochrome b6f complex through 
a pheophytin, a tightly bound phylloquinone (QA) and a mobile phylloquinone (QB). 
Subsequently reduced phylloquinol (PQH2) (reduced with electrons from P680* and two 
protons from stromal phase) releases two additional protons into lumen phase as it binds to 
cyctochrome b6f complex after diffusion through thylakoid membrane. Electron transfers 
from cyctochrome b6f complex to PS I (through lumen phase) and from PS I to NADP+ 
molecule (through stromal phase) are achieved by plastocyanin and ferrodoxin respectively. 
ATP synthesis reaction in light dependent reactions is driven by the proton electrochemical 
and charge potential across the membrane resulted from proton concentration difference 
and charge separation during illumination respectively. NADPH and ATP molecules 
produced as such are used as energy and proton sources in carbon dioxide reduction 
reactions in Calvin Cycle. 

2.2.2 Dark reactions 

The reactions that do not involve solar energy directly are somewhat roughly called the 

dark reactions. These reactions take place in outer space of thylakoid membrane which is 

also known as stromal phase. CO2 enters the leaf structure through small holes called 

stomata and diffuses into stromal phase in the chloroplast where it is being reduced with 

reactions in series that are catalyzed by more than ten enzymes. Driving force for the 

reduction reaction is supplied from NADPH and ATP molecules; hence, the ‘catalytic’ 

reaction sequence does not require light as an energy source and called as light independent 

reactions. However, recent findings indicate light activation of enzymes due to regulatory 

processes (reductive pentose phosphate).  

Melvin Calvin and his collaborators were the first to resolve the photosynthetic CO2 
reduction mechanism with studies involving radioactively labeled CO2. The Calvin Cycle, 
also known as reductive pentose phosphate pathway consists of three sections:  
1. CO2 fixation by carboxylation of rubilose 1,5- bisphosphate to two 3-phosphoglycerate 

molecules,  
2. Reduction of 3-phosphoglycerate to triose phosphate, and 
3. Regeneration of rubilose 1,5- bisphosphate from triose phosphate molecules (Figure 

2.4). 
The key reaction in photosynthetic CO2 reduction is the fixation of a CO2 molecule to 
rubilose 1,5- bisphosphate to two phosphoglycerate molecules with a standard free energy 
of -35 kJ/mol indicating its irreversibility. This reaction is catalyzed with the Ribulose 
biphosphate Carboxylase/Oxygenase (RubisCO) enzyme which is one of largest enzymes in 
nature with its 8 large, 8 small subunits (with molecular weights changing from 12 to 58 
kDa). This enzyme also catalyzes a side reaction, oxygenation, to give a 3-phospho glycerate 
and a 2- phosphoglycolate instead of two 3- phosphoglycerates for CO2 fixation. Although 
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oxygenation occurs with a ratio of 1:4 to 1:2 (oxygenation : carboxylation), oxygenation ratio 
decreases as CO2 concentration in the atmosphere is increased. This regulatory measure of 
photosynthesis is worth appreciation.  
 

 

Fig. 2.4. The Calvin Cycle 

In carboxylation reaction catalyzed by RubisCO, rubilose 1,5- bisphosphate (RuBP) accepts 

CO2 to form a keto intermediate after keto-enol isomerization (Figure 2.5). For the synthesis 

of glyceraldehydes 3- phosphates, firstly 3- phosphoglyerates are phospholyrated to 1,3- 

bisphosphoglycerate with phosphoglycerate kinase enzyme. Afterwards, 1,3- 

biphosphoglycerate is reduced with NADPH to glyceraldehydes 3- phosphate with 

glyceraldehydes phosphate dehydrogenase enzyme. Redox potential difference between the 

aldehyde and carboxylate is overcome with the consumption of ATP (Figure 2.6).  

 

 

Fig. 2.5. Reaction sequence of carboxylation of RuBP by RubisCO (Diwan, 2009) 

After production of glyceraldehyde 3- phosphates, out of six aldehydes produced by 

fixation of three CO2 molecules, five of them are used in regeneration of three RuBP 

molecules together with ATP consumption. Remaining one molecule of glyceraldehyde 3- 

phosphate is transported into the cytosol for utilization in glucose synthesis.  
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Fig. 2.6. Conversion of 3- Phosphoglycerate to triose phosphate (Diwan, 2009) 

2.3 Transport processes 

The vesicular thylakoid membrane structure defines a closed space separating outside water 

phase (stromal phase) and inside water phase (lumen phase). CO2 fixation reactions occur in 

the stromal phase while majority of light dependent reactions are realized in the complex 

membrane system with embedded protein complexes and intermediate charge carriers.  

As mentioned in light dependent reactions, electron and proton transport processes through 

protein complexes and intermediate charge carriers like plastoquinone, plastocynanin and 

ferrodoxin molecules play an important role in controlling photosynthetic rates. Within a 

protein complex such as PSII or cytochrome bf complex, electron transfer and pathway is 

controlled by polypeptide chains of the protein. However between protein complexes, 

electron transfer via electron carriers is controlled by distance and free energy. Below, 

electron and proton transport processes taken place in light dependent reactions are 

illustrated with particle sizes of protein complexes given by Ke, 2001.  

 

 

Fig. 2.7. Distribution of photosynthetic complexes in thylakoid membrane and the 
corresponding Z scheme (Ke, 2001) 

Presence of the membrane affects reaction rates in an aspect that it limits electron and 
proton transport to two dimensions which increases the random encounters. Furthermore, 
electron transport reactions and special structure and orientation of the membrane and 
protein complexes contribute to a proton electrochemical potential difference which drives 
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ATP synthesis reaction; i.e., plays a significant role in energy supply of photosynthesis. The 
proton electrochemical potential difference across the membrane is created by two main 
contributions; i. proton concentration gradient (pH difference), and ii. electric potential 
difference. 
The processes contributing proton concentration difference (ΔpH) across the membrane can be 
listed as below: 
1. Proton release to the lumen phase as a consequence of water oxidation reaction at PS II. 
2. Proton uptake from stromal phase for PQ reduction. 
3. Proton release into lumen phase during PQH2 oxidation at cytochrome b6f complex. 
4. NADP+ reduction at stromal phase. 
On the other hand, vectoral electron transfer process in PS II and PS I initiated by photon 
absorption could be accounted as the reason for electric potential difference (ΔΨ). Whitmarsh & 
Govindjee, 1999 gave the proton electrochemical potential difference with Equation (1). 

μுା߂  = ߖ߂ܨ −  (1) ܪ݌߂ܴܶ͵.ʹ

Where F is the Faraday constant, R is the ideal gas constant and T is temperature in Kelvin. 
They reported that although electric potential difference can be as large as 100 mV, pH 
difference has a dominating effect in overall electrochemical potential. For a pH difference 
of 2 (with inner pH 6 and outer pH 8, ΔpH equivalent to 120 mV), the free energy difference 
across the membrane is about -12 kJ/mol of proton.  
In photosynthesis, fastest reactions taking place are the photophysical reactions like light 
absorption and charge separation in picoseconds orders. They are followed by rapid 
photochemical processes like electron transfer reactions and with slower biochemical 
reactions like water splitting and CO2 reduction.  
Since photosynthesis is a series of reactions including photophysical, photochemical and 
chemical reactions, reaction rates of particular reactions are dependent upon transfer rates of 
reaction intermediates like electrons or protons. In Figures 2.8 and 2.9, electron transfer 
times in PS II and PS I are given to illustrate characteristic times of different processes. 
 

 

Fig. 2.8. PS II electron transport pathways and transfer times with midpoint potentials of 
electron carriers (Whitmarsh & Govindjee, 1999) 
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Fig. 2.9. PS I electron transport pathways and transfer times with midpoint potentials of 
electron carriers (Whitmarsh & Govindjee, 1999) 

Water oxidation and CO2 reduction reactions are the slowest processes in photosynthesis. S- 

cycle taking place in PS II for water oxidation is completed with a total of 1.59 ms, which is 

equivalent to production of 630 molecule of O2/site/s. On the other hand, turnover 

frequency given for a subunit of RubisCO for CO2 reduction is given as 3.3 s-1 (Heldt, 2010), 

which is much slower than oxygen evolution. Average photosynthesis rate of a sunflower 

was given as 13.5 µmol/m2/s by Whittingham, 1974 and as 12 µmol/m2/s for Brassica pods 

with an internal CO2 concentration of 292 ppm by Singal et al., 1995 where rate of dark CO2 

fixation was given as 400 nmol/ mg protein/h.  

In Table 2.1, time characteristics are unraveled for photosynthesis and artificial 

photosynthesis which indicates similarity in photochemistry but significant difference in 

time characteristics of chemical reactions. 

 

Photosynthesis Artificial Photosynthesis (on TiO2) 

Charge carrier generation ps Charge carrier generation ps 

Charge trapping ps-ns Charge trapping 10 ns 

Electron transport ns- µs Interfacial charge transfer 100 ns 

Water oxidation 1.59 ms Water oxidation 670 msa 

CO2 reduction 300 ms CO2 reduction 14950 sb 

Table 2.1. Time characteristics of major processes realized in photosynthesis and artificial 
photosynthesis 

a. Oxygen evolution with cobalt ITO electrode (Kanan & Nocera, 2008) 
b. Considering 200 µmole/gcat/h activity and 50 m2/gcat and 1015 sites/cm2 

3. Artificial photosynthesis 

Since the pioneering work of Inoue et al., 1979, CO2 is being reduced with H2O 
photocatalytically to mainly one carbon molecules like methane and methanol in the 
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presence of a photo-activated semiconductor. Electrons, generated upon illumination of the 
semiconductor, are trapped at the electron trap centers and utilized directly in reduction 
centers without a complex transportation system involving intermediate charge carriers. 
Similarly holes, generated upon illumination are utilized in oxidation reactions on the 
catalyst surface. Since photocatalysis lacks a specialized transportation system for generated 
electrons and holes, majority of the charge carriers recombine at the catalyst surface or in the 
bulk volume of the catalyst, lowering photocatalytic rates. (Figure 3.1) 
Semiconductors, having a band gap, ensure a life-time for generated electrons and holes; 
however, this lifetime is limited to 10-7 s, which is the characteristic time of recombination 
(for bare TiO2) (Carp et al., 2004). In order to increase this lifetime of photo-generated 
electrons and holes, some modifications on materials such as metal addition to 
semiconductors (Anpo et al., 1997, Tseng et al., 2002, Ozcan et al., 2007) or formation of 
solid-solid interfaces in composite catalysts (Chen et al., 2009, Woan et al., 2009) were 
proposed in literature.  
Metal addition to semiconductors is suggested to show charge separation effect on 
photocatalysis by the Schottky Barrier Formation. When metals are brought into contact 
with semiconductors, electrons populate on metals if Fermi level of the metal is lower than 
the conduction band of the semiconductor. Hence, metals act like ‘charge carrier traps’, 
increasing lifetime of electron hole pairs with charge separation effect. 
 

 

Fig. 3.1. Illustrating scheme of electron/hole pair generation and realization of redox 
reactions in photocatalysis 

The other modification that can hinder recombination of generated electrons and holes is 

formation of solid-solid interfaces in composite photocatalysts having different band gap 

energies. To illustrate; commercial TiO2 catalysts; Degussa P-25, is composed of anatase and 

rutile crystal phases of TiO2, having band gap energies of 3.2 eV and 3.0 eV respectively. 

Mixed phase TiO2, tends to exhibit higher photocatalytic activity than pure phases, because 

it allows transfer of the photogenerated electron from rutile to anatase, resulting in charge 

separation (Carp et al., 2004, Chen et al., 2009).  

In photocatalysis, reduction and oxidation reactions occur at similar sites on the same 
catalyst surface. There are no different reaction centers with certain distances apart.  
The half reactions of the photosynthesis; water oxidation and CO2 reduction, are also 
realized in photocatalysis.  
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ݎ݋ݐܿݑ݀݊݋ܿ݅݉݁ݏ ௛௩ሱሮ ݁ି + ℎା ʹܪଶܱ + Ͷℎା → ܱଶ + Ͷܪା ܱܥଶ + ͸ܪା + ͸݁ି → ܪଷܱܪܥ + ଶܱܥ ଶܱܪ + ାܪ8 + 8݁ି → ସܪܥ +  ଶܱܪʹ

In photocatalysis; surface adsorbed species should have appropriate redox potentials 
regarding flat band positions of the semiconductor for thermodynamic favorability of the 
reactions, or vice versa. It required that; semiconductors should have conduction bands 
located at a more negative potential than the reduction potential of CO2 to hydrocarbons, 
and valence bands located at a more positive potential than the oxidation potential of H2O. 
In Table 3.1 oxidation and reduction reactions taking place in photocatalytic CO2 reduction 
is listed with their electro-potentials at pH=7, vs NHE. In order to provide thermodynamic 
favorability, large band gap semiconductors such as TiO2 are mostly utilized in 
photocatalytic CO2 reduction reactions which render UV light illumination obligatory for 
photo-activation of the catalysts. Visible light utilization in carbon dioxide reduction is the 
ultimate goal in photocatalytic studies for a complete carbon free energy generation. There 
are material modification studies in literature conducted for efficient visible light utilization 
such as dye sensitization (Ozcan et al., 2007) and anion doping (Asahi et al., 2001). 
 

Reactions E0 (V) ʹܪଶܱ + Ͷℎା → ܱଶ + Ͷܪା ଶܱܥ 0.82+ + ାܪʹ + ʹ݁ି → ଶܱܥ 0.61- ܪܱܱܥܪ + ାܪʹ + ʹ݁ି → ܱܥ + ଶܱܪ ଶܱܥ 0.52- + Ͷܪା + Ͷ݁ି → ܱܪܥܪ + ଶܱܪ ଶܱܥ 0.48- + ͸ܪା + ͸݁ି → ܪଷܱܪܥ + ଶܱܪ ଶܱܥ 0.38- + ାܪ8 + 8݁ି → ସܪܥ + ଶܱܪʹ -0.24 

Table 3.1. Half cell reactions and their electro-potentials at pH=7 vs NHE (Jitaru, 2007) 

One disadvantage of the realization of reduction and oxidation reactions at the same surface 
is the interaction between reactants on the surface. In one of the gas phase photocatalytic 
CO2 reduction experiments realized on Cu/TiO2 surfaces, when Langmuir- Hinshelwood 
surface reaction mechanism was selected with competitive adsorption of H2O and CO2, it 
was found that adsorption constant of H2O dominates that of CO2 (Wu et al., 2005) 
indicating that surface is mainly covered with water.  
Presence of that much of water on TiO2 surface would inhibit CO2 activation (CO2+e-→CO2�- 
E0redox= -1.9 V vs. NHE at pH 7), which is considered as the essential step in CO2 reduction 
(Solymosi & Tombacz, 1994), by oxidizing defect structure of CO2. Electron affinity of CO2 
molecule is related to the position of lowest unoccupied molecular orbital of CO2 and 
conduction band of TiO2, assuming that electron is transferred from excited state of TiO2 
(Ti+3-O-) to CO2. A decrease in lowest unoccupied molecular orbital (LUMO) of CO2 was 
reported with lower bond angles that could result from the interaction of the molecule with 
the surface (Freund & Roberts, 1996). According to Indrakanti et al., 2009, CO2 gains 
electrons from oxygen deficient TiO2 via the formation of bent CO2 molecules near Ti+3 sites, 
whereas electron transfer is not favorable with defect free TiO2 due to high LUMO of CO2.  
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Initial photocatalytic carbon dioxide reduction rates from literature were summarized in 
Table 3.2. In those studies, carbon dioxide is reduced with water on the same catalyst 
surface in a batch reactor system. 
Results presented at the table and in photocatalytic carbon dioxide reduction studies in 

general indicated very low carbon dioxide reduction yields when compared to 

photosynthetic and even to the catalytic carbon dioxide reduction yields. To illustrate, 

methanol was reported to be produced with a rate of 220 000 µmol/gcat/h with a 

Cu/ZnO/Al2O3 catalyst at 45 bar and 250 °C (Sahibzada et al., 1998). For a more proper 

comparison of catalytic and photocatalytic reduction rates, the results should be evaluated 

at the same conditions; i.e., at the same temperature and pressure. By this way, one could 

reveal the ‘photocatalytic’ effect in carbon dioxide reduction mechanism. Since catalytic 

carbon dioxide hydrogenation rate data are not available at ambient conditions, the 

comparison was based on the kinetic models of methanol synthesis on copper surfaces. 

 

BATCH REACTORS 

GAS PHASE LIQUID PHASE 

Photocatalyst 
Initial Rates 

(μmol*gcat-1*h-1) Photocatalyst 
Initial Rates 

(μmol*gcat-1*h-1) 

CH4 CH3OH CH4 CH3OH 

TiO2 

(Anpo & Chiba, 1992) 
0,11 0,02 

TiO2 

(Dey et al., 2004) 
5,94 

 

JRC TiO2 

(Anpo et al., 1995) 
0,17 

 

TiO2 (Degussa P25) 

(Tseng et al., 2002)  
6,37 

Cu/TiO2 

(Yamashita et al., 1994) 
0,013 0,0015 

Cu/TiO2 

(Tseng et al., 2002)  
19,75 

Ti-SBA-15 

(Hwang et al., 2005) 
63,60 16,62 

TiO2/SBA-15 

(Yang et al., 2009)  
627 

Ti-MCM-48, 

(Anpo et al., 1998) 
4,5 1,5 

Cu/TiO2/SBA-15 

(Yang et al., 2009)  
689,7 

Pt/ Ti-MCM-48 

(Anpo et al., 1998) 
7,5 0,48 

TiO2 anatase 

(Koci et al., 2009) 
0,38 0,045 

TiO2 

(Kitano et al., 2007a) 
0,2 0,003 

Ag/ TiO2 

(Koci et al., 2010) 
0,38 0,075 

Ex-Ti-oxide/ Y-zeolite 

(Anpo et al., 1997) 
4,2 2,4 

TiO2 

(Kaneco et al., 1998) 
0,72  

Pt TiNT 

(Zhang et al., 2009) 
0,07  

Rh /TiO2 /WO3 

(Solymosi & Tombacz, 

1994) 

 2,7 

CdSe/Pt/TiO2 

(C.J. Wang et al., 2010) 
0,61 0,04 

NiO InTaO4 

(Z.Y. Wang et al., 

2010) 

 2,8 

NT/Cu-600 

(Varghese et al., 2009) 
2,84  

CoPc TiO2 

(Zhao et al. 2009) 
 9,3 

Table 3.2. Photocatalytic carbon dioxide reduction rates from literature 
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3.1 Catalytic vs photocatalytic CO2 reduction 

A microkinetic analysis for catalytic CO2 hydrogenation on Cu (111) surface was performed 

in order to reveal catalytic rates at ambient conditions and also to study the effect of water in 

carbon dioxide reduction mechanism. The microkinetic analysis was expected to reveal rate 

determining steps in photocatalytic carbon dioxide reduction based on the assumption of 

similar reaction mechanism with catalytic hydrogenation since both processes involve 

copper based catalysts for methanol production. 

In photocatalytic carbon dioxide reduction mechanism, whether every step in the 

mechanism is light activated or not is still ambiguous. One consensus could be the carbon 

dioxide activation to be the essential step for reduction (Solymosi & Tombacz, 1994). But 

after CO2 activation, reduction could proceed catalytically.  

Presence of catalytic steps in CO2 hydrogenation in artificial photocatalysis (just like in 

photosynthesis) was suggested based on the observations from literature such as 

temperature sensitivity of the photocatalytic CO2 reduction (Chen et al., 2009, Zhang et al., 

2009, Z.Y. Wang et al., 2010) and realization of reduction without light illumination at room 

conditions (Varghese et al. 2009).  

In the microkinetic analysis, the mechanism was selected to include water gas shift reaction 

together with the carbon dioxide hydrogenation since carbon monoxide and carbon dioxide 

were simultaneously used in industry for better methanol production rates.  ܱܥଶ + ଶܪ͵ ↔ ܪଷܱܪܥ + ܱܥ ଶܱܪ + ଶܱܪ ↔ ଶܱܥ	 +  ଶܪ

The reaction mechanism could be seen in Table 3.3. 
 

Steps Reactions 

1 ͷ/ܪଶ +∗↔ ଶܪ ∗
2 ͷ/ܪଶ ∗ + ∗↔ ܪʹ ∗
ଶܱܥ 3 +∗↔ ଶܱܥ ∗
ܱܥ 4 +∗↔ ܱܥ ∗
ܱܥ 5 ∗ +ܱ ∗↔ ଶܱܥ ∗ + ∗
ଶܱܥ/ʹ 6 ∗ ܪ+ ∗↔ ܱܱܥܪ ∗ + ∗
ܱܱܥܪ/ʹ 7 ∗ ܪ+ ∗↔ ܱܥଶܪ ∗ +ܱ ∗
ܱܥଶܪ/ʹ 8 ∗ ܪ+ ∗↔ ܱܥଷܪ ∗ + ∗
ܱܥଷܪ/ʹ 9 ∗ ܪ+ ∗↔ ܪܱܥଷܪ ∗ + ∗
ܪଷܱܪܥ/ʹ 10 ∗↔ ܪଷܱܪܥ +∗
11 ܱ ∗ ܪ+ ∗↔ ܪܱ ∗ + ∗
ܪܱ 12 ∗ ܪ+ ∗↔ ଶܱܪ ∗ + ∗
ଶܱܪ 13 ∗↔ ଶܱܪ +∗
Total ܱܥଶ + ܱܥ + ͷܪଶ ↔ ܪଷܱܪܥʹ + ଶܱܪ

Table 3.3. Elementary reaction steps used in the microkinetic modeling 
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Enthalpy changes of reaction steps and individual activation energy barriers were calculated 

using Bond Order Conservation – Morse Potential Method as proposed by Shustorovic & 

Bell, 1991. In this method, enthalpy changes of the reaction steps were calculated from heats 

of chemisorptions of surface species on Cu (111) surface and from bond energies (Table 3.4). 

In the calculation of the pre-exponential factors of the reaction steps, one of the pre-

exponential factors is estimated from transition state theory (Dumesic et al., 1993) and the 

other was calculated accordingly from the entropy change of that elementary step. The 

entropy change values of the elementary steps were calculated from partition functions of 

surface intermediates. 

 
஺௙஺௥ = ௭಴௭ವ௭ಲ௭ಳ = ݌ݔ݁ ቀ௱ௌబோ ቁ ܣ	݊݋݅ݐܿܽ݁ݎ	ℎ݁ݐ	ݎ݋݂	 + ܤ → ܥ +  (2)   ܦ

 

kf= Af*exp(-Eaf /RT)

Reactions 

kr= Ar*exp(-Ear /RT) 

Ar (s-1 or 
bar-1s-1) 

Eaf 

(kJ/mol) 
Ar (s-1 or 
bar-1s-1) 

Ear 

(kJ/mol) 

ଶܪ 0 105*6.77 +∗↔ ଶܪ ∗ 6*1012 21 

ଶܪ 52.5 1013 *1 ∗ + ∗↔ ܪʹ ∗ 8.55*1012 64.5 

ଶܱܥ 0 106 *1 +∗↔ ଶܱܥ ∗ 1.62*1013 21 

ܱܥ 0 106 *1 +∗↔ ܱܥ ∗ 8.86*1014 50 

ܱܥ 44.8 1013 *1 ∗ +ܱ ∗↔ ଶܱܥ ∗ + ∗ 2.38*1013 115.8 

ଶܱܥ 14 1013 *1 ∗ ܪ+ ∗↔ ܱܱܥܪ ∗ + ∗ 1.79*1011 6 

ܱܱܥܪ 79 1013 *1 ∗ ܪ+ ∗↔ ܱܥଶܪ ∗ +ܱ ∗ 1* 1013 0 

ܱܥଶܪ 15.5 1013 *1 ∗ ܪ+ ∗↔ ܱܥଷܪ ∗ + ∗ 1* 1013 36.5 

ܱܥଷܪ 41 1013 *1 ∗ ܪ+ ∗↔ ܪܱܥଷܪ ∗ + ∗ 1.06*1014 75 

ܪଷܱܪܥ 63 1016*9 ∗↔ ܪଷܱܪܥ +∗ 1* 106 0 

1* 1013 86.8 ܱ ∗ ܪ+ ∗↔ ܪܱ ∗ + ∗ 5.31*1011 64.8 

ܪܱ 6 1013 *1 ∗ ܪ+ ∗↔ ଶܱܪ ∗ + ∗ 9.78*1014 107 

ଶܱܪ 59 1014*1.59 ∗↔ ଶܱܪ +∗ 1* 106 0 

Table 3.4. Used energy barriers and pre exponential factors in microkinetic modeling 

In the microkinetic analysis, coverage trends of the surface intermediates can be easily 
followed with given individual rate constants. For an initial gas composition of %70 H2, %25 
CO and %5 CO2, surface coverage trends of CO2, CO and H at industrial conditions can be 
seen in Figure 3.1 for a time interval of 0- 10-7 s. 
From Figure 3.1, it was observed that CO and CO2 adsorbs and saturates on the surface as 
soon as 10-10s. However, adsorption of H species controls the vacant site which is dominant 
in the mechanism.  
Effect of water on the catalytic methanol formation rates were studied by changing the 
initial gas composition to 70 % H2, 24 % CO, 4 % CO2, 2% H2O from 70 % H2, 25 % CO, 5 % 
CO2. The results were shown for a carbon dioxide conversion of 0.00005 at industrial 
conditions and also at ambient conditions in order to compare with industrial and 
photocatalytic rates (Table 3.5). 
The validity of the microkinetic analysis results was verified with the comparison of the 
methanol formation rate with literature value (Sahibzada et al., 1998). The inhibitory effect 
of water on catalytic carbon dioxide hydrogenation mechanism is observed especially at low 

www.intechopen.com



 
Artificial Photosynthesis from a Chemical Engineering Perspective 27 

temperatures. Positive effect of pressure on carbon dioxide reduction rates was also 
observed with this microkinetic analysis. 
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Fig. 3.1. Coverage values of vacant sites, CO, CO2 and H at 75 bar and 523 K 

When the catalytic methanol formation rates were compared with photocatalytic rates, it is 

seen that at room conditions; i.e., at 300 K and 1 atm, photocatalytic rates (20 µmol/gcat/h 

~6*10-9 mol/gcat/s (Tseng et al., 2002)) significantly surpass catalytic rates (2.07*10-12 

mol/gcat/s). Even though estimation of kinetic parameters could contribute to non certainty 

of the kinetic results, it could be observed from the comparison that photo irradiation results 

in an obvious improvement in methanol formation rates. This improvement could be 

attributed to easier activation of molecules such as carbon dioxide through transfer of a 

photo-generated electron.  
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Reaction 
Conditions 

Microkinetic Modeling Literature 

Without 
initial H2O 

With 
initial H2O 

 

523 K 
75 bar 

4.53*10-5 3.58*10-5 
6.1*10-5 (with Cu/ZnO/Al2O3) 

(Sahibzada et al., 1998) 

300 K 
75 bar 

1.07*10-9 4.58*10-12  

300 K 
1 bar 

1.9*10-11 2.07*10-12 
Photocatalytic: 6*10-9 (with 

Cu/TiO2) (Tseng et al., 2002) 

Table 3.5. Methanol formation rates (mol/gcat/s) at different reaction conditions with or 
without initial water concentration 

3.2 Rate determining step of methanol formation on Cu (111) surface 
Calculation of degree of rate controls for elementary reaction steps in the microkinetic 
model allows revealing rate limiting steps in methanol formation from CO2 hydrogenation 
and water gas shift reaction. Degree of rate control is defined by Campbell such as; the 
degree of change of the overall rate by a change in rate constant of a single step (Equation 2) 
(Campbell, 2001). Campbell proposed that steps where degree of rate control is positive be 
called rate-limiting steps and negative be inhibition steps. The larger the numeric value of 
degree of rate control, Xrc,i, the bigger is the influence of its rate constant on the overall 
reaction rate.  

 Xrc,i = (ki/δki)*(δR/R) (3) 

When degree of rate control values were calculated for the microkinetic model of methanol 
synthesis on Cu (111) surface, the results indicated that H supply (Step 2) to Cu surface as 
well as formate hydrogenation step (step 7) is essential especially at 300 K, at which artificial 
photosynthesis occurs (Table 3.6). This study underlines the importance of H supply and 
 

 Elementary reactions 
Xrc,i 

75 atm 
523 K 

75 atm 
423 K 

75 atm 
300 K 

1 atm 
300K 

ଶܪ 1 +∗↔ ଶܪ ∗ ~0 0 0 0 

ଶܪ 2 ∗ + ∗↔ ܪʹ ∗ 0.36 2.4 3.53 3.7 

ଶܱܥ 3 +∗↔ ଶܱܥ ∗ 0 0 ~0 0 

ܱܥ 4 +∗↔ ܱܥ ∗ 0 0 -3.67 -0.21 

ܱܥ 5 ∗ +ܱ ∗↔ ଶܱܥ ∗ + ∗ 0 0 0 0 

ଶܱܥ 6 ∗ ܪ+ ∗↔ ܱܱܥܪ ∗ + ∗ 0 0 0 0 

ܱܱܥܪ 7 ∗ ܪ+ ∗↔ ܱܥଶܪ ∗ +ܱ ∗ 0.997 ~1 ~1 1 

ܱܥଶܪ 8 ∗ ܪ+ ∗↔ ܱܥଷܪ ∗ + ∗ ~0 ~0 0.71 0.57 

ܱܥଷܪ 9 ∗ ܪ+ ∗↔ ܪܱܥଷܪ ∗ + ∗ 0 0.56 ~1 1 

ܪଷܱܪܥ 10 ∗↔ ܪଷܱܪܥ +∗ - - - - 

11 ܱ ∗ ܪ+ ∗↔ ܪܱ ∗ + ∗ 0 0 0 0 

ܪܱ 12 ∗ ܪ+ ∗↔ ଶܱܪ ∗ + ∗ 0 0 0 0 

ଶܱܪ 13 ∗↔ ଶܱܪ +∗ 0 0 0 0 

Table 3.6. The degree of rate control values with respect to rf10 (ܪܥଷܱܪ ∗↔ ܪଷܱܪܥ +∗) 
found by finite difference method at t= 5.18*10-7 s 
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concentration on the surface for methanol formation rates. Since water splitting reaction is 
the only source of H in photocatalytic CO2 reduction mechanism, it could be said that water 
oxidation rates are rate limiting in artificial photosynthesis systems whereas water oxidation 
rate surpass carbon dioxide reduction rates at photosynthesis (Table 2.1).  

4. Similarities and differences between photosynthesis and artificial 
photosynthesis 

Analogy between photosynthesis and artificial photosynthesis is in the similar tools and 
methods utilized in both systems. Collecting solar energy for triggering chemical reactions 
by chlorophyll pigments packed in thylakoid membrane or by semiconductors; oxidizing 
water into molecular oxygen and protons and reducing CO2 with transported electrons and 
H+s are among the similarities of the two systems. However, the gap between the design of 
the systems and number of reaction sites and intermediate molecules result in more 
sophisticated and simpler products in photosynthesis ((CH2O)6) and in photocatalysis (CH4 
or CH3OH) respectively.  
In photosynthesis, there are three major reaction centers in light dependent reactions, 
regulating electron and proton transport together with the intermediate charge carriers 
(redox components). In photocatalysis, on the other hand, design of the system is limited to 
the presence of a pool of charges wandering on the semiconductor/metal surface in an 
unregulated fashion, increasing the chance of recombination of charge carriers. In addition, 
realization of oxidation and reduction reactions on the same catalyst surface results in 
interactions between the surface adsorbates which is proven to be inhibitory on reaction 
rates as studied with the microkinetic model in Section 3.1. 
In photosynthesis, CO2 diffusion from atmosphere to stromal phase in chloroplasts is 
controlled by stomata activities and permeability of chloroplast membranes. Photosynthetic 
rate is limited with the CO2 concentration in stromal phase for values lower than a 
saturation value; i.e., the photosynthetic rate is linearly increasing with CO2 concentration. 
For CO2 concentrations above the saturation value, photosynthetic rate stays constant, 
limited by the rate of the enzyme system. Since CO2 concentration in the stromal phase is 
related to CO2 diffusion, photosynthetic rate is dependent upon diffusion rates.  
In photocatalysis, diffusion of dissolved CO2 and other reactants/products to/from the 
catalyst surface is largely dependent upon the reactor types, reaction media and stirring 
rates. The photocatalytic experiment parameters are not standardized in literature, resulting 
in confusion about the proper comparison of the real kinetic data. For photocatalytic tests 
performed in liquid media, which constitute the majority of the tests reported in literature, 
presence of gas-liquid-solid interfaces imposes non negligible mass transfer limitations in 
observed rates. A study performed to reveal the effect of stirring rates on photocatalytic 
hydrogen evolution rates indicated the importance of boundary layer and gas-liquid 
equilibrium in liquid phase photocatalytic experiments (Figure 4.1) (Ipek, 2011). 
Increase in photo catalytic rates with increasing stirring rates (from 350 rpm to 900 rpm) up 
to a certain hydrogen concentration could be interpreted as decreased mass transfer 
limitation effects due to thinning of the boundary layer surrounding the catalyst particles 
whereas after that concentration, hydrogen seems to accumulate in the gas phase with the 
same limiting liquid-gas transfer rate. The limitation at the gas-liquid interface could also be 
inferred from the overlapping hydrogen amounts accumulated in the gas phase regardless 
of the catalyst amount or the reaction mixture volume (Figure 4.2). 
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Fig. 4.1. Effect of stirring rates on photocatalytic hydrogen evolution with methanol as 
sacrificial agent, with 0.5 wt % Pt/TiO2 , 250 ml deionized water, 2 ml methanol (■) 900 rpm, 
(●) 350 rpm 
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Fig. 4.2. Observed hydrogen amount in the gas phase with changing reaction mixture, (■) 
62.5 ml (●) 125 ml (▲) 187.5 ml (▼) 250 ml, CH3OH/ H2O: 1/125 (v/v) and Ccat: 1 g/L for 
each case 

Furthermore, temperature sensitivity of the photocatalytic hydrogen evolution reactions 

indicate presence of diffusion limitations with found 12 and 19.5 kJ/mol apparent activation 

energies for Pt/TiO2 and Cu/TiO2 reactions respectively (Ipek, 2011).  
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In PSII of photosynthesis, there are over 15 polypeptides and 9 different redox components 

responsible for water oxidation and electron transport. Even the oxygen evolving complex is 

regenerating itself at every 30 minutes in order to sustain its stability. Along with the 

sophistication of light dependent reactions including numerous intermediate charge 

carriers, difference in the CO2 reduction mechanism (activating CO2 by fixing it into another 

chemical) with 13 specific enzymes result in higher photosynthetic rates and more 

complicated products (such as glucose) in photosynthesis. On the other hand, C-C bond 

making is still remaining as a challenge in artificial photosynthesis systems. Even with one 

carbon chemical synthesis, photocatalytic rates are well below photosynthetic rates. To 

illustrate, CO2 reduction using titanium nanotubes resulted in nearly 1 nmol/m2/s CH4 

production rate (Schulte et al., 2010) whereas an avarage photosynthetic rate is 12 

µmol/m2/s.  

Apart from the sophisticated numerous enzymes taking part in carbon dioxide reduction 

mechanism, the major gap between carbon dioxide reduction rates are suggested to result 

from undeveloped charge and H transport systems in artificial photosynthesis systems. 

Recently, regulated electron and hole transport is reported with zeolites increasing the 

charge separation and water oxidation activity (Dutta & Severance, 2011). Furthermore, H+ 

transport through oxidation center to the reduction center is reported to be realized with H+ 

permeable electron conducting membrane (Hou et al., 2011). Design of a reaction system as 

well as the photocatalyst is of uttermost importance in artificial photosynthesis systems for 

better activities. As indicated in the microkinetic analysis part, carbon dioxide reduction 

rates mainly suffer from insufficient H supply to the reduction centers at artificial 

photosynthesis. In photosynthesis, H transport is highly regulated via the intermediate 

charge carriers such as NADP+ and via the electrochemical potential difference which may 

be attributed to the presence of an interstitial membrane. Utilization of such a membrane in 

photocatalytic systems was first suggested by Kitano et al., 2007b who used the membrane 

for H transport in water splitting reaction. Similarly, enhanced electron and H transport 

system should be implemented for carbon dioxide reduction also which would carry the 

artificial photosynthesis systems to industrial levels.  

 

 

Fig. 4.3. Schematic illustration of suggested reactor for CO2 reduction 
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Design of a photocatalytic reactor would work in such a way that in one compartment light 
is harvested by the semiconductor in order to split water to form H+s and by the transfer of 
produced protons and electrons, CO2 could be reduced with another catalyst, such as 
copper, in the other compartment. In this way, with the help of proton exchange membranes 
and separate reaction centers, interaction between reactants or products and therefore 
reverse reactions could be prevented by supplying Hs to catalytic compartment at the same 
time. On the other hand, a high conductance electron membrane would prevent charge 
recombination as illustrated in Figure 4.3. 
Such a system has already been proposed by Kitano et al. (2007b) for water splitting 
reaction. Introducing CO2 in the picture will be the next generation modification of the 
artificial photosynthesis systems. Further refinement of the design will be possible with 
more understanding about the rates of chemical conversions and the rates of transport.  

5. Conclusions 

Photosynthesis and artificial photosynthesis system were compared in this study with an 
emphasis on charge and H transport which is indicated to be the main reason for the 
difference in resulting carbon dioxide reduction yields and rates. The gap in artificial 
systems was found to be in the design of the photocatalytic systems which could be 
developed with a membrane which would enhance charge separation and H transport. H 
supply to carbon dioxide reduction centers were found to be limiting the existing 
photocatalytic carbon dioxide reduction rates, indicating the important role of water 
splitting in artificial photosynthesis systems. Water being in contact with carbon dioxide on 
photocatalyst surface was found to act negatively on the methanol formation rates by 
inhibiting carbon dioxide activation. For a better carbon dioxide reduction with existing 
photocatalysts, separation of the reaction centers was proposed which would enhance the 
charge and H transport at the same time. 
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