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1. Introduction 

More than a decade ago the World Health Organization (WHO) declared tuberculosis (TB) a 
global emergency and called on the biomedical community to strengthen its efforts to combat 
this scourge. The WHO predicts that by 2020 almost one billion people will be infected, with 
35 million dying from the disease if research for new approaches to the management of this 
disease is unsuccessful (1). Designing a better TB vaccine is a high priority research goal. This 
chapter will review the various strategies currently being used to prevent and treat TB. In spite 
of the numerous new vaccine candidates in clinical trials, and several others in the preclinical 
pipeline, no clear TB vaccine development strategy has emerged. 

 

Fig. 1. Estimated TB incidence rates, by country, 2009 [http://para410.com/biophysical(2)]. 

Despite TB control programs, Mycobacterium tuberculosis (Mtb), a facultative bacterial 
pathogen, remains the most common cause of infectious disease-related mortality 
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worldwide. Nearly 2 billion people are estimated to be infected with TB. Figure 1 shows the 
global distribution of TB incidence rates in 2009. Nearly 10 million individuals developed 
active TB globally (range, 8.9 million–9.9 million; equivalent to 137 cases per 100,000 
population), and 1.7 million HIV-negative and HIV-positive people died of TB or related 
complications (3). TB has now become the leading cause of death in HIV-positive patients 
and is thought to accelerate the progression of HIV disease (4). Worldwide, 1 in every 3 
people is infected with Mtb (5) and may harbor Mycobacterium bacilli in their lungs, thus 
serving as an important reservoir (6). Most of these TB cases occur in India, China, Africa 
and Indonesia, where 1 in every 8 deaths is a result of TB (7). 

Resistance to single anti-mycobacterial agents has long been recognized. Fortunately, the 
standardized use of multiple agents to treat active disease and the common use of directly 
observed therapy (DOT), where a health care worker ensures chemotherapy regimens are 
taken by patients as recommended, have made a significant impact on mitigating treatment 
regimens and mortality. Unfortunately, the evolution of drug resistance has led to the 
emergence of TB strains resistant to multiple agents, including those medications used as 
standard first-line therapies. Fifty million of those infected have multi-drug resistant (MDR)-
TB, a disease caused by Mtb strains that are resistant to both isoniazid and rifampicin with 
or without resistance to other first-line drugs. The incidence of MDR-TB is rapidly growing, 
and the total number of estimated cases has steadily increased. The estimated global 
incidence of MDR-TB was 275,000 cases in 2000 and 440,000 cases in 2008 (8, 9). 
Nevertheless, the true prevalence of MDR-TB is likely under-recognized as many 
developing countries endemic for TB lack appropriate lab facilities, diagnostic resources and 
epidemiological capabilities (10). MDR strains do not appear to cause disease more readily 
than their drug sensitive counterparts, but HIV-positive individuals infected with MDR-TB 
have higher mortality rates, perhaps because HIV infection causes a malabsorption of TB 
drugs. This, and the fact that MDR-TB can require 24 months or more of drug therapy 
compared to 6-9 months for drug sensitive strains, can lead to acquired drug resistance and 
up to a 300-fold increase in drug costs (11). 

Since the discovery of MDR-TB in the 1990s, the resistance pattern of TB has continued to 
evolve, and isolates resistant to both first- and second-line agents, termed extensively drug-
resistant TB (XDR-TB), have been identified. Like MDR-TB, XDR-TB has been identified 
worldwide and now represents 2% of all cases of culture-positive TB (10).  

Societal costs associated with MDR-TB are higher than for drug-susceptible TB due to longer 

hospitalization, longer treatment with more expensive and toxic medications, greater 

productivity losses, and higher rates of treatment failure and mortality. There have been 

recent reports of greater than 20% and 80% mortality attributable to MDR-TB and XDR-TB, 

respectively, with less than 60% of disease free MDR-TB patients after a mean drug 

treatment period of four years (12). In the U.S., where there are on average 300 newly 

reported cases of MDR-TB annually, this disease is very expensive to treat and current 

estimates suggest it is more than ten times as expensive as drug-sensitive infections (13-15). 

2. BCG…then and now… 

The bacille Calmette-Guérin (BCG) vaccine, derived from an attenuated strain of 
Mycobacterium bovis, has been used to vaccinate over 3 billion people throughout the world 
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for more than 80 years since 1928. BCG lacks the genomic ‘Region of Difference’ (RD1) 
which encodes the ESX-1 secretion system, including the immunodominant 6-kDa Mtb 
antigen ESAT-6, included in the Hybrid 1 (ESAT-6/Ag85) vaccine (described in more detail 

in a later section of this chapter) and in IFN- release assays (IGRA’s) used to diagnose Mtb 
(16, 17). The overriding dogma is that BCG protects against primary childhood TB, but its 
role in consistently protecting against adult pulmonary disease is minimal (18). Indeed, the 
efficacy of BCG in several field trials has been variable (19). The suggested reasons for the 
variability observed include differences in the BCG strains – resulting from inconsistent 
laboratory culture conditions which caused gene deletions or attenuated organisms (20), 
poor handling of the vaccine, doses and vaccination schedules in the various field trials (21), 
interference from environmental mycobacteria (22-24), and poor nutrition or genetic 
variability in the populations immunized (25, 26). Several analyses have identified genetic 
changes within some BCG substrains such as in the phoP-phoR system that has occurred 
along the way since BCG Pasteur was first derived.  

Except in cases where infants are HIV-seropositive, BCG is considered safe. This has led to 
development of other vaccines that either enhance the immune responses resulting from 
BCG immunization, for example by insertion of specific genes present in virulent M. 
tuberculosis but which have been lost in the avirulent BCG vaccine - the recombinant forms 
of BCG (rBCG) - or, more broadly, are capable of boosting the effects of BCG. Recent studies 
have demonstrated that the new rBCG vaccines are more immunogenic, inducing effector 
and memory T cells, however one potential concern is that many of these rBCGs encode 
antigens such as Ag85A, CFP-10 etc. that are immunodominant. Recent data suggest that 
these antigens are highly conserved and are used by the bacteria as a ploy to cause damage 
in the lungs resulting in escape of the mycobacteria bacilli and increased transmission. It is 
important to demonstrate whether the new rBCGs can protect against clinical strains. 
Furthermore, because BCG is designed to be administered only once, none of the rBCG 
strategies are likely to yield a successful vaccine superior to what we have now.  

Over the last 10 years more than 170 TB vaccine candidates have been tested in mouse, 
guinea pig or non-human primate models of TB (27-31). These include: (i) subunit vaccines 
consisting of mycobacterial preparations (32-34), culture filtrates (CF) or secreted molecules 
(35-39), proteins (40-53), lipoglycoproteins (54), and glycolipids (55-57); (ii) DNA vaccines 
(58-72); (iii) live, attenuated, nonpathogenic/auxotrophic or recombinant bacteria (73-81); 
and (iv) attenuated, nonmycobacterial vectors such as Salmonella or Vaccinia virus (77, 82-
87). In addition, attempts at improving BCG by administering lower doses (88-90), oral 
delivery (91), and prime/boost protocols are being explored (59, 85, 92-94). Currently, 
several candidate vaccines are being prepared for testing primarily as pre-exposure vaccines 
in humans (27, 95, 96).  

Vaccine approaches currently in clinical trials also include altered forms of BCG to increase 
the effectiveness of the treatment. One of the vaccines, rBCG30, is an engineered form of 
BCG (rBCG) that over expresses Ag85B (97). It has shown much greater efficacy than the 
parental Tice BCG vaccine, perhaps due to loss of virulence in the current BCG vaccines, 

and was shown to increase Ag85B-specific T cell proliferation and IFN- responses in 
humans (97). Another rBCG in human clinical trials is a rBCG that is a urease-deficient 
mutant that expresses the lysteriolysin O gene from Listeria monocytogenes (98). Using this 
approach the vaccine increases phagosomal acidification in the absence of the ureC enzyme, 
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while expressing the lysteriolysin protein, Hly, which requires an acidic pH within the 
phagosome in order to damage/perforate the phagosomal membrane. This process allows 
the release of antigen into the cytoplasm and induces macrophage apoptosis, leading to 
enhanced CD8+ T cell presentation through a cross-priming strategy. Other whole virus 
vaccine approaches have seen some success against TB. One, based on a recombinant 
modified vaccinia virus Ankara (MVA) vaccine which expresses the Mtb protein Ag85A, is 
currently in clinical trials (99). However, the complex nature of TB infections may very well 
require multiple weapons in our armamentarium. These may include not only the use of 
multiple Mtb antigens but also vaccines based on other adjuvant and delivery platforms. 

A post-exposure vaccine, to be used in healthy individuals infected with Mtb or those 
recently exposed to MDR-TB, could also reduce the probability of going on to develop TB 
disease. It could work by limiting bacteria that cause TB or MDR-TB, that are residing in a 
dormant state, by preventing reactivation and/or by reducing the chance of reinfection by 
exogenous Mtb. Finally, a therapeutic vaccine could function alone, or alongside antibiotic 
regimens, for individuals with active TB disease and could potentially shorten the treatment 
period.  

3. Immune responses required for development of a successful TB vaccine… 

Advances in our knowledge of resistance to Mtb have emerged since the pioneering work of 

Mackaness (1960’s, 1070’s) who demonstrated a dependence on cellular immunity against 

mycobacterial infection (100, 101). Another key advancement to the development of vaccines 

against Mtb was made by Orme and Collins (1980’s), who were the first to show that 

transfer of immunity against Mtb could be achieved with antigen-specific CD4 and CD8 T 

cells, and that metabolically active mycobacteria secreted key immunologically relevant 

antigens (102-106). A major new idea in the mid-1980’s, that has shaped the development of 

vaccines against many different pathogens, was that of Mosmann with the discovery that 

there were two types of helper CD4 T cells: Thelper 1 and Thelper 2 cells, that secrete either 

IFN or IL-4 respectively (among other cytokines) (107). More recently, Sallusto et al. have 

defined memory T cell subsets which can be functionally separated based on their surface 

receptors, which further advance testing the capability of vaccine induction of long-lived 

immune responses (108, 109). Although our understanding of an effective immune response 

against Mtb is far from complete, some fundamentals have been identified, resulting in a 

number of TB vaccines that are now being tested in humans. Several of these advances in 

our knowledge of the host’s resistance to Mtb are discussed in the remainder of this chapter. 

Mycobacteria bacilli usually enter the host through aerosol droplets of 1-3 M inhaled to the 
lung alveoli. Some bacilli remain in the lungs and evade adaptive immunity to persist in the 
lungs, often for the lifetime of the host, and some are transported to draining lymph nodes 
where dendritic cells (DC) prime T lymphocytes. Mtb undergoes an initial period of 
uninhibited growth within non-activated host macrophages (110). Cell mediated immunity 
(CMI) characterized by the expansion of antigen-specific T-lymphocytes that attract 
monocytes/macrophages to inhibit bacillary growth through the production of cytokines, 
plays a key role in the control of TB. Persistence of Mtb inside of mononuclear phagocytes 
and DCs during all stages of infection can occur via many mechanisms including down-
regulating major histocompatibility complex (MHC) class II expression or presentation 
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(111), neutralizing the phagosomal pH, interference with autophagy, and by inducing the 
production of immunosuppressive cytokines such as interleukin (IL)-10 and tumor growth 

factor beta (TGF-)(112-115). Mtb can also inhibit apoptosis through prostaglandin 
production (116) and can invade the cytosolic compartment (117). Recent data also showed 
that of the large number of CD4+ effector T cells recruited to the lungs of infected mice, few 

are stimulated to produce IFN-(118). 

The hallmark of CMI to Mtb infection is the formation of solid granulomas from aggregates 
of mononuclear phagocytes and polymorphonuclear granulocytes in the lung with a center 
of infected macrophages surrounded by a marginal zone of lymphocytes (119, 120). The 
protective role of granulomas is confinement of bacilli in a space that is lacking in 
vascularity and alveolar air, preventing both replication and dissemination to other sites. 
Granulomas also serve as sites for priming of CD4+ and CD8+ T cells as well as germinal 

center B cells. Primed T cells are reported to be polyfunctional, secreting IFN-, TNF and  
IL-2 cytokines, and of the central memory lineage (Tcm) (121) (Figure 2). Studies in gene-
deficient/knock out (KO) mice and through neutralization with antibodies, have 

demonstrated the importance of IFN- (122-131), CD4+, and CD8+ (132-141) T cells in the 
acquired immune response to Mtb.  

CD4+ T cells traffic to the lung within 7-14 days following infection and produce IFN- (142, 
143). Depletion of CD4+ T cells prior to Mtb infection leads to increased bacterial burden and 
shortened survival (138) and depletion of this subset in latently infected animals leads to 
rapid reactivation (144). In sublethally-irradiated mice, passive transfer of CD4+ T cells 
mediates reduced susceptibility to Mtb infection (145). In contrast, CD4- and MHC Class II- 
deficient mice are extremely susceptible to Mtb. Finally, clinical conditions that impair CD4+ 
T cell immunity, such as HIV infection, dramatically increase the likelihood of developing 
active TB. 

Mice deficient in IFN-, an effector cytokine which defines Th1-type CD4+ T cells, are highly 

susceptible to Mtb infection (127, 146). These mice fail to produce nitric oxide (NO) synthase 

(127) and develop a disseminated form of disease, characterized by irregular granulomas 

and necrotic areas. Patients in whom the gene for the IFN- receptor is mutated are prone to 

infection with atypical mycobacteria (147). Strong Th1-type, antigen-specific IFN--secreting 

T cells are found in peripheral blood mononuclear cells (PBMC) from healthy individuals 

with latent TB infections (LTBI), but are diminished in individuals with pulmonary TB (148, 

149). Recent results also indicate that CD4+ effector T cells are activated at suboptimal 

frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by 

providing one or more epitope peptides may be a successful strategy for TB therapy (150). 

The protective role of TNF in the immune response to Mtb was demonstrated in mice with 

defects in genes for TNF (151, 152). Its critical role for humans was also revealed by the 

occurrence of reactivation TB in rheumatoid arthritis patients who received long-term 

therapy with anti-TNF antibodies (153). Recently, both IL-23 and IL-17 were shown to be 

essential in the establishment of protective pulmonary CD4+ T cell responses, along with the 

concurrent expression of the chemokines CXCL9, CXCL10 and CXCL11 (154, 155). 

Studies in mice and humans support an important role of CD8+ T cells in TB immunity, 
particularly during LTBI. Adoptive transfer or in vivo depletion of CD8+ cells demonstrated 
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that CD8+ cells could confer protection against subsequent Mtb challenge, although the 
effects were less pronounced than those seen with CD4+ T cells (156-158). Mtb can egress 
into the cytosolic compartment of infected DCs resulting in direct loading of MHC class I 
(117). Cross-priming, which involves apoptosis of macrophages infected with Mtb, uptake 
of vesicles carrying Mtb antigens by nearby DC, and antigen presentation of the vesicular 
antigens by MHC I to CD8 is an additional mechanism by which CD8+ T cells are 
stimulated (159). Mice deficient in class I processing and presentation, including deficiencies 

in 2 microglobulin (160, 161), TAP1 (162), CD8 , or Class Ia (Kb-/-/Db-/- )(163), are all more 
susceptible to Mtb infection than wild-type animals. In humans, Mtb-specific CD8+ T cells 
have been identified in Mtb-infected individuals and include CD8+ T cells that are classically 
(164-169), non-classically (170, 171), and CD1 restricted (172, 173).  

 

Fig. 2. The Cellular Host Response to TB. After infection of the host lung, macrophages and 
DCs infected with Mtb stimulate CD4+ and CD8+ T cells. CD4+ T cells are polarized into 

Th1 and Th17 effector cells or memory T cells secreting multiple cytokines including IFN-, 

TNF and IL-2. CD8+ memory T cells may be cytolytic and may secrete TNF and IFN-. 

Infection with Mtb induces robust T cell responses yet adaptive immunity fails to eradicate 
M. tuberculosis. Mechanisms for the limited efficacy of the adaptive immune response in 
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tuberculosis are hypothesized to fall into two categories: either the T cell effector functions 
are not effective because of failed or inappropriate responses induced by the infected cells; 
or the T cells recruited to the site of infection do not optimally perform the effector functions 
required for immune clearance. The ability of M. tuberculosis to resist and inhibit the TNF 

and IFN--induced microbicidal responses of the phagocytic cells it infects is one immune 
evasion strategy in vivo. Another is that only a small fraction of the CD4 + effector T cells in 

the lungs is activated to synthesize IFN-. Identification of the elements of this host-
pathogen interaction may lead to the development of therapies that target antigen gene 
suppression and inhibition of antigen presentation and provide a novel strategy for 
overcoming bacterial persistence in vivo, leading to better outcomes in Mtb infected 
individuals. 

4. Designing a sub-unit vaccine from start to finish… 

This section highlights the development of a new subunit vaccine, ID93/GLA-SE, and 
briefly discusses the other human TB vaccine candidates in the pipeline (see Table I).  

Preclinical studies with a new TB subunit vaccine, ID93/GLA-SE, have been conducted and 
this vaccine is ready for testing in Phase I human clinical studies. This vaccine now joins 14 
others, which are currently being tested in humans (Table I). The selection of the proteins for 
ID93 involved the generation of an Mtb protein library based on H37Rv proteins that were 
within the known immunogenic EsX and PE/PPE classes, between 6 and 70 kDa and with 
low homology with the human genome (less than 30%) (174). A comprehensive analysis was 
then performed on over 100 potential candidate antigens selected based on genome mining 
and expression as recombinant proteins. These candidate antigens were then down-selected 

based on IFN- production from human PBMCs in patients that were PPD(+) and which 
were non-responsive in PPD(-) patient samples. In combination with the TLR9 agonist, CpG 
ODN 1826, the vaccine candidates were then tested for efficacy in the C57BL/6 mouse 
aerosol model of Mtb infection. The ID93 fusion protein consists of four selected Mtb 
proteins: Rv3619, Rv1813, Rv3620, and Rv2608 (the cumulative molecular weights of each 
individual protein define the “93” in ID93). Three of the proteins are associated with Mtb 
virulence (Rv2608, Rv3619, and Rv3620) and one with latency (Rv1813). Rv2608 is a member 
of the PE/PPE family, Rv3619 and 3620 are in the EsX family of proteins and Rv1813 is 
expressed under hypoxic conditions (174). Similar to other fusion proteins, including 
Mtb72f, Ag85B-ESAT6, Ag85B-TB10 and H56, the fusion of more than one Mtb antigen leads 
to increased vaccine efficacy. Another similarity of these subunit vaccines is the need for an 
adjuvant to elicit maximum efficacy. 

The adjuvant selected for use with the ID93 vaccine is a synthetic toll-like receptor (TLR4) 

agonist called glucopyranosyl lipid adjuvant (or GLA). This molecule has been extensively 

characterized in many biological systems, including mice, guinea pigs, ferrets (unpublished 

results), hamsters, non-human primates (NHPs) and humans (52, 175, 176). Early on, the 

Mtb72F subunit vaccine, in Phase II human clinical trials, included AS02A as its adjuvant. 

AS02A consists of a biological TLR4 agonist called monophosphoryl lipid A (MPL), derived 

from Salmonella minnesota mixed with QS21 and an oil-in-water formulation (177).  

Other TB vaccine candidates currently in clinical trials include four different categories of 
vaccines: a) recombinant protein vaccines; b) recombinant live vaccines; c) viral vectored 

www.intechopen.com



 
Understanding Tuberculosis – Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity 

 

376 

vaccines; and d) whole cell, inactivated or disrupted mycobacterial vaccines (Table 1). The 
recombinant subunit vaccines will be briefly described below. 

 

 Protein/Vaccine Adjuvant 

Recombinant Proteins 
M72 fusion protein of Mtb32  

and Mtb39 (72kDa) 
AS02A: MPL and QS21 

Hybrid 1 
fusion protein of  

Ag85B and ESAT-6 

IC31 (Intercell): ss 
oligodeoxynucleotide and 

peptide (KLKL5KLK) 

Hybrid 1 fusion protein of  
Ag85B and ESAT-6 

CAF01: cationic liposomes 

HyVac4: AERAS-404 
fusion protein of  

Ag85B and TB10.4 

IC31 (Intercell): ss 
oligodeoxynucleotide and 

peptide (KLKL5KLK) 

Recombinant Live Vaccines
VPM1002: 
rBCG(delta)ureC:Hly 

urease deficient; expresses 
listeriolysin (Hly) from  

L. monocytogenes 
NA 

rBCG30 (Tice strain): 
AERAS-422 

rBCG30; overexpresses Ag85B NA 

rBCG (AFRO-1 strain): 
AERAS-422 
 

rBCG30; overexpresses Ag85A, 
Ag85B and Rv3407 and 

expresses perfringolysin O 

NA 

Viral Vectored Vaccines 
MVA85A: AERAS-485 MVA (Modified vaccinia virus 

Ankara) expressing Ag85A 
NA 

Crucell Ad35:  
AERAS-402 

Ad35 (non-replicating 
Adenovirus 35) expressing 
Ag85A, Ag85B and TB10.4 

NA 

Ad5Sg85A Ad5  
(non-replicating Adenovirus 5) 

expressing Ag85A 

NA 

Whole Cell Inactivated or Disrupted Vaccines 
M. vaccae Inactivated whole  

cell mycobacteria 
NA 

Mw  
[M. indicus pranii (MIP)] 

Whole cell saprophytic 
mycobacteria 

NA 

RUTI  Fragmented  
M. tuberculosis cells 

NA 

M. smegmatis 
 

Whole cell extract NA 

Table 1. TB vaccines in human clinical trials (178), [TB vaccine candidates-2010; 
www.stoptb.org/wg/new_vaccines(2)]. 
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The M72 (Mtb72F) + AS01 (or AS02A) vaccine was originally developed by Corixa and the 
Infectious Disease Research Institute (Seattle, WA) and clinical trials are currently being 
sponsored by GlaxoSmithKline (GSK) and Aeras. This vaccine is a fusion of tandomly linked 
proteins, Mtb32(C), Mtb39, and Mtb32(N) which showed efficacy in mice, guinea pigs, and 
NHPs (179-181) and is currently being evaluated in humans. This vaccine includes an AS01 
adjuvant (GSK), which comprises the TLR4 agonist, monophosphoryl lipid A (MPL), QS21 
and liposomes. In the first phase I clinical trial, Mtb72F combined with the AS02A adjuvant, 
which includes MPL, QS21, and an oil-in-water emulsion, the vaccine was locally 
reactogenic but the adverse events were mostly mild and transient and thus had an 
acceptable tolerability in humans (177). Immunologically, three doses of the Mtb72F/AS02A 
vaccine (given at 0, 1 and 2 months) induces both humoral and cellular responses in healthy 

PPD-negative adults (18-40 years of age); IL-2 and IFN-is elicited in PBMCs by ELISPOT 

and increased antigen-specific CD4+ T cells expressing CD40L, IL-2, TNF- and IFN-by 
intracellular cytokine staining (ICS) are also induced. 

The Hybrid-1 vaccine developed by the Statens Serum Institute, includes a fusion of the Mtb 
proteins antigen 85B and ESAT6. This vaccine, Hybrid 1, which is being evaluated in human 
clinical trials, is adjuvanted with either the Intercell adjuvant system, IC31 or with a 
liposomal adjuvant CAF01. CAF01 adjuvant is considered a cationic liposome, and is 
formulated with quaternary ammonium lipid N, N’-dimethyl-N,N’-dioctadecylammonium 

(DDA) plus a synthetic mycobacterial cord factor, ,’-trehalose 6,6’-dibeheneate (TDB) 
(182-184). The IC31 adjuvant signals through TLR9, and contains the following KLK poly-
peptide KLKL5KLK-COOH and a non-CpG oligonucleotide ODN1a, consisting of a 
phosphodiester backbone ODN, 5’-ICI CIC ICI CIC ICI CIC ICI CIC IC-3’ (185). Both 
adjuvant systems, CAF01 and IC31, elicit strong Th1 inducing activities and protection in 
animal models of tuberculosis when combined with the Ag85B-ESAT6 fusion (185-189).   

Another subunit vaccine in development by the same group that developed the Hybrid-1 

vaccine is the H56 vaccine which includes a fusion of Hybrid 1 and a latency-associated 

protein, Rv2660c, which is activated during hypoxic conditions (50). The H56 vaccine, 

formulated in CAF01, shows a 10-fold reduction in lung bacterial load in the mouse model 

in a head-to-head comparison with their precursor subunit vaccine, the Hybrid 1 vaccine, 

containing only Ag85B and ESAT6. In addition, the authors demonstrate that the H56 

vaccine is capable of protecting against reactivation when tested after Mtb exposure in a 

modified Cornell mouse model. HyVac4/AERAS-404 combined with IC31 is also in clinical 

trials, and includes a fusion of the Mtb antigens Ag85B and TB10.4. Replacement of the 

ESAT-6 protein with TB10.4 in this vaccine, conserves the use of ESAT-6 for diagnostic 

purposes (16, 190). This vaccine induces polyfunctional CD4 T cells, which express IFN-, 

TNF- and IL-2, correlating with protective efficacy in the mouse model against Mtb (191) 

and guinea pig model using a BCG prime/subunit boost strategy (192).  

5. Conclusion 

Today, an ambitious portfolio of novel vaccines, drug regimens, and diagnostic tools for TB 

is being supported by various research funding agencies. Mathematical modeling of TB to 

evaluate the potential benefits of novel interventions under development and those not yet 

in the portfolio suggest that: neonatal vaccination with an effective portfolio vaccine would 
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decrease TB incidence by 39% to 52% by 2050, while drug regimens that shorten treatment 

duration and are efficacious against drug-resistant strains could reduce incidence by 10-

27%. Clearly, TB elimination will require one or more effective vaccines. Importantly, new 

vaccines should have the potential to be effective against clinical strains representing all the 

major geographical regions. 
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