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1. Introduction 

An efficient host immune response against pathogens encompasses both fast acting innate 

immunity as well as slower, but more specific, adaptive immunity. The innate immune 

system is diverse and comprises a variety of cells including natural killer (NK) cells, 

neutrophils, macrophages, dendritic cells (DCs), as well as soluble factors such as 

complement. The adaptive immune response is typified by antigen-specific T and B 

lymphocytes that provide long-lasting protection known as immunological memory. While 

these two systems are often discussed separately, neither arm of the immune system works 

in isolation (Medzhitov & Janeway, 1999). The succession of cells interacting with 

Mycobacterium tuberculosis (Mtb) comprises tissue macrophages (MΦ) and dendritic cells 

(DC) followed by chemokine-attracted immigrating neutrophils and monocytes, and then 

activation and recruitment of natural killer (NK) and Ǆǅ T cells, followed by effector T 

lymphocytes primed in the draining lymph nodes (Ulrichs & Kaufmann, 2006). 

Pleuritis is the most frequent clinical manifestation of extrapulmonary tuberculosis (TB) 

among young adults, and is normally considered a relatively benign form of disease since it 

may resolve without chemotherapy (Light, 2010). Tuberculous pleurisy is caused by a severe 

delayed-type hypersensitivity reaction in response to the rupture of a subpleural focus of 

Mtb infection, but it may also be developed as a complication of primary pulmonary TB 

infection (Antoniskis et al., 1990). The presence of mycobacterial antigens in the pleural 

space elicits an intense cellular immune response, initially characterized by abundant 

neutrophils and macrophages, followed by interferon (IFN)--producing T-helper cell (TH) 

type 1 lymphocytes, resulting in lymphocyte-predominant exudative effusions (Aleman et 

al., 2005; Mitra et al., 2005; Porcel, 2009). The cellular trafficking is facilitated by homing 

surface markers and chemokine gradients. This intense but poorly understood local immune 

response is synonymous of Koch phenomenon and normally prevents the caseous evolution 

of lesions. The inflammatory process results in an increased pleural vascular permeability 

leading to the accumulation of fluid enriched in proteins and the recruitment of specific 

leukocytes into the pleural space, making this biological sample a physiologically relevant 

model of human tuberculosis infection (Kroegel & Antony 1997). 
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Given this effective local resistance, the few bacilli that enter into pleural cavity are rapidly 
destroyed turning impracticable the rapid diagnosis by direct microscopic observation 
(Porcel, 2009). This fact often results in the requirement of alternative diagnostics strategies 
like Mtb identification through cultures or PCR amplification of pleural effusions, 
histopathological examination of pleural biopsies, inflammatory related enzymatic activities 
and immunological based methods (Liang et al., 2008; Trajman et al., 2008). Among the last 
ones, detection of mycobacterial antigens, antimycobacterial specific antibodies (Ab), TH1 
related biomarkers and in vitro evoked T cell responses are matter of active current research 
(Steingart et al., 2007; Budak et al., 2008; Dheda et al., 2009a;  Supriya et al., 2008). Regarding 
the performance of T and B cell based assays in detection of active forms of disease; the most 
important trouble is the immunological memory background as result of previous Ag 
exposition or BCG vaccination (Dheda et al., 2009b; Hooper et al., 2009; Salazar-Lezama et 
al., 1997). In this line, for high antigen experienced populations, we hypothesized that an 
innate immune cell based diagnostic assay may circumvent those issues.  

Among innate lymphocytes, Natural Killer (NK) cells display an important number of 

effector functions, including recognition and lysis of infected, stressed, or transformed cells 

and production of immunoregulatory cytokines, particularly IFN- (Vivier et al., 2011). 

Human NK cells account for 10–20% of peripheral blood lymphocytes and are defined by 

the presence of the CD56 and NKp46 molecules and the lack of CD3 and CD19 expression. 

Their activity is regulated by both positive and inhibitory signals from a wide range of germ 

line encoded cell surface receptors. Two major subsets of NK cells have been identified in 

humans according to CD56 and CD16 intensity expression and also in terms of chemokine 

receptors and adhesion molecules expression that differ in phenotype and function 

(Caligiuri, 2008). Functionally, CD56bright cells are effective cytokine producers, whereas 

CD56dim cells are efficient effectors of natural and antibody-dependent target cell lysis 

(Hanna & Mandelboim 2007). Together with the classical NK functions (i.e. cytotoxicity and 

cytokine production), novel skills have recently been described in niche-specific and in 

vitro-activated human NK cells. These unconventional capabilities include angiogenesis and 

tissue remodeling, immunological memory, functional cross-talk with T cells and direct 

pathogen recognition (Cooper et al., 2009; Di Santo, 2008; Vivier et al., 2011). 

During the last years we have begun to characterize the phenotype and function of pleural 

NK from TB patients. In contrast to peripheral blood (PB) counterpart that are mostly 

composed by CD56dimCD16+ resting cells, pleural NK population is enriched in activated 

CD56brightCD16neg cells that quickly and strongly respond to Mtb stimulation by producing 

IFN-Ǆ (Schierloh et al., 2005a, 2007). Besides, Mtb stimulated IFN-Ǆ production by NK shows 

Ag-specific features, given that pleural NK cells derived from non TB patients’ lack of this 

response. According to these findings, we realized that pleural NK cells properties could be 

utilized in an innate immune cell based assay for differential diagnosis of tuberculous 

pleurisy (Schierloh et al., 2008).  

2. Phenotype of pleural NK cells: Activated CD56
bright 

NK cells 

Along several studies, phenotype of tuberculous pleural fluid derived NK cells have been 
extensively analyzed as starting point in the understanding of their role at the site of active 
Mtb infection (Alvarez et al., 2010; Fu et al., 2011; Okubo et al., 1986, 1987; Pokkali et al., 
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2009; Schierloh et al., 2005a, 2007, 2009). The finding that immunoregulatory CD56bright NK 
subset showing cellular activation features are strongly enriched among pleural NK cells 
was interesting given that these cells are known to link innate with adaptative immunity in 
a number of intracellular infections (Artavanis-Tsakonas et al., 2003; Culley, 2009; Fehniger 
et al., 2003). Along the present section we summarize these findings. 

2.1 Enrichment of CD56
bright

 NK cells in tuberculous pleural fluid 

In tuberculous patients, T helper (CD4+/CD3+) is the predominant cell population among 

pleural fluid derived mononuclear cells (PFMC), which has been associated with a selective 

recruitment of antigen specific TH1 effectors cells to the site of infection (Li et al., 2010; Mitra 

et al., 2005). This increased T helper abundance account for the reduced percentage of 

pleural fluid NK cells (CD3-/CD56+) close to 5% in TB patients (Schierloh et al., 2005a). In 

contrast, in pleural effusions caused by cancer or paraneumonic infections, the percentage of 

NK among PFMC tends to be constant compared to peripheral blood (Dalbeth et al., 2004). 

However, when we analyzed the composition of NK cell populations, a drastic change in 

the proportion of these subsets was found (Schierloh et al., 2005a). In the case of 

tuberculosis, the cytotoxic CD16+CD56dim NK subset, which represents more than 95% in the 

circulation, is reduced to less than 50% in the pleural effusions with a concomitant 

enhancement of the immuneregulatory CD16dim/-CD56bright NK subset. 

Phenotypic differences between CD56brigth NK with CD56dim include higher expression of 

the C-type lectin CD94/NKG2 family, weak expression of killer cell immunoglobulin (Ig)–

like receptors (KIRs) and high levels of L-selectin (CD62L) and CCR7, both of which are 

involved in trafficking of immune cells to lymph nodes (Caligiuri, 2008). In agreement, the 

levels of CD94/NKG2A, CD62L and CCR7 were all augmented in tuberculous pleural NK 

cells (Schierloh et al., 2005a). On the other hand, the percentages of NK cells expressing the 

fractalkine receptor (CX3CR1), the cytotoxic granular protein perforin and the HLA-C2 

receptor KIR2DL1/S1, which are all specific markers for the cytotoxic CD16+CD56dim NK 

subset, are reduced in the tuberculous pleural effusions (Figure 1).  

2.2 Pleural NK cells exhibit activated phenotype 

NK cells activation can be triggered via two primary mechanisms: cytokine stimulation and 
engagement of activating NK receptors. Together or in isolation, both activation signals can 
result in NK cell responses (Vivier et al. 2011). Because tuberculous pleural 
microenvironment is plenty of soluble mediators and cells with stimulatory potential 
(Shimokata et al., 1991; Valdés et al., 2009; Vankayalapati et al., 2000), we hypothesized that 
NK cells arriving to this site may turn activated. Indeed, we found an elevated percentage of 
NK cells expressing the early activation markers CD69 and HLA-DR together with 
enhanced expression of the lymphocyte function-associated antigen 1a  integrin (LFA-1/ 
CD11a) and its ligand, intercellular adhesion molecule-1 (ICAM-1, CD54) (Schierloh et al., 
2005a, 2005b, 2009). Simultaneously, we observed a subpopulation of pleural NK cells 
expressing Toll-like Receptor 2 (TLR2), a molecule undetectable in resting NK cells but up-
regulated in response to IL-12 and protozoan glycolipids (Becker et al., 2003; Lindgren et al., 
2010; Schierloh et al., 2007). Furthermore, we and others recently identified a subpopulation 
of pleural NK that down-modulates the CD45RA and up-regulates CD45R0 isoform, 
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resembling the well known phenomenon that takes places during memory differentiation of 
T lymphocytes (Warren et al., 1994; Fu et al., 2011). 

 

Fig. 1. Enrichment of NK CD56bright cells with activated phenotype in tuberculous pleural 
effusions. 

Immunophenotypic analysis of peripheral blood (PB) and pleural fluid (PF) NK cells 
(CD56+/CD3-). Dot plots are from one representative TB patient. Color scale indicates 
relative variations of several markers between PF and PB samples: invariant (white), 
augment (orange), strong augment (red), reduction (light green) and strong reduction (dark 
green). 

2.3 Pleural fluid factors inducing CD56
dim

 apoptosis explain the altered NK subset 
ratio  

In order to understand the causes of altered CD56bright/CD56dim subset ratio observed on 

pleural NK population, we hypothesize that soluble factors (i.e.: chemokines, cytokines, 

pathogen derived factors, immune complexes, etc.), present at the site of Mtb infection, may 

differentially affect the migration, the differentiation, the proliferation or the apoptosis of 

NK subsets. Our experimental approaches directed to test this were conducted by 

incubating peripheral resting NK cells with tuberculous cell-free-pleural fluid or purified 

factors (Schierloh et al., 2005a). Indeed, CD56dimCD16+ cells show an increased susceptibility 

to pleural fluid induced caspase 9 dependent-apoptosis, explaining the predominance of the 

CD56bright population. These finding were later confirmed in different experimental settings. 

These studies demonstrate that NK CD56bright subset has larger resistance to oxidative stress 

(Harlin et al., 2007; Thorén et al., 2007). Our experiments directed to test if NK CD16+ cells 

could be differentiated to CD16- NK cells by cytokines present at the site of infection gave 

negative results, in accordance with other group (Dalbeth et al., 2004). Additionally, a recent 
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report indicates that differential migration of NK cell subsets to the site of infection also take 

place (Pokkali et al., 2009). 

3. Function of pleural NK cells: IFN- production and TH1 cell co-stimulation 

Considering that type 1 cytokine and chemokine profile is a hallmark of tuberculous 

pleurisy (Dheda et al., 2009a; Kroegel & Antony 1997; Li et al., 2010; Mayanja-Kizza et al., 

2009; Trajman et al., 2008), and given that pleural NK cells exhibit an endogenously induced 

activation state together with an enrichment of immunoregulatory NK CD56bright subset, we 

asked whether these cells were polarized to the production of pro and/or anti-inflammatory 

cytokines. Also, we evaluated if these cells were capable to modulate other cells function. 

The answers to these questions gave us important clues for better understanding the 

immunopathogenesis of TB infection and will be discussed during the present section.  

 

Fig. 2. Pleural NK cells are a major early source of IFN-Ǆ upon ex vivo Mtb-stimulation. 

PFMC were stimulated with Mtb for 24h .Then cells were gated on the basis of IFN-Ǆ-

positive (Ly IFN-Ǆ+) and IFN-Ǆ-negative (Ly IFN-Ǆneg) cells and their surface phenotype 

were determined according to CD56 and CD3 expression by flow cytometry. Dot plots are 

from one representative TB patient. NK cells are highlighted in red. Pie charts indicate mean 

values of 30 TB patients. 

3.1 Pleural NK cells strongly produce IFN- after Mtb stimulation  

Experiments varying the quality and quantity of signaling input for NK cell activation have 
revealed a hierarchy in requirements for induction of chemokines and cytokines (Fauriat et 
al., 2010). Furthermore, recent data indicate that anatomical niche and developmental stage 
of NK cells strongly determine its cytokine profile production giving rise to NK1, NK2 and 
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NK22 cells (Di Santo, 2008; Spits & Di Santo, 2011). In this sense, pleural fluid CD56bright NK 

did not produce significant levels of IL-10, IL-17A or TNF- spontaneously or after -
irradiated Mtb-stimulation. However, the percentage of IFN-+ NK cells (NK IFN-+) was 
strongly increased under the same experimental conditions (Schierloh et al., 2005a). It is 
interesting to note that, in spite of its reduced numbers in TB pleural fluid (~5% of PF 
lymphocytes), NK constitute a major source of IFN-Ǆ together with CD3+ cells (Figure 2). 
Mtb derived culture filtrate proteins (CFP), TLR2 and 4 agonist and recombinant IL-12 also 
induced IFN-Ǆ among pleural NK but to a lesser extent than Mtb does (Schierloh et al., 
2007). Interestingly, pleural fluid NK cells derived from other etiologies (i.e: cancer, 

paraneumonic or helmintic infections) did not give Mtb-stimulated IFN- responses, 
suggesting a paradoxical “Ag specific response” induced in an innate immune cell (see 
Figure 4). This finding is in accordance with recent data provided by experimental mice 
models which clearly demonstrate the adaptative properties of NK cells (Cooper et al., 2009; 
Paust & von Andrian, 2011; Vivier et al., 2011). Instead, this apparent “Ag specific” NK cell 
responses may be produced by T cell-secreted IL-2 (Horowitz et al., 2010; Fehniger et al., 
2003).  

3.2 Pleural NK cells co-stimulate local TH1 response 

Among novel skills described for human activated NK cells, it has been shown that they 

may stimulate T cells by cell contact-dependent mechanisms (Hanna & Mandelboim 2007). 

In this line, we were able to demonstrate that, in TB pleurisy, a functional ICAM-1-

dependent cell to cell interaction among pleural fluid NK and T cells lead to T cell activation 

(Schierloh et al 2009). Likewise, peripheral blood human NK cells can instruct in vitro 

cytotoxic CD8+ T cells from PPD responsive donors to lyse Mtb-infected monocytes 

(Vankayalapati et al., 2004). Taken together, these findings suggest a previously 

unappreciated role of NK cells in the maintenance and/or activation of T cell functions 

during the immune response in tuberculosis. 

4. Cellular and molecular factors controlling pleural NK cells functions 

Having observed that NK cells were the main early source of IFN- within the pleural space, 

we investigate extracellular events and signaling pathways that drive this process. The 

mechanisms involved reveal classical and particular ways of NK cell activation and 

signaling. Three environmental signals act in concert to fulfill IFN- response in pleural NK 

cells: cytokines, activation ligands expressed on accessory cells and direct Mtb recognition 

(Schierloh et al., 2007). 

4.1 Pleural NK response involve Ca
2+

 influx and Calcineurin, ERK and p38 MAPK 
signaling pathways 

NK cells express on their surface an array of germ-line encoded inhibitory and activating 
receptor as well as cytokine receptors that, upon activation, mediate intracellular signaling 
pathways for IFN-Ǆ together with other functional responses. It is well known that 
interaction of NK receptors cells with their activating ligands on target and/or Ag 
presenting cells (APC) induce a quick increase of cytoplasmic calcium (Ca2+) concentration, 
a universal second messenger (Maghazachi, 2005). Employing divalent cation chelators we 
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demonstrate a pivotal role for this process during Mtb-induced pleural NK IFN-Ǆ response. 
Downstream the Ca2+ influx, signaling proteins and their target transcription factors are 
activated, including calcineurin, a calmodulin-dependent serine/threonine phosphatase, 
and its target NFAT (nuclear factor of activated T cells). By mean of Cyclosporin A 
treatment, we confirm the involvement of this pathway too. Similarly, using several protein 
kinase specific inhibitors and phospho-specific monoclonal antibodies, we also address the 
participation of other two phosphorylation cascades, p38 MAPK and ERK1/2 (Schierloh et 
al., 2007). Figure 3 summarize the most important events.  

 

Fig. 3. Extracellular signals and intracellular pathways in IFN-Ǆ production by pleural NK 
cells. 

Picture describe interactions among activation signals (i.e: cytokines, APC expressed 
activating ligands and Mtb), modulating/inhibitory signals (i.e: APC expressed inhibitory 
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ligans and Mtb derived lipoglicans recognized by C-type lectins) and cellular receptors 
together with their corresponding intracellular signaling pathways. Blue arrows indicate 
positive interactions. Dotted blue arrows denote cross-talk between pathways. Black arrows 
denote inhibitory interactions. Pharmacological inhibitors used in our experiments are 
written in red within brackets under its target molecule.   

4.2 Pleural NK response is dependent on IL-12 and accessory cell contact  

Numerous in vitro and in vivo studies show that a wide variety of APC secreted cytokines, 
especially IL-12, IL-15, and IL-18, can activate NK cells to produce IFN-Ǆ. By means of 
cytokine neutralization, we showed that IL-12 is necessary for Mtb-induced NK IFN-Ǆ 
production in tuberculous pleurisy (Schierloh et al., 2007). This requirement is not 
surprising because IL-12 has been shown to mediate bystander activation of NK cells in 
response to a number of different pathogens (Artavanis-Tsakonas et al., 2007; Culley, 2009, 
Lindgren et al., 2011). However, IL-12 alone does not allow the same level of IFN-Ǆ+ NK 
cells than Mtb does. Indeed, costimulatory signals delivered by APC such as receptor-ligand 
interactions are required as demonstrated by Ab blockade and APC depletion experiments. 
Among activating ligands ICAM-1, CD86 and Vimentin has been shown to be engaged. At 
the same time, these signals could be counter-balanced by MHC class I, PD-L1 and PD-L2 
inhibitory ligands (Alvarez et al., 2010; Garg et al., 2006; Schierloh et al., 2007).  

At the level of pleural APC, we also observed that Mtb induced stimulatory signals 
mediated by TLR2 and TLR4 are counter-modulated by C-type lectin receptors like mannose 
receptor (MR) and DC-SIGN (Schierloh et al., 2007). Both molecules bind mycobacterial 
derived mannosilated lipoglycans and may indirectly inhibit NK cell response by limiting 
IL-12 production and/or down-modulating activating ligands expression (van Kooyk Y & 
Geijtenbeek, 2003). 

4.3 Pleural NK cells directly recognize Mtb  

Recent studies have pointed out the capacity of NK cells to bind and been directly activated 
by Mycobacterium species (Esin et al., 2004; Evans et al., 2011; Watkins et al., 2008). This 
recognition seems to be mediated, at least, by two putative activating receptors: TLR2 and 
NKp44 (Esin et al., 2008; Marcenaro et al., 2008). Interestingly, these receptors are both up-
regulated among pleural NK cells (Figure 1). Consistently we observe that, compared with 
its PB counterparts, pleural NK cells have enhanced capacity to bind Mtb and that p38 
MAPK phosphorilation on pleural NK occurs shortly after Mtb-NK coculture, 
independently on bystander cell derived signals (Schierloh et al., 2007). Furthermore, it has 
been observed that NK CD56bright cells are more reactive to direct BCG stimulation than 
CD56dim NK (Batoni et al., 2005). Altogether, these results strongly indicate that direct 
interaction between NK and Mtb play a significant role during functional response of 
pleural NK CD56bright cells.  

5. Pleural NK application: Immunodiagnosis of tuberculous pleurisy 

Conventional diagnostic tests for pleural TB include microscopic examination of pleural 
fluid for acid-fast bacilli and differential cytology; mycobacterial culture of pleural fluid, 
sputum or pleural tissue; pleural fluid Adenosin Deaminanse (ADA) activity as well as 
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determination and histopathological examination of pleural tissue looking for 
granulomatous inflammation (Porcel, 2009; Light, 2010). These tests have limitations for 
clinical use; however, in combination, they have been recognized as the best reference 
standard for evaluation of the accuracy of novel tests (Trajman et al., 2008). Although 
detection of serum antibodies against Mtb antigens is known to have poor and highly 
variable sensitivity and specificity, attempts have been made to detect antibodies in 
pleural fluid by ELISA. Even though, these tests show high specificity they are limited by 
the very poor sensitivity (Weldingh & Pai 2007). Several T cell based assays have been 
employed for diagnosis of TB pleurisy such as in vitro stimulation of lymphocytes with 
PPD or RD-1 encoded antigens leading to T-cell proliferation and/or IFN-Ǆ release by 
ELISPOT and ELISA assays (TIGRAs) (Hooper et al., 2009). For example, using a 
commercially available Mtb-specific ELISPOT for peripheral blood mononuclear cells and 
pleural fluid mononuclear cells from patients with exudative pleurisies, its sensitivity in 
active tuberculosis was very high (95%); however, the specificity was suboptimal (76%) 
(Losi et al., 2007). The high coverage of BCG vaccination as well as the high prevalence of 
latent TB infection (PPD+ individuals) at the population level might impair the results 
when employing T and B cell based immunodiagnostic methods. On the other hand, 
immunocompromised or HIV+ infected patients may lead to false negative results due to 
the ablation or reduction of cellular immunity (Trajman et al., 2008). In this context, we 

thought that pleural IFN-+ NK cells could be a promising target for immunodiagnostic 
method that circumvent these memory related problems in differential diagnosis of 
tuberculous pleurisy.  

5.1 Preliminary trial for testing clinical value of NK cell based assay in Argentina 

In order to provide evidence that support or reject the clinical diagnostic utility of NK IFN-

Ǆ+ cell based assay in differential diagnosis of TB pleural effusion, we have performed a 

retrospective, single-center preliminary study in a reference center of the city of Buenos 

Aires, Argentina. To do this, PFMC were stimulated with Mtb and the percentage of NK and 

T cells expressing IFN-Ǆ were determined by flow cytometry as described in Figure 2. In this 

trial we included 40 consecutive patients with profuse exudative pleural effusion (TB n=28 

and No-TB n=12; Cancer=6, Paraneumonic infection=5, Helmintic infection=1) admitted and 

diagnosed at the Tisioneumonolgy service of the Hospital Muñiz during 2006-2009. 

According to epidemiological data provided by medical staff, all the patients were at high 

relative risk of TB infection. As can be observed in table 1 and Figure 4, pleural NK shows  

 

Median Δ % 

IFN-+ 
(25–75% 

percentil) 

Cut off 
(Max. 

likelihood 
ratio) 

Area under 
ROCurve 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

NK assay 
30.69% 

(9.23–42.77%)
> 1.555% 

(11.57) 
0.9643 

(0.9002–1.028)
96.43% 

(81.65–99.91%)
91.67% 

(61.52–99.79%) 

T assay 
2.14% 

(1.04– 4.63%) 
> 1.230% 

(8.14) 
0.9435 

(0.8670–1.020)
67.86% 

(47.65–84.12%)
91.67% 

(61.52–99.79%) 

Table 1. ROC analysis for NK cell and T cell assays. Data values summarized above are 
derived from ROC analysis depicted in Fig.4. 
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better performance than pleural T cell based assay in discriminating TB and no-TB pleural 
effusions. These differences may reflect the polyclonal vs oligoclonal nature of IFN-Ǆ 
response in NK compared to T cells (Schierloh et al., 2008).  

  

Fig. 4. Mtb-induced IFN-Ǆ response by NK and T cells in the diagnosis of tuberculous 
pleurisy. 

PFMC were incubated 24h with medium alone (Control) or stimulated with Mtb. Then, Mtb 

specific IFN- response was obtained from gated NK (CD56+/CD3-) and T cells (CD3+)  by 

subtracting  the percentage of spontaneous production: Δ% IFN-+= % IFN-+ Mtb - % IFN-

+ control. Upper left scatter plots depict the results of the study population (TB patients 

n=28; No-TB patients n=12). Lower graph present ROC analysis for NK and T cell based 

assays. Flow cytometry dot plots analyses are from one representative TB patient and one 

patient with helmintic (Echinococcus granulosus) infection (No TB). Red dots are gated NK 

(CD56+/CD3-) and purple dots are T cells (CD3+).  

5.2 Rational design for NK based IFN-γ release assay: “KIGRA” 

Flow cytometers are sophisticated equipments that may be not available in almost all public 

health laboratories. Therefore, in order to make our NK derived IFN- based assay more 
applicable for common clinical settings, we attempt to introduce experimental modifications 
that could direct the development of a NK based IFN-Ǆ release assay. 
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Unlike flow cytometry, cytokine release detection devises did not allow the identification of 

secreting cell. This fact represents an important challenge in our particular case, where the 

cellular source of IFN- is the basis of the diagnostic improvement. One way to avoid this 

issue is blocking IFN-Ǆ production by pleural T cells, leaving NK as the main producer cells. 

To do so, we employed anti-HLA class I and class II monoclonal antibodies (mAbs), which 

block Ag presentation to CD8+ and CD4+ T cells. As can be observed in Figure 5, most T 

IFN-+ cells were inhibited when both mAbs were present during Mtb stimulation; however, 

NK cells still remain expressing IFN-+ under the same treatment. Similarly, when we 

analyzed IFN- release by ELISA, the presence of mAbs diminished but not abolished the 

secretion of this biomarker. This result, together with other adjustments that are under 

current testing, may constitute the rational for a more accurate assay.  

Furthermore, we think that in the context of diagnosis of tuberculous pleurisy, commercially 

available IGRA, which employ ELISPOT (Losi et al., 2007), ELISA (Losi et al., 2011) or 

immunochromatography (Corstjens et al., 2008), could be easily adapted in order to obtain a 

Natural Killer IFN-gamma release assay or “KIGRA”. 

 

Fig. 5. Rational design for development of NK IFN-Ǆ release assay. 
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PFMC were Mtb-stimulated as indicated in Fig.4 with or without the addition of anti-HLA-
class I and/or anti-HLA-class DR mAbs. A schematic explanation of how mAbs interfere on 

antigen presentation to CD4+ and CD8+ T ǃ cells without affecting NK or T Ǆ cells 
activation (upper cartoon). Flow cytometry dot plots analyses are from one representative 
TB patient. Red dots are gated NK (CD56+/CD3-) and purple dots are T (CD3+) cells. Bar 
graph of IFN-Ǆ ELISA assay (TB n=3).  

6. Conclusion 

Tuberculous pleurisy, one of the most common extrapulmonary manifestations of 
tuberculosis among young adults, is characterized by strong delayed type hypersensitivity 
reaction mediated by effector lymphocytes. Our data demonstrate that a substantial part of 
these cells are indeed NK cells. Herein, we have discussed phenotypic and functional 
features of this local innate immune cell population and the factors involved in its 
regulation. Furthermore, we identify NK cells as the main source of IFN-Ǆ, the most widely 
used TB biomarker, in the context of tuberculous pleurisy.  

In the context of high antigen experienced population the diagnosis that allow the 
discrimination between tuberculous pleurisy from other exudative pleural effusions remain 
as an unresolved clinical issue (Dheda et al., 2009b; Hooper et al., 2009; Salazar-Lezama et 
al., 1997). Hence, we propose an NK cell IFN-Ǆ based assay as complementary procedure. To 
our knowledge, no previous NK inmunodiagnostic were reported for TB or any other 
infectious diseases. The advantageous characteristics of this functional assay are: (i) short 
time result output (1 day) and ii) very good performance in terms of specificity and 
sensitivity.  
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