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1. Introduction 

Drug development is an expensive, complicated and time-consuming process. According to 
current estimates, a new drug approval, on average, takes about 10 years and costs around 
US$1.0 billion. For all approved drugs, an estimated 30% could make a return on the 
investment. In addition, large pharmaceutical companies will collectively lose about US$70 
billion of revenue over the next five years because of patent expiration (Adams & Vu 
Brantner, 2010). As a result, there is tremendous sense of urgency for the pharmaceutical 
industry to develop new tools to accelerate the drug development process and to reduce 
attrition rate on drug candidates. Microdosing is one of these tools.  

A “microdose” is defined as a dose less than 1/100 of the test substance calculated to yield a 

pharmacologic effect, with a maximum dose of 100 µg (Food and Drug Administration, 

2006). The concept of microdosing to accelerate drug development was first introduced in 

2004 by the Europe Medicines Agency in the position paper on non-clinical safety studies to 

support clinical trials with a single microdose (Europe Medicines Agency, 2004). The Food 

and Drug Administration in 2006 issued a guidance document on exploratory Investigative 

New Drug detailing the regulatory process for microdosing clinical studies (Food and Drug 

Administration, 2006). In 2008, the Ministry of Health, Labor and Welfare in Japan also 

issued a guidance on microdose clinical studies as the means to understand the 

bioavailability and pharmacokinetic profiles of test compounds in human, to evaluate the 

metabolic profiles of test compounds in human or to obtain the information on the tissue 

distribution of test compounds in human by using molecular imaging technology (Ministry 

of Health, Labor and Welfare, 2008). Since the dose is sub-pharmacological, the potential for 

adverse side effect to a human subject in the clinical study is considered to be minimal. As a 

result, only an abridged non-clinical package is required to support a microdosing clinical 

study. This makes the microdosing concept attractive when a speedy decision on drug 

candidate selection around pharmacokinetics and drug metabolism is critical, particularly 

when clear decisions cannot be made with in vivo animal and in vitro pre-clinical 

pharmacokinetic data.  
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2. Microdosing strategy on human pharmacokinetics, metabolism and drug 
development 

There are many reasons drugs can fail in clinical trials. Although drug attrition due to 
unfavorable absorption, distribution, metabolism and excretion properties in humans has 
dropped from 40% in 1991 to 10% in 2000, while drug attrition for efficacy, toxicity and 
safety has increased to 20-30% during the same period (Frank & Hargreaves, 2003), one 
could argue that the reason for the insufficient pharmacological effect in vivo might be 
related to the low concentrations at the target tissues. In addition, accumulation of the drug 
or its metabolites in organ tissues might lead to unwanted adverse effects in humans 
(Sugiyama & Yamashita, 2011). Therefore, issues related to lack of efficacy or safety of drug 
candidates may be attributed not only to the pharmacodynamics, but also to the 
pharmacokinetics and metabolism of the compound.  

Typically, during the pre-clinical stage, a number of in vitro models and in vivo 

pharmacokinetic and drug metabolism studies are conducted in experimental animals such 

as rats, dogs and monkeys. The allometric scaling approach, or physiologically based 

pharmacokinetic models, have often been used to predict human pharmacokinetics. 

However, large genetic and species differences in drug metabolism, particularly for drugs 

with high first-pass metabolism, extra-hepatic metabolism, significant polymorphic 

metabolism, or that are transporter substrates sometimes make prediction of human 

pharmacokinetics difficult. As a result, unfavorable pharmacokinetic and metabolism 

properties such as low oral bioavailability, high clearance, short half-life and extensive drug 

distribution could lead to unexpected adverse effects or lack of efficacy in clinic trials. 

Therefore, in these circumstances, and where there is conflicting animal data that make 

predicting human pharmacokinetics and metabolism difficult, microdosing in the clinic 

could be useful to quickly obtain such information.  

Conceptually, microdosing clinical studies could help (1) choose a drug from a series of 

candidates with the best human pharmacokinetic and metabolism properties for further 

development; (2) evaluate if sufficient exposure could be achieved at proposed clinical doses 

to test pharmacological activity; (3) provide valuable information for formulation 

optimization; and (4) estimate the amount of active pharmaceutical ingredient to support 

clinical drug development (Ings, 2009; Garner, 2010). The underlying fundamental 

assumption, however, for the success of the microdosing concept is that pharmacokinetics 

are linear from microdose to therapeutic dose in the clinic. In order to accurately 

characterize microdosing pharmacokinetics and drug metabolism, a highly sensitive and 

selective bioanalytical method is vital.  

3. Analytical challenges: Advantages and disadvantages of liquid 
chromatography-tandem mass spectrometry, accelerator mass spectrometry 
and positron emission tomography to support microdosing studies 

Microdosing studies for pharmacokinetics and drug metabolism investigations rely on 
analytical techniques with adequate sensitivity. Liquid chromatography-tandem mass 
spectrometry (LC-MS/MS), accelerator mass spectrometry (AMS) and positron emission 
tomography (PET) are currently three major analytical tools to study microdosing 
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pharmacokinetics and drug metabolism, and each technique has its advantages and 
disadvantages. 

AMS employs an instrument for measuring long-lived radionuclides that occur naturally in 
our environment. It uses a particle accelerator in conjunction with ion sources, large 
magnets, and detectors to separate out interferences and count single radionucleotide atoms 
in the presence of 1x1015 stable atoms. Because of the powerful magnet employed, AMS 
typically displays excellent sensitivity with the lower limit of quantitation at femtogram or 
attogram per mL levels (Lappin et al., 2006). Despite its ultra-low sensitivity, AMS has many 
limitations. It requires the synthesis of 14C-radiolabeled drug, which can be costly and time-
consuming (Wilding & Bell, 2005) and necessitates extra precautions during sample 
handling and preparation to prevent contamination by extraneous sources of 14C. In 
addition, AMS measures total 14C radioactivity, that is, drug plus metabolites. In order to 
accurately measure parent drug concentrations, the parent drug in plasma or blood extracts 
must first be separated by high performance liquid chromatography (HPLC) with fraction-
collection followed by subsequent analysis using AMS (Sandhu et al., 2004). At present, 
unlike LC-MS/MS, there is no direct interface between HPLC and AMS. Furthermore, AMS 
methodology requires biological samples to be graphitized prior to analysis, which involves 
a time-consuming process of sample oxidation followed by reduction. These procedures 
result in low throughput, large instrument space and high operating cost (Lappin & Garner, 
2005).  

PET is a relatively new imaging technique that, due to its high sensitivity, has the potential 
to support microdosing studies. In pharmacokinetic studies using PET imaging technology, 
a drug labeled with a positron-emitting radiotracer, such as 11C, is administered. Three 
dimensional images showing the distribution of the radiolabel with spatial resolution of 2-5 
mm are then produced. In dynamic PET, the images can be acquired rapidly and the time-
course can be followed with temporal resolution of a few seconds. Typically, the 

radiotracers employed have very high specific activity, which allows for doses of 10 µg or 
less, consistent with the microdosing concept (Lappin et.al., 2009). However, the short half-
life of positron emitting radionucleotides typically limits the duration of these studies and 
prevents accurate assessment of pharmacokinetics beyond the initial distribution phase. The 
main advantage of PET compared with other analytical techniques is the ability to 
quantitatively image drug distribution in the clinic under a microdosing paradigm, gaining 
insight into concentrations of drug in specific tissues of interest. Another advantage of PET 
is that it is non-invasive. Although PET is mainly used to study pharmacokinetics of 
compounds in the target tissues, it could also be used to analyze blood or plasma samples. 
In this practice, an HPLC with radiodetection is used to separate parent drug from the 
metabolites, thereby gaining information on the quantities of both parent drug and 
metabolites. This procedure, however, could add considerably to the complexity of the 
experiments and can be challenging due to the short half-life of the radionucleotides. Other 
disadvantages of PET are that the instrument is expensive and only available at certain 
locations that have the specialized hot chemistry facilities, an on-site cyclotron and a 
positron emission tomography camera. 

LC-MS/MS is widely available in the pharmaceutical industry and academic institutions as 
a powerful analytical tool to measure drug concentrations. It is easy to use and highly 
automated. Mass Spectrometry can also be directly linked to a HPLC system to separate 
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parent drug from the metabolites. In addition, LC-MS/MS has the functionality to 
characterize drug metabolites. LC-MS/MS is relatively inexpensive compared to AMS or 
PET, and occupies much smaller footprint in the laboratory setting. At present, however, 
LC-MS/MS can only achieve lower limits of quantitation at picogram or femtogram per mL 
level, an order of magnitude less sensitive compared to AMS technique. Nevertheless, LC-
MS/MS has gained considerable attention in the recent years as an analytical technique to 
study microdosing pharmacokinetics and drug metabolism.  

4. Brief description on liquid chromatography-tandem mass spectrometry 
and sample preparation techniques 

Since its widespread introduction more than 20 years ago, LC-MS/MS has made an 

enormous impact on biomedical research, particularly on the study of drug metabolism and 

pharmacokinetics (Kamel & Prakash, 2006) in the pharmaceutical industry (Lee, 2005). It has 

been the preferred technique for bioanalysis of small molecules in biological fluids for more 

than 10 years (Marzo & Dal Bo, 2007). Although considered as a mature technology, rapid 

and exciting advances continue to occur that promise even greater performance. The 

inherent sensitivity, selectivity, robustness and speed of LC-MS/MS make it an attractive 

technique for supporting microdosing studies even though sensitivity is still somewhat of a 

challenge at the extremely low doses. Advances in mass spectrometry technology, 

chromatography and sample preparation have made bioanalytical assays with sensitivities 

at the low pg/mL range more common, if not yet routine. As the technology continues to 

advance, improvements in sensitivity are likely to continue.  

Several excellent books are available that cover LC-MS/MS in general (Niessen, 2006) and 
application to analysis of small molecule pharmaceuticals in biological matrices 
(Korfermacher, 2004), and numerous review articles (Xu et al., 2007) cover recent 
developments for the reader interested in a comprehensive review of LC-MS/MS 
technology. An excellent review on sample preparation, which is a key factor in bioanalysis, 
is also available (Wells, 2003). The objective of this brief introduction to LC-MS/MS is to 
provide an understanding of the technology, as well as its promise and limitations, that 
would assist a researcher interested in microdosing, but not necessarily familiar with 
analytical chemistry, with emphasis on aspects and recent developments relevant to 
microdosing studies. 

4.1 Overall liquid chromatography-mass spectrometry analysis 

LC-MS/MS is a joining of two techniques: HPLC and mass spectrometry (MS). A schematic 
diagram of a LC-MS/MS system is shown in Figure 1. In an HPLC system, the components 
of the sample are separated on the basis of physical properties by distributing into two 
immiscible phases, the stationary phase (contained in a column) and the mobile phase 
(which flows through the column). The effluent from the HPLC column is directed to the 
ionization source of the mass spectrometer, where the analyte(s) is converted into gas phase 
ions. These ions are then introduced in several stages to the high vacuum region of the mass 
analyzer, where the ions are separated by mass to charge ratio and measured by the 
detector. In most applications related to bioanalysis, tandem mass spectrometers are 
utilized. 
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4.2 Sample pretreatment  

Prior to analysis by LC-MS/MS, complex samples such as plasma are typically pretreated to 
remove proteins and other potentially interfering materials. Table 1 lists the most common 
sample preparation techniques along with the key advantages and disadvantages.  

HPLC Pumps

HPLC 

Autosampler
Column

Mass Spectrometer
HPLC Pumps

Computer
Instrument Control

Data Acquisition

Data Processing

 

Fig. 1. Schematic diagram of a liquid chromatography-mass spectrometry system. 

Typical bioanalytical assays involve preparing calibration standard and control samples, 
then pre-treating the samples prior to injection and analysis by LC-MS/MS. Thus, the 
technique can be divided into three parts: sample pretreatment, HPLC and MS/MS. 

 

Technique Pro Con 

Protein 
precipitation 

• Little or no method 
development needed 

• Good recovery of wide variety 
of analytes (i.e. metabolites)

• Matrix ion suppression 

Liquid-liquid 
extraction 

• Provides clean extract 
• Concentrates sample to improve 

sensitivity 

• Recovery of polar analytes (i.e. 
metabolites) may be poor 

• Less amenable to automation and 
high throughput

Solid phase 
extraction 

• Provides clean extract 
• Concentrates sample to improve 

sensitivity 
• Amenable to high throughput 
• Large variety of SPE sorbents

• Extensive method development 
may be needed to optimize 

• Recovery of metabolites may be 
poor 

Online sample 
preparation 
(turbulent flow, 
monolithic) 

• No sample preparation needed 
• Amenable to automation and 

high throughput 
• High sensitivity can be achieved

• More complex valve switching 
system is needed 

• Extensive method development 
needed to achieve high 
sensitivity 

• Higher carry-over

Table 1. Summary of pros and cons of selected bioanalytical sample preparation techniques. 
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Solid phase extraction and liquid-liquid extraction are the two most common techniques 
applied to microdosing studies, since these techniques allow for concentration of the sample 
to help achieve high sensitivity. Adequate sample clean-up to remove background 
interferences and to reduce matrix ion suppression is critical for achieving highly sensitive 
and robust bioanalytical assays. Note that if analysis of metabolites is desired, a less specific 
sample preparation procedure (i.e. protein precipitation) may be necessary to ensure 
recovery of the metabolites. 

4.3 High performance liquid chromatography 

Selected techniques and advances in high performance liquid chromatography used in 

bioanalysis, along with key advantages and limitations, are shown in Table 2.  

  

Technique Pro Con 

Reverse phase liquid 
chromatography 

• Most common mode to connect 
mass spectrometry 

• Predictable retention of 
metabolites 

• Larger variety of stationary 
phases available

• Difficult to retain highly polar 
analytes 

Normal phase liquid 
chromatography 

• Optimal mode for chiral 
separations 

• Not amenable to electrospray 
• Unpredictable retention of 

metabolites

Ion pairing liquid 
chromatography 

• Provides retention for very 
polar analytes 

• Ion suppression

Very or ultra high 
pressure liquid 
chromatography 

• Higher chromatographic 
efficiency improves sensitivity 
and speed 

• Special columns and pumps 
needed  

Fused core particle 
technology columns 

• Higher chromatographic 
efficiency improves sensitivity 
and speed 

• Ultra high pressure liquid 
chromatography - like 
performance without special 
pumps

Hydrophilic interaction 
liquid chromatography 

• Provides retention and 
improves sensitivity for very 
polar analytes

• Unpredictable retention of 
metabolites 

Two dimensional - high 
performance liquid 
chromatography 

• Cleaner background improves 
sensitivity 

• Special equipment and 
extensive method development 
needed 

Table 2. Selected advances and techniques of HPLC along with a summary of the pros and 
cons of each. 

Reverse-phase liquid chromatography, wherethe stationary phase is a non-polar material 
such as C8 or C18 and the mobile phase is a mixture of polar solvents, is by far the most 
common configuration. Normal phase, ion pairing (Gao et al., 2005), ion exchange and chiral 
chromatography (Chen et al., 2005) are less common modes used in bioanalysis. Key 
technology developments within reverse-phase HPLC that improve sensitivity include 
ultra-high-pressure liquid chromatography (Guillarme et al., 2010) and fused-core particle 
columns (Song et al., 2009), which improve the efficiency and speed of liquid 
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chromatographic separations. Improving chromatographic efficiency increases sensitivity in 
two ways; by producing sharper, more concentrated peaks and by separating matrix 
components that could cause matrix ion suppression.  

4.4 Mass spectrometry  

4.4.1 Ionization source 

The development of atmospheric pressure ionization, in particular electrospray and 

atmospheric pressure chemical ionization, was the key development that made the union 

of liquid chromatography and mass spectrometry successful. In electrospray (Figure 2), 

the mobile phase effluent is nebulized and a charge of 3-5 kV is applied to the spray 

needle. In the spray zone, small charged droplets are formed and as the solvent 

evaporates, the excess charge in the droplets becomes more concentrated and, at some 

point, the Coulomb repulsion overcomes the competing force of surface tension and 

causes the droplets to disintegrate and gas phase ions of the analyte(s) are produced. The 

exact mechanisms of how ions are produced from charged droplets are complex and still a 

matter of intense research and debate, and several reviews summarize practical 

implications of recent findings (Cech, 2002; Cole, 2000). Electrospray is capable of ionizing 

almost any polar analyte molecule, and works especially well with weakly basic or acidic 

compounds. For less polar or non-polar analytes, atmospheric pressure chemical 

ionization is often used. 
 

3-5kV

HPLC Effluent

Nebulizer

+

+

+

++

+
+

To high vacuum

Atmospheric

Pressure

Droplets with 

excess charge

Solvent

evaporation

Ion evaporation

(gas phase ions)

 

Fig. 2. Electrospray ionization. 

In atmospheric pressure chemical ionization (APCI), the mobile phase effluent is almost 
completely evaporated in a heated quartz tube and a corona discharge reacts with gas 
molecules from evaporation of the various mobile phase components, which undergo a 
series of gas phase ion-molecule reactions, especially proton transfer reactions, that 
eventually result in the production of gas phase ions of the analyte(s). Unlike electrospray, 
in atmospheric APCI, ionization occurs in the gas phase, which could explain why 
atmospheric pressure chemical ionization is less susceptible to matrix ion suppression 
effects. 
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Both electrospray and atmospheric pressure chemical ionization are “soft” ionization 

methods, which typically result in protonated molecular ions, [MH]+, in positive mode or 

deprotonated molecular ions, [M-H]-, in negative mode. In either case, the composition of 

the mobile phase has a profound influence on ionization (Kostiainen et al., 2009). The choice 

of composition of the mobile phase is therefore a compromise between its effects on the 

chromatography and the effects on ionization in the mass spectrometer. The ionization 

efficiency, and therefore assay sensitivity, is also highly compound dependent. 

4.4.2 Mass analyzer types and configurations 

There are many different types of mass spectrometers. In a tandem mass spectrometer, two 

mass analyzers are used to provide an additional dimension of selectivity, where the first 

mass analyzer selects ions of only the desired mass to charge ratio, which are fragmented 

and the resulting fragment ions analyzed by the second mass analyzer. Tandem mass 

spectrometers improve the selectivity and sensitivity for quantitative assays, and greatly 

expand the capabilities for gaining qualitative information of unknown metabolites.  

4.4.2.1 Triple quadropole mass spectrometers for quantitative bioanalysis 

LC-MS/MS utilizing a triple quadrupole mass spectrometer operated in multiple reaction 

monitoring mode is currently the method of choice for quantitative bioanalysis of small 

molecules. A schematic diagram of a triple quadrupole mass spectrometer is shown in 

Figure 3.  

 

ESI, APCI

Ionization 

source

Electron 

multiplier

Detector
Q1 Q2 Q3

N2 or Ar (collision gas)

Select m/z

for analyte

i.e [MH]+

Fragmentation Select  m/z of 

Fragment ion 

for analyte
 

 

Fig. 3. Schematic diagram of a triple quadrupole mass spectrometer.  

The first quadrupole acts as a mass filter to select only ions of a specific mass to charge 

ratio,typically of the [MH]+ or [M-H]- ions of the analyte, to enter into the second 

quadrupole. The second quadrupole is the collision cell, where collision with a gas (N2 or 

Ar) causes the ions to fragment through a process known as collision activated dissociation. 

The resulting fragment ions are transmitted to third quadrupole, where only the fragment 

ions of the desired mass to charge ratio are allowed to pass and impinge on the detector 
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(electron multiplier). The two levels of selectivity in the multiple reaction monitoring 

experiment, combined with the chromatographic separation, provided a very high level of 

selectivity and are critical to achieving high sensitivity.  

4.4.2.2 Mass spectrometers for qualitative analysis 

Despite the current predominance of triple quadrupole mass spectrometers in quantitative 

bioanalysis, other instrument types show promise and may prove to be powerful tools for 

use in microdosing studies. Several mass spectrometer configurations are available that, in 

addition to quantifying parent drug and known metabolites, offer the ability to gain 

information about metabolite pathways even without a priori knowledge of metabolism. 

These instruments vary widely in their configurations, principles of operation, but can 

provide structural information on metabolites. Several examples are briefly discussed 

below.  

High resolution mass spectrometers, including time-of-flight (Williamson et al., 2007; 

Williamson et al., 2008), orbitrap instruments (Zhang et al., 2009; Bateman et al., 2009) and 

linear ion trap-fourier transform ion cyclotron mass spectrometers (Yamane et al., 2009) 

provide high selectivity and are able to characterize metabolites. 

Ion trap and hybrid triple quadrupole-ion trap mass spectrometers are low resolution 

instruments that could provide the ability to simultaneously measure and characterize 

metabolites along with quantitative bioanalysis. The hybrid linear ion trap–triple 

quadrupole mass spectrometer, or Quadrupole-Trap, by configuring third quadrupole to 

function either as a quadrupole mass filter or a linear ion trap, combines the features of a 

triple quadrupole instrument with the features of an ion trap instrument (King & 

Fernandez-Metzler, 2006). The quadrupole-trap instruments can therefore provide the same 

sensitivity as a triple quadrupole mass spectrometer and also provide simultaneous 

qualitative metabolite characterization data, which has allowed these instruments to be used 

to support microdosing studies.  

5. Application of liquid chromatography-tandem mass spectrometry to 
support microdosing pharmacokinetic studies 

LC-MS/MS has been successfully used to investigate the pharmacokinetic linearity of 

drugs in animals as well as in clinical trials. Balani et al. first reported the evaluation of 

microdosing to assess pharmacokinetic linearity of fluconazole, tolbutamide and an 

investigational compound MLNX in rats using LC-MS/MS (Balani et al., 2006). In this 

study, fluconazole was orally administrated at 0.001, 0.005, 0.05 and 5 mg/kg; 

tolbutamide at 0.001, 0.002, 0.01, 0.1 and 1 mg/kg; and MLNX at 0.01, 0.1, 1, 10 mg/kg to 

rats. Because of the low plasma clearance, low volume of distribution, and high oral 

bioavailability for these compounds, the plasma concentrations in rats declined slowly 

and were easily quantifiable in 24 hour postdose plasma samples. Thus, the LC-MS/MS 

sensitivity of 0.1 to 1 nM was adequate to support microdosing studies for these 

compounds in rats. Both fluconazole and tolbutamide showed linear pharmacokinetics 

throughout the entire dose range and MLNX showed linear pharmacokinetics between 0.1 

and 1 mg/kg, but not to 10 mg/kg.  
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A more comprehensive study involving five drugs of antipyrine, metoprolol, 

carbamazepine, digoxin and atenolol from three different classes of the Biopharmaceutical 

Classifications Systems and with the diverse chemical structures were used as model 

compounds to evaluate the feasibility and sensitivity requirements of LC-MS/MS as an 

analytical tool to support microdosing studies (Ni et al., 2008). These five drugs were 

individually administered orally to rats at 0.167, 1.67, 16.7, 167 or 1670 µg/kg doses, where 

1.67 μg/kg was equivalent to the maximal microdose of 100 μg in 60 kg human. The 10,000 

fold dose range from 0.167 μg/kg to 1670 μg/kg was designed to evaluate the linearity of 

pharmacokinetics. Using 100 µl plasma sample aliquots, the lower limits of quantitation for 

antipyrine (10 pg/ml), carbamazepine (1 pg/ml), metoprolol (5 pg/ml), atenolol (20 pg/ml) 

and digoxin (5 pg/ml) were achieved. Proportional pharmacokinetics were obtained from 

0.167 to 1670 µg/kg for antipyrine and carbamazepine and from 1.67 to 1670 µg/kg for 

atenolol and digoxin, while metoprolol, which is known to undergo extensive metabolism in 

rats, exhibited non-proportional pharmacokinetics.  

LC-MS/MS technology has also been successfully utilized in support of microdosing clinical 

studies. A validated assay using LC-MS/MS methodology was developed to support 

quantitative analysis of fexofenadine in human plasma for microdose and pharmacologic 

dose clinical trials (Yamane et al., 2007). Calibration standards for microdosing study were 

prepared in the range from 10 to 1000 pg/ml while calibration standards for 

pharmacological dosing study were from 1 to 500 ng/ml. The results suggested that it was 

possible to obtain the plasma drug concentrations at all time points up to 12 hours after 

microdosing and the linear pharmacokinetic profiles were obtained for fexofenadine 

between microdose of 100 µg and therapeutic dose of 60 mg (Yamazaki et.al., 2010). 

Similarly, a sample treatment procedure and LC-MS/MS method for quantitative 

determination of nicardipine in human plasma were developed for a microdose clinical trial 

with nicardipine (Yamane et al., 2009). Bioanalytical methods were validated in the 

calibration ranges from 1 to 500 pg/ml and from 0.2 to 100 ng/ml to support microdosing 

and pharmacological dosing, respectively. Each method was successfully applied to 

measure drug concentrations in plasma using LC-MS/MS after administration of 100 µg 

microdose and 20 mg pharmacological dose to each of six healthy volunteers. 

In order to obtain information on absolute oral bioavailability, a technique utilizing 

simultaneous intravenous microdosing of 14C-labeled drug with oral dosing of non-labeled 

drug in dogs was exemplified using an investigational compound R-142086 (Miyaji et al., 

2009). Plasma concentrations of R-142086 were measured by LC-MS/MS and plasma 

concentrations of 14C-R-142086 were measured by AMS following R-142086 oral dosing at 1 

mg/kg and simultaneous 14C-R-142086 intravenous dosing at 1.5 µg/kg (71.25 nCi/kg). 

Using this strategy, the oral bioavailability of R-142086 was calculated as 16.1% in dogs. In 

addition, the correlation between the plasma R-142086 concentration data obtained by AMS 

and LC-MS/MS was examined at an intravenous dose of 0.3 mg/kg (71.25 nCi/kg). The 

plasma concentration-time curves for 14C-R-142086 determined by AMS and for R-142086 

determined by LC-MS/MS in each dog are compared in Figure 4. Although plasma 

concentrations of R-142086 determined by LC-MS/MS were approximately 20% higher than 

those of 14C-R-142086 as determined by AMS, there was excellent correlation (r=0.994) 

between both concentrations. 
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Fig. 4. Correlation between AMS and LC-MS/MS analyses. Panel A: Comparison of plasma 

concentrations of R-142086 determined by LC-MS/MS (○) versus those of 14C-R-142086 

determined by AMS (●) after intravenous administration of 14C-R-142086 at a higher dose 

(0.3 mg/kg, 71.25 nCi/kg) in each of three dogs. Panel B: Relationship of concentration of  

R-142086 in all dogs determined by LC-MS/MS and those of 14C-R-142086 determined by 

AMS after intravenous dosing of a higher dose (0.3 mg/kg, 71.25 nCi/kg). The coefficient of 

correlation (r) was 0.994. The regression line was y = 1.14 x -0.191.For AMS analysis, the 

plasma samples were diluted 5-fold (open square), 20-fold (open circle) or 50-fold (open 

triangle).  

(Reprinted with permission from [Miyaji 2009],©2009, The Japanese Society for the Study of 

Xenobiotics) 
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6. Application of liquid chromatography-tandem mass spectrometry to 
support microdosing metabolism studies 

LC-MS/MS technology has also been used to characterize and quantify metabolites in 
microdosing animal and clinical studies. Ni et al. (Ni et al., 2008) reported the 
characterization of carbamazepine metabolites in both in vitro liver microsomes and in vivo 
rat at ultra-low concentrations or dose level. Concentrations of 100 nM or 3 nM 
carbamazepine were incubated in rat liver microsomes, and metabolites were characterized 
by LC-MS/MS. Incubation concentration at 3 nM was selected because of its close 
equivalency with plasma Cmax of carbamazepine at the microdose of 1.67 µg/kg in rats. In 
vitro metabolism data showed the presence of oxidative and conjugated metabolites 
following incubations at 3 nM and 100 nM. Four metabolites of carbamazepine were 
detected and characterized in the plasma of rats dosed with 1.67 µg/kg of carbamazepine. 
The carbamazepine epoxide, among the four metabolites characterized, was the major 
human circulating metabolite of carbamazepine at the therapeutic doses. Through 
comparing with carbamazepine metabolism reported in the literature (Lertratanangkoon & 
Horning, 1982), study results suggested that the metabolic profile in vivo at a microdose is, 
in general, similar to that at therapeutic doses in rats for carbamazepine.  

The metabolites of nicardipine were characterized using linear ion trap-fourier transform 
ion cyclotron resonance mass spectrometry for in vitro human liver microsomal incubation 
with 10 µM nicardipine, where the chemical structures and possible fragmentation patterns 
for nine metabolites were proposed. These nine metabolites were subsequently monitored 
and detected in human plasma in a microdosing clinical study (Yamane et al., 2009).  

Further evaluation took place on the sensitivity requirement for LC-MS/MS as an analytical 
tool to characterize metabolites in plasma and urine at microdose level in rats. In addition, 
the investigation of the proportionality of metabolite exposure from microdose of 1.67 
µg/kg to a high dose of 5000 µg/kg was conducted for four model compounds of 
atorvastatin, ofloxacin, omeprazole and tamoxifen (Ni et al., 2010). For all targeted 
metabolites based upon literature reports, only a few metabolites including the glucuronide 
metabolite of ofloxacin, the hydroxylation metabolite of omeprazole and hydration 
metabolite of tamoxifen were detected by LC-MS/MS in rat plasma following microdosing. 
The exposure of detected metabolites of omeprazole and tamoxifen appeared to increase in 
a non-proportional manner with increasing doses. For atorvastatin metabolites, the 
exposure of atorvastatin lactone increased non-proportionally with increasing doses while 
the exposure of ortho- and para-hydroxyatorvastatin did show proportional increase (Table 
3). Following a single oral microdose or high dose to rats, the exposure of area under the 
curve of detected metabolites of atorvastatin, omeprazole or tamoxifen did not always 
display a proportional relationship from a microdose of 1.67 µg/kg to high dose of 5000 
µg/kg. Therefore, it was concluded that the exposure of metabolites at the microdose level 
cannot simply be used to predict their exposure at higher doses. 

7. Discussion 

Microdosing could provide tremendous value to the drug development, particularly for the 
evaluation of pharmacokinetics and metabolism properties of compounds. In cases where 
human pharmacokinetic prediction becomes difficult due to conflicting animal  
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 Dose Cmax (ng/mL) Tmax (hour) AUC0-tlast 

(ng*hours/ml) 

μg/kg Mean SD Mean SD Mean SD 

Atorvastatin 1.67 0.158 0.0508 0.556 0.193 0.208 0.0116 

25 0.508 0.193 0.444 0.193 0.426 0.0474 

350 2.68 1.32 0.333 0.00 2.54 0.806 

5000 34.8 17.7 0.555 0.385 36.5 21.0 

ortho-Hydroxy 
atorvastatin 

1.67 0.0985 0.124 0.777 0.507 0.0628 0.0485 

25 0.463 0.185 0.333 0.00 0.497 0.249 

350 5.12 2.76 0.665 0.576 6.63 2.89 

5000 50.9 35.5 0.777 0.507 67.4 47.6 

para-Hydroxy 
atorvastatin 

1.67 NC NC NC NC NC NC 

25 0.0233 0.0133 0.665 0.576 0.0208 0.0111 

350 0.241 0.149 0.665 0.576 0.258 0.110 

5000 2.13 1.33 0.888 0.508 2.18 1.25 

Lactone of 
atorvastatin 

1.67 2.33 1.20 0.999 0.332 2.82 1.39 

25 4.08 0.427 0.444 0.193 5.33 0.648 

350 7.58 1.06 0.444 0.193 11.4 0.862 

5000 23.8 10.7 0.556 0.193 27.3 8.90 

NC: not calculable 

Table 3. The pharmacokinetic parameters of atorvastatin and its metabolites following a 
single oral dose to male Sprague-Dawley rats. 

pharmacokinetic data, a microdose clinical study could help to determine if a drug has 
desirable pharmacokinetic properties that warrant further development. Highly sensitive 
and selective analytical tools such as LC-MS/MS and AMS have made it possible to 
characterize pharmacokinetics and metabolism of drug candidates at the microdose level. In 
the past several years, a lot of attention has been focusing on evaluating pharmacokinetic 
linearity of drug molecules from microdose to therapeutic doses in animals as well as in the 
clinic. It has been summarized that out of 26 drugs examined so far, 21 compounds, 
approximately 80%, have demonstrated linear pharmacokinetics between microdose to 
therapeutic doses (Lappin, 2010). For compounds which have failed to demonstrate 
pharmacokinetic linearity, there are a number of possible causes. For instance, drug 
candidates with saturable first-pass metabolism or saturable elimination at therapeutic 
doses would often result in under-prediction of exposure based upon microdose data. On 
the other hand, drug candidates with poor solubility would produce over-prediction of 
exposure based upon microdose data. Therefore, the understanding of physical and 
chemical properties of compounds and of enzyme kinetics in vitro could be very important 
prior to the commitment to a microdosing study. In practice, if there is a concern that 
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compound would display nonlinear pharmacokinetics from a microdose to therapeutic 
doses in the clinic, a pharmacokinetic study could be performed to exam pharmacokinetic 
linearity in a relevant animal species.  

Microdosing could also be very valuable to obtain an earlier understanding of metabolism 

of drug candidates in the clinic. This has become more important with the release of the 

recent guidance document “safety testing of drug metabolites” by the FDA (Food and Drug 

Administration, 2008). The guidance document stated that metabolites found only in human 

plasma or metabolites present at disproportionately higher levels in humans than in any of 

the animal test species should be considered for safety assessment. In particular, human 

metabolites that are formed at greater than 10% of parent drug systemic exposure at steady 

state can raise a safety concern. As a result, it has become very important to obtain human 

drug metabolism information as early as possible in the drug development stage, and to 

compare with preclinical metabolism data. Although microdosing studies in the clinic 

would be ideal to understand the metabolism of drug candidates early on, caution must be 

exercised to extrapolate the learning from microdose to therapeutic doses. This could be 

particularly true for compounds where metabolism enzymes have low substrate capacities 

and can be saturated at low substrate concentrations. For example, the P450 isoform 

CYP2D6 is a low capacity enzyme and if a novel drug candidate is metabolized primarily 

through the CYP2D6 pathway, the metabolic pathway of this drug candidate at microdose 

may be different from that at therapeutic doses. The levels of a particular metabolite relative 

to parent drug, as the means to identify major metabolites, may be different from microdose 

to therapeutic doses. In this case, a thorough understanding of metabolic pathways with 

animals and in vitro would be very useful to assess reliability of drug metabolism prediction 

from microdose to therapeutic doses. In addition, a microdose clinical study would help to 

identify if human-specific metabolites are present so that a thorough evaluation of these 

human unique metabolites could take place in the relevant toxicological species. 

8. Conclusion 

The highly selective and sensitive technology of LC-MS/MS has become a powerful 

analytical tool that provides the opportunity to understand clinical pharmacokinetics of 

compounds using the microdosing approach. Furthermore, LC-MS/MS has demonstrated 

its usefulness for detecting and characterizing metabolites in plasma and urine at 

microdose level. Although the extrapolation of parent drug exposure from a microdose to 

a therapeutic dose appears to be promising, such extrapolation for metabolites may be 

compound and/or metabolite dependent. Extrapolation of metabolite exposure would 

particularly be difficult if there is involvement of enzyme inhibition, induction or 

saturation. 
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