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Calibration of Measuring Systems Based 
 on Maximum Dynamic Error 

Krzysztof Tomczyk 
Cracow University of Technology, Faculty of Electrical and Computer Engineering, 

Poland 

1. Introduction  

This chapter presents methods and algorithms for determining the maximum errors which 
can be generated by measuring systems in reference to their standards. The application of 
such errors in the process of calibration of measuring systems intended for measurement of 
dynamic signals is discussed in detail. The problem of maximum errors lies in the fact that it 
is impossible to analyze the full range of all possible dynamic input signals. Therefore we 
find out the one that represents all signals. It is the signal generating errors of maximum 
value.  

The existence and availability of signals maximizing both the integral-square error and the 
absolute value of error are discussed, and relevant solutions are presented. Moreover, the 
constraints imposed on the input signal are analyzed. These constraints refer to the 
magnitude as well as maximum rate of signal change. The latter constraint is applied in 
order to match the dynamic properties of the signal to the dynamic properties of the system 
under test. 

In the relevant literature it was proved that the signals maximizing the errors in question 

always achieve one of the constraints imposed on it. If only the signal amplitude is 

constrained, the maximizing signal is always of the ‘bang-bang’ type, while in the case of 

two constraints relating to the magnitude and the rate of change such a signal can be only of 

triangular or trapezoid shape with slopes resulting from the values of constraints. 

For the integral-square error, no analytic solution referring to the shape of the maximizing 
signal has been found so far. This is why the solution of this problem presented in the 
chapter is based on the application of the genetic algorithm method. This method 
guarantees that the results are obtained in minimized calculation time which depends only 
on the assumed number of population, the value of the stop condition and number of 
assumed switches. 

In the case of the absolute error, the analytical formulae and algorithm which give precise 

results and can be realized in a very short calculation time are considered. The signal 

maximizing this criterion is presented in the form of figures showing the successive steps of 

proceeding as well as the error shape corresponding to this signal.  

Fig. 1 presents a block diagram of our calibration process. 
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Fig. 1. Block diagram of calibration process of measuring systems based on maximum 
dynamic error.  

In this chapter respective procedures and essential mathematical operations, which allow 
carrying out the calibration process according to the block diagram presented above, are 
discussed in detail. In part two the input-output relations of measuring systems are 
discussed, part three is devoted to the synthesis of the mathematical model of standard and, 
in part four error functionals are presented and analyzed. The problem of existence and 
attainability of maximizing signals is discussed in part five, while parts six and seven 
present the procedures for determining signals maximizing the integral-square error and the 
absolute value of error.  

The optimization of the minimax type on the basis of maximizing signals is presented in part 
eight. Such optimization is performed in two steps. In the first step the input signal 
maximizing the assumed error functional is determined, while in the second step the model 
parameters optimization based on the obtained signal is performed.  

The identification problem of the mathematical model of measuring system is omitted in 
this chapter as it does not concern the theory of calibration. It was assumed that this model 
exist and is given in the form of transfer function.  

The practical application of the presented theory and algorithms is illustrated on the 
example of low-pass measuring systems.   
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2. Input-output relations of measuring systems  

Let output signal ( )y t of calibrated system be described by integral convolution 

 
0

( ) ( ) ( ) , [0, ]

( ) ( ) ( )

t

m s

y t x h t d t T

h t h t h t

    

 

  (1) 

where: ( )x t - input signal, ( ), ( )m sh t h t - impulse responses of system and its standard. 

The convolution (1) can be presented in a discrete form as a sum 

 0

( ) ( ) ( ), 0,1,..., 1

   sample interval of 

n

k

y n x k h n k n N

T


    

 


 (2) 

or in matrix form 

 

0 0 0

1 1 0 1

2 2 1 0 2

1 1 2 3 0 1

0 0 0

0 0

0

N N N N N

y h x

y h h x

y h h h x

y h h h h x    

     
     
     
      
     
     
          





     


 (3) 

In many cases it is convenient to present the output ( )y t  by means of the following formula 

 

2 2 2

1 1 1

0 0 0

1
( ) ( ) ( )

1

n n ni mk i mk i mn
n n n

m k k

y n x k e h k e e
n

  
 

  

  

 
  

   
    (4) 

or by the Fourier transform  

 
( ) ( ) ( )

( ) { ( )}, ( ) { ( )} , ( ) { ( )}

Y i X i H i

Y i F y n X i F x n H i F h n

  
  


  

 (5) 

where F  presents the DFT or FFT (Tomczyk, 2011).  

Multiplication of the Fourier transformations in (5) gives 

 
Re ( ) Re ( )Re ( ) Im ( )Im ( )

Im ( ) Im ( )Re ( ) Re ( )Im ( )

Y i X i H i X i H i

Y i X i H i X i H i

    
    

 
 

 (6) 

From Eq. (6) we get  

  ( ) Re ( ) Im ( )y n IF Y i j Y i     (7) 

where IF denotes inverse DFT. 
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In state space we have 

 

 

( 1) ( ) ( )

( )  state vector, ( ) ,  number of state variables

( )  input control  vector, ( ) ,   number of inputs

p

p

y n y n x n

y y p

x x q

  

    

    

Φ Ψ
 (8) 

Presenting (8) in the matrix form, we have  

 
1,1 1,

,1 ,

1( 1) ( )

( )

( 1) ( )

p

p p p
p p p

y n y n

x n

y n y n

  

 

      
             
             



   


 (9) 

where 

 
( )

( ) state matrix

p x p

p x p

e 



AΦ
A

 (10) 

and 

 

 

1
( )

0

( ) ( )

( )

 input control  matrix, unit matrix

t
p x q

p x q p x p

e dt e


   

 

 A Aψ B A I B

B I

 (11) 

3. Synthesis of mathematical model of standard  

The calibration procedures for measuring systems intended for measurement of static 

quantities are commonly known and have been used for a long time in measuring practice. 

They cover the hierarchy of standards and calibrations circuits. 

For measuring systems intended for measurement of dynamic quantities neither legal 

regulations concerning hierarchy of their accuracy nor specific calibrating procedures have 

been worked out so far. It results from the fact that for such systems input signals are time 

dependent, often undetermined, and whose shapes cannot be predicted in advance. The 

second reason is that the problem of standards for such systems has not been solved till now, 

because various measuring systems fulfill different objective functions (Tomczyk&Sieja, 2006). 

For such a situation we expect that models of standard will satisfy mathematical notation of 

these functions. In the dynamic measurement selection of standard parameters can be realized 

by means of optimization methods, which assure the conditions of non-distortion 

transformation, or by means of ideal filters of a band-pass which corresponds to the range of 

the work of the calibrated system. For low-pass systems this standard is given by  

 
0 0

( )
0

st
m

s
m

c e for
H i

for

 
 

    


 (12) 

Impulse response of (12) equals 
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  0( )s m m

c
h t Sa t t 


     (13) 

where: c - amplification coefficient, 0t  - filter delay, m - cut-off  frequency. 

4. Error functionals  

Dynamic errors applied in our calibration are defined in different function spaces by means 
of chosen functionals. If the values of these functionals are determined by means of 
maximizing signals, it means that they will be valid for any dynamic signals which can 
appear at the input of the calibrated system. In this way all the possible input signals are 
included in this special, maximizing one. 

The process of maximum error determination requires a special input signal to be used, 
which warrants that the error determined with it will always be higher or at least equal to 
the value generated by any other signal. The solution of this problem needs to prove that 
there exists a signal maximizing the chosen error functional at all, and if so, to elaborate a 
suitable procedure for its determination. The maximum values of error can constitute the 
base to work out the hierarchy of accuracy for instruments for dynamic measurement.  

The integral-square error  

 2

0

( ) ( )
T

I x y t dt   (14) 

and absolute value of error 

 ( ) ( )D x y t  (15) 

will be discussed as an example.  

The choice of the functionals (14) and (15) results from the fact that they are the most 
common in many different engineering domains.   

5. Existence and attainability of maximizing signals 

In (Layer, 2002, Layer&Tomczyk, 2010) it was proved that signals maximizing I(x) and D(x) 
functionals in [0,T]  always achieve one of the constraints imposed on them. 

The constraints in question concern the magnitude a  and rate of change .  For systems 

described by means of linear differential equations, the constraint of magnitude ( )x t  results 

from the measuring range of this system. Imposition on the signal of only this one constraint 

gives the solutions of ‘bang-bang’ type. As a result unexpected great values of errors are 

generated. It is affected by the dynamics of ‘bang-bang’ signals which have infinitely high 

derivative values in the instants of switching. Outside of these instants, they have constant 

values. Because of this, the ‘bang-bang’ signals are not matched to the dynamics of 

physically existing systems, since they can only transmit signals of a limited value of the rate 

of change. In order to match the dynamic behaviour of the input signals an additional 

constraint resulting from the dynamic properties of the calibrated system should be imposed. 

Proper matching is obtained by restricting the maximum rate of change   of the signal.  
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5.1 Constraints of signal 

In the case of two simultaneous constraints a  and ,  the maximizing signal has a 

triangular shape with the slopes inclination ,  

 tg   (16) 

or a trapezoid shape with the slopes inclination   and the height .a  

We can analyze here two different premises referring to the rate of change   value. The first 

one refers to the time domain 

 
[0, ] [0, ]

max ( ) max ( )
t T t

x t h t
  

   (17) 

where h(t) denotes the impulse responses of the system. 

In the frequency domain constraint   results from the maximum frequency of the band-

pass of system .m  In this case we have  

 
[0, ]

max ( sin ) .m m
t T

a t a  


   (18) 

where A denotes amplitude. 

6. Procedure for determining signals maximizing the integral-square error  

For the integral-square error (14) good results in the determining of signals maximizing this 

functional are achieved by the application of genetic algorithm. Fig. 2 presents a flowchart of 

this algorithm. 

If     ,i hI x I x the switch 1s  takes the position 1 and the value of  iI x  is assigned to 

 .hI x  Then  hI x is stored in the buffer memory. Parallel to this operation, the vector of 

switching signal ( )ix t  and the output ( )iy t  are saved in the memory. 

For i N  the switch 2s  changes the position from 0 to 1 and the values ( ),ix t ( )iy t and 

( )hI x  are assigned to 0( ),x t  ( )y t  and  max( )I x , respectively. 

The algorithm presented in Fig.3 includes three main operations: reproduction, crossing and 
mutation. 

In the first step, the initial population 11 12 1( , ,..., )nc c c  including an even number of 

chromosomes is selected at random. Each chromosome consists of detectors 

11 12 1 21 22 2 1 2( , ,..., ),( , ,..., ),...,( , ,..., ),m m n n nmd d d d d d d d d  which correspond to the switching times 

of ix  signal. For each chromosome the error (14) is determined. Then on the basis of the 

obtained results, adaptation coefficient NI  is calculated as 

 
1 2

..
nN c c cI I I I     (19) 

This coefficient presents the total error generated by all chromosomes (Tomczyk, 2006). 
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Fig. 2. Flowchart of calibration procedure 

 

Fig. 3. Flowchart of genetic algorithm 
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In order to form the next populations, it is necessary to determine the percentage share cI  of 

each chromosome in NI  

 

1

1
100%

100%n

n

c
c

N

c
c

N

I
I

I

I
I

I











 (20) 

Relations (19) and (20) allow for estimation of the usefulness of each chromosome in the 

population. The higher cI  value of the given chromosome gives more probability to include 

it in the next population.  

When the difference between the obtained values of adaptation coefficients is too small, it is 
necessary to carry out the scaling operation of the adaptation coefficient. 

The next step is the operation of reproduction. According to the probability calculated by 

(20), the chromosomes from the initial population are selected at random. Depending on the 

value of cI  coefficient, chromosomes have a bigger or smaller chance to be included in the 

next population. There are several ways of selection chromosomes for the new population. 

The most popular way is represented by the roulette wheel method. The results of random 

selection are rewritten to the new descendant population 21 22 2( , ,..., ).nc c c  

The next step is the crossing process. The chromosomes from the new population are joined 

in pairs in a random way and for the given crossing probability 
c

P are crossed or not.  

The crossing is carried out according to the following formulae (Tomczyk, 2006): 

The first crossing of paired 1id and 1jd  detectors gives 

 
 

1 1 1

1 1 1

(1 )

1

i i j

j i j

d d d

d d d



 

  

  



  (21) 

where: 1id  is a descendant detector of i  chromosome, and 1jd is a descendant detector of j  

chromosome. 

The coefficient  in (21) is selected according to  

 

11 2
min max

1 11 1

1 2 1
min max

1 1 11

,

,

ii i
i i

j ji i

j j j
j j

j i ji

d d d

d dd d

d d d

d d d d

 

 

 
 

 

 
 

 

 (22) 

where: mini and maxi  present the minimum and maximum limit of   changeability for 

the detector from i  chromosome, while minj  and maxj present minimum and maximum 

limit of   changeability for the detector from the j  chromosome.  
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The changeability range of   is contained in the range between 0 and the third value 

calculated by means of (22) minus this value multiplied by  (sample interval of ).T  

Then the  value is selected at random from the above range, and is substituted into (21). 

The second crossing of detectors i md  from i  chromosome and j md  from the j  chromosome, 

where 2,3,..., ,k m  gives 

 
(1 )

(1 )

i k i k j k

j k i k j k

d d d

d d d



 

  

  




 (23) 

where i kd  is the k  detector of i  descendant chromosome and j kd is the k  detector of j  

descendant chromosome.  

Now, the coefficient   is selected according to  

 

1 1
min max

1 1
min max

,

,

i k i k i k i k
i i

j k i k j k i k

j k j k j k j k
j j

i k j k i k j k

d d d d

d d d d

d d d d

d d d d

 

 

 

 

 
 

 

 
 

 

 (24) 

For the i chromosome, the mutation operation is described by  

 ( 1) ( 1) ( 1)( )

[0, 1], 1,2,...,

i k i k i k i kd d d d

k m




    

 

   
 (25) 

The time calculation of genetic algorithm can be reduced significantly if a stop condition is 

applied. It stops the calculation, if the value of ( )hI x stored in memory does not change 

during a given number of iterations. (Tomczyk, 2006). 

7. Algorithm for determining signals maximizing the absolute error  

7.1 Signals constraint on magnitude 

In the case of ( )D x error (15) the maximum ( )y t  occurs for t T   

 

0

max ( ) ( ) ( ) ( )
T

y t y T x h T d      (26) 

if 

 0( ) ( ) a [ ( )]x x sign h T      (27) 

where a  is the magnitude of ( ).x   

Replacing   by t  in (26), we obtain 

 

0

( ) ( ) ( ) ( )
T

y t y T x t h T t dt    (28) 
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and 0( )x t maximizing (28) has now the form  

 0( ) a [ ( )]x t sign h T t   (29) 

Substituting (29) into (28) gives  

 

0 0

max ( ) ( ) a ( ) a ( )
T T

y t y T h T t dt h t dt      (30) 

which can be computed in the very simple way.  

7.2 Signals constraint on magnitude and rate of change 

Let  

 
0

( ) ( )
t

x t d     (31) 

then  

 
0 0

( ) ( ) ( )
T t

y T h T d dt       (32) 

Constraints related to ( )x t  and ( )   are as follows  

 

0

| ( ) | | ( )| a
t

d x t      (33) 

and  

 | ( )| | ( )|t x t    (34) 

Changing the integration order in (32), we have 

 

0

( ) ( ) ( )
T T

y T h T t dt d


      (35) 

and after replacing  for ,t we get finally 

 

0

( ) ( ) ( )
T T

t

y T t h T d dt      (36) 

A formula (36) proves that ( )t maximizing ( )y T  has the maximum magnitude ( )t   by 

virtue of the formula (34) if 

 ( ) ( )
T

t

t sign h T d     (37) 
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and ( ) 0t  in such subintervals, for which (33) between the switching moments has the 

form 

 
0

| ( ) | a
t

d     (38) 

Using the equations (32)-(38), we can determine signal 0( )x t  in the following cases 

First case 

When a0

0

| ( ) |
t

d     for   varying in the intervals [0, ]  and [0, ],  (Fig. 4a,b), where 

0( )t    for ( )
T

t

h T d      and 0( )t    for ( ) ,
T

t

h T d     than the signal 0( )x t  is 

determined in three steps, according to Eqs. (39)-(47).. 

 
 
 

 
 
 

Fig. 4. Exemplary functions ( )
T

t

h T d  and 0( )t   

During the first step, the ‘bang-bang’ functions 1( )t  of the magnitude   are determined 

with switching moments resulting from (37) - Fig.5a 

 
1

1

( ) if ( ) 0

( ) if ( ) 0

t t

t t

  
  

  
    (39) 

In the second step, we obtain the function 2( )t  by integrating 1( )t - Fig. 5b.  
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Fig. 5. Exemplary functions ( ) ,
T

t

h T d  1( )t  and 2 1

0

( ) ( )
t

t d      

Function 2( )t  in particular switching intervals 1 2, ,..., mt t t  of 1( )t  is given by the following 

relations 

for 1 , 1t t m   

 2( )t t    (40) 

for 1 2 , 2t t t m    

 2 1 1( ) ( )t t t t      (41) 

for 1 1, 2,3,..., , ,i i mt t t i m t T      m - number of switchings 

 1
2 1 1

2

( ) ( 1) ( ) ( 1) ( )
i

j i
j j i

j

t t t t t t   



        (42) 

In the last step, we determine the function 3( )t  on the basis of 2( ) :t  

 3 2

3 2

( ) if | ( )| a

( ) 0 if | ( )| a

t t

t t

  
 

  
 

 (43) 

Finally, through integration of 3( ),t  we obtain the signal 0( ) ( )x t x t  and this is the aim. 

This operation is shown in Fig. 6a. 

During the intervals in which 3( ) ,t    the signal shape is triangular, with the slope  . 

In the intervals in which 3( ) 0,t   the signal is a constant and has the magnitude .a   

For m switching moments of 3( )t  the value of error is described by the following 

equations: 

for m = 1 

www.intechopen.com



 
Calibration of Measuring Systems Based on Maximum Dynamic Error 

 

201 

 
1

1 1

1 1
1 1

1 10

( ) ( ) ( ) ( ) ( )

t T T
T

t t

o o o
y T h T d h T t d o h T d
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for m ≥ 2 
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where 0( ),m mo x t  0( ).To x T   

Fig. 6b presents the signal 0( )x t  and the error ( )y t  corresponding to it 

 

Fig. 6. Function 3( ),t  signal 0 3
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x t d     and error ( )y t  

The equations (44-45) in the discrete form are defined by:  
for n = 1 
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for n ≥ 2 
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Second case 

If  aT    then the signal 0( )x t  is given directly by  
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and the error equals  
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Equation (49) in the discrete form is defined by 
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Fig. 7 presents the signal 0( )x t  and error ( )y t  obtained by (48)-(49) 

 

Fig. 7.  Signal 0( )x t  and error ( )y t  

Third case 

If aT    then the signal 0( )x t  is determined indirectly by means of the functions 4( )t - 

7( )t  
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Equation (51) in the discrete form is given by 
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The functions 4( )t  and 5( )t  are shown in Fig. 8a, while 5( )t  and 6( )t in Fig. 8b.  

 

Fig. 8(a). Functions 4( )t  and 5( ).t                              Fig. 8(b). Functions 5( )t and 6( )t  

Fig. 9a presents the function 7( )t  and the signal 0 7

0

( ) ( )
t

x t d    , while the signal 0( )x t  

and the error ( )y t  corresponding to it are shown in Fig. 9b (Layer&Tomczyk, 2009; 

Layer&Tomczyk, 2010). 

 

Fig. 9(a). Function 7( )t  and signal 0( ).x t                    Fig. 9(b). Signal 0( )x t and error ( )y t  
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8. Maximum errors in optimization of models of measuring systems  

In the technical domain the application of higher order models usually gives a possibility to 

better map the dynamic properties of real systems. On the other hand, the analysis of such 

models is most often difficult and time-consuming. Hence a tendency has developed to 

replace a higher order model by a simplified one. The class and order of such model are 

adopted in an arbitrary way. Its parameters can be determined by means of methods that 

minimize the mapping error, considering all possible input signals. Therefore it is suggested 

to solve the problem by using one signal which maximizes the error. In this way, the 

mapping error being determined is credible for any input. The application of the minimax 

method by means of the Levenberg-Marquardt algorithm (Tomczyk, 2009) gives good 

results.  

This method includes two main numerical computation stages. At the first stage the 

0( )x t signal maximizing the error (Fig.10) is determined.  

 

Fig. 10. Block diagram for determining 0( )x t signal 

At the second stage the class and order of the simplified model are adopted. For this model 

by means of 0( )x t  signal the parameters minimizing  the error are determined. 

The Levenberg-Marquardt algorithm is an iterative method, in which the vector of 

unknown parameters is determined in 1k   step by the following formula 
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 (59) 

The notations in (56)-(59) are as follows: 

- 1,2,..., ,k p  p  - number of iteration loops 

- ( )( , )nx m k tJ Ξ - Jacobian matrix 

- ( )mx mI  - unit matrix 

- k - scalar, its value changes during iteration 

- 1 2[ , ,..., ]m  Ξ  - model parameters searched for. 

The Levenberg-Marquardt algorithm is used for computation in the following stages: 

Stage 1, for  k=1 

1. Assume the initial values of the parameters of vector kΞ  

2. Assume the initial value of the coefficient k  (e.g. k = 0.1) 

3. Solve the matrix equation (59) and calculate (58)  

4. Calculate the value of error (57) 

5. Determine the parameters of vector 1 ,kΞ  following (56). 

Stage 2 and further steps, for 2,3,...,k p  

1. Update the values of the parameters of vector kΞ  

2. Solve the matrix equations  (59) , calculate (58) and (56) 

3. Calculate the value of error (57) 

Compare the values of error (57) for the step k  and the step 1.k   If the result is 

1( , ) ( , ),k ky t y tΞ Ξ  multiply k  by the specified value   (e.g. 10  ) and return to the 

step 2 of stage 2. If the result is 1( , ) ( , )k ky t y tΞ Ξ  divide k  by the value   and return to 

the step 1 of stage 2. 

Fig. 11. presents a block diagram of minimax optimization by means of the Levenberg-
Marquardt algorithm.  

The iteration process can be finished  if in the consecutive stage the decrease in the value of 

error (57) is very small and insignificant. Then we fix 0k  and determine the final result 

for the parameters of vector .Ξ  If the coefficient k  is high, it means that the solution is not 

satisfactory, the values of the parameters of vector are not optimum and the value of error 

(57) is not at minimum level. At this point we can assumed 

 ( , ) ( , )T
k k kt t J Ξ J Ξ I  (60) 
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Fig. 11. Block diagram of minimax optimization by means of the Levenberg-Marquardt algorithm 

In such a case the formula (60) leads to the steepest descent method 
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If the value of coefficient k  is small, it means that the values of the parameters of vector Ξ  

are close to the optimum solution. Then 

 ( , ) ( , )T
k k kt t J Ξ J Ξ I  (62) 

and the Levenberg-Marquardt algorithm is reduced to the Gauss-Newton method 
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The selection of coefficient values k  and   depends on the adopted programs and 

selected software. 

9. Example of application 

As an example let us consider the fourth order Butterworth, Tchebyhev and Bessel analog 
filters and integral-square error (14). These filters have the following transfer functions: 
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As a reference let us adopt the mathematical model of ideal low-pass filter given by (12) and 

(13) for 1c   and 100 .m
rad

s
   

In order to determine the signals maximizing the error (14) let us adopt: 

- magnitude 0.2 ,a V  

- rate of change , as a maximum absolute value of  
0

,
t

h d     where ( )h t  is the 

difference between the impulse responses of filter and its standard: 4 1.11Bt

V

s
  , 

4 1.36T

V

s
   and 4 1.01Be

V

s
   for Butterworth, Tchebyhev and Bessel filters 

respectively,  
- 0 0.5 .,T s   

- discretization step 0.001 .s   

The obtained switching times of signals errors and their values for Butterworth, Tchebychev 
and Bessel filters are presented in Tables 1-3. 

 

 Butterworth filter 

T[s] 
0.2 , 1.11

V
a V

s
   

0( )x t  0( )I x  

0 0 0 

0.05  [0.0, 0.045s.],  [0.045, 0.05s.] 78.67 10  

0.1  [0.0, 0.095s.],  [0.095, 0.1s.] 54.57 10  

0.15  [0.0, 0.13s.],  [0.13, 0.15s.] 42.68 10  

0.2  [0.0, 0.185s.], a [0.185, 0.2s.] 47.55 10  

0.25  [0.0, 0.2s.], a [0.2, 0.25s.] 419 10  

0.3 
 [0.0, 0.185s.], a [0.185, 0.275s.], 

 [0.275, 0.3s.] 
425 10  

0.35 
 [0.0, 0.05s.],   [0.05, 0.285s.], 

a [0.285, 0.35s.] 
439 10  

0.4 
 [0.0, 0.08s.],   [0.08, 0.345s.], 

a [0.345, 0.4s.] 
457 10  

0.45 
 [0.0, 0.11s.],   [0.11, 0.405s.], 

a [0.405, 0.45s.] 
479 10  

0.5 
 [0.0, 0.135s.],   [0.135, 0.455s.], 

a [0.455, 0.5s.] 
4113 10  

Table 1. Time switchings and values of integral-square error for Butterworth filter  
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 Tchebychev filter 

T[s] 
0.2, 1.36

V
a

s
   

0( )x t  0( )I x  

0 0 0 

0.05  [0.0, 0.045s.],  [0.045, 0.05s.] 64.52 10  

0.1  [0.0, 0.095s.],  [0.095, 0.1s.] 54.61 10  

0.15  [0.0, 0.12s.],  [0.12, 0.15s.] 44.01 10  

0.2  [0.0, 0.15s.], a [0.15, 0.2s.] 412 10  

0.25  [0.0, 0.15s.], a [0.15, 0.25s.] 425 10  

0.3  [0.0, 0.045s.], a [0.045, 0.24s.],  [0.24, 0.3s.] 436 10  

0.35  [0.0, 0.07s.],   [0.07, 0.29s.], a [0.29, 0.35s.] 459 10  

0.4  [0.0, 0.1s.],   [0.1, 0.35s.], a [0.35, 0.4s.] 487 10  

0.45  [0.0, 0.125s.],   [0.125, 0.4s.], a [0.4, 0.45s.] 4122 10  

0.5  [0.0, 0.15s.],   [0.15, 0.45s.], a [0.45, 0.5s.] 4173 10  

Table 2. Time switchings and values of integral-square error for Tchebychev filter  

 

 Bessel filter 

T[s] 
0.2, 1.01

V
a

s
   

0( )x t  0( )I x  

0 0 0 

0.05  [0.0, 0.045s.],  [0.045, 0.05s.] 88.55 10  

0.1  [0.0, 0.095s.],  [0.095, 0.1s.] 55.66 10  

0.15  [0.0, 0.12s.],  [0.12, 0.15s.] 42.74 10  

0.2  [0.0, 0.15s.], a [0.15, 0.2s.] 47.28 10  

0.25  [0.0, 0.15s.], a [0.15, 0.25s.] 418 10  

0.3  [0.0, 0.045s.], a [0.045, 0.24s.],  [0.24, 0.3s.] 425 10  

0.35  [0.0, 0.07s.],   [0.07, 0.29s.], a [0.29, 0.35s.] 437 10  

0.4  [0.0, 0.1s.],   [0.1, 0.35s.], a [0.35, 0.4s.] 451 10  

0.45  [0.0, 0.125s.],   [0.125, 0.4s.], a [0.4, 0.45s.] 470 10  

0.5  [0.0, 0.15s.],   [0.15, 0.45s.], a [0.45, 0.5s.] 499 10  

Table 3. Time switchings and values of integral-square error for Bessel filter  
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Fig. 12 presents signals 0( )x t  and errors ( )y t  as well as Fig. 13 illustrates the integral-square 

error as function of time duration 0 0.5 .T s   for 0.05 .T s    

 

Fig. 12. Signals 0( )x t and error ( )y t  for Butterworth a), Tchebyhev b) and Bessel c) filters. 

 

Fig. 13. Integral-square error as function of time duration 0 0.5 .T s   for Butterworth, 

Tchebychev and Bessel filters. 
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From Fig. 13 it follows that for 0.2 .T s  signal 0( )x t  generates  similar values of error for all 

filters. In the interval 0.2 . 0.35 .s T s   the highest value of error generates the Tchebyshev 

filter, however for the Butterworth and Bessel filters the values of error are similar. For 

0.35 .T s  the higher error generates the Tchebyshev filter, whereas the Bessel filter 

generates the lowest value. 

10. Conclusion 

The calibration of systems based on the theory of maximum dynamic errors, makes it 
possible to create accuracy classes for such dynamic systems and the hierarchy of dynamic 
accuracy resulting from them. These hierarchies are valid regardless of the shape of the 
measured dynamic signal that can appear at the input of the investigated system. 

The calibration methods presented in this chapter can be widely applied in many different 
domains, eg. in electrical metrology (transducers, strain gauge amplifiers, filters, etc), 
geophysics (accelerometer and vibrometer systems), medicine (electroencephalograph and 
electrocardiograph systems), meteorology (autocomparators, autobridges), etc. 
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