
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

A Visual Software Development Environment that
Considers Tests of Physical Units *

Takaaki Goto1, Yasunori Shiono2, Tomoo Sumida2, Tetsuro Nishino1,
Takeo Yaku3 and Kensei Tsuchida2

1The University of Electro-Communications
2Toyo University

3Nihon University
Japan

1. Introduction

Embedded systems are extensively used in various small devices, such as mobile phones,
in transportation systems, such as those in cars or aircraft, and in large-scale distributed
systems, such as cloud computing environments. We need a technology that can be used
to develop low-cost, high-performance embedded systems. This technology would be useful
for designing, testing, implementing, and evaluating embedded prototype systems by using
a software simulator.

So far, embedded systems are typically used only in machine controls, but it seems that they
will soon also have an information processing function. Recent embedded systems target
not only industrial products but also consumer products, and this appears to be spreading
across various fields. In the United States and Europe, there are large national projects related
to the development of embedded systems. Embedded systems are increasing in size and
becoming more complicated, so the development of methodologies and efficient testing for
them is highly desirable.

The authors have been engaged in the development of a software development environment
based on graph theory, which includes graph drawing theory and graph grammars [2–4]. In
our research, we use Hichart, which is a program diagram methodology originally introduced
by Yaku and Futatsugi [5].

There has been a substantial amount of research devoted to Hichart. A prototype formulation
of attribute graph grammar for Hichart was reported in [6]. This grammar consists of Hichart
syntax rules, which use a context-free graph grammar [7], and semantic rules for layout.

The authors have been developing a software development environment based on graph
theory that includes graph drawing theory and various graph grammars [2, 8]. So far, we
have developed bidirectional translators that can translate a Pascal, C, or DXL source into
Hichart and can alternatively translate Hichart into Pascal, C, or DXL [2, 8]. For example,
HiChart Graph Grammar (HCGG) [9] is an attribute graph grammar with an underlying

*Part of the results have previously been reported by [1]

9

www.intechopen.com

2 Embedded System

graph grammar based on edNCE graph grammar [10] and intended for use with DXL. It
is problematic, however, in that it cannot parse very efficiently. Hichart Precedence Graph
Grammar (HCPGG) was introduced in [11].

In recent years, model checking methodologies have been applied to embedded systems. In
our current work, we constructed a visual software development environment to support
a developed embedded system. The target of this research is NQC, which is the program
language for LEGO MINDSTORM. Our visual software development system for embedded
systems can

1. generate Promela codes for given Hichart diagrams, and

2. detect problems by using visual feedback features.

Our previously developed environment was not sufficiently functional, so we created an
effective testing environment for the visual environment.

In this chapter, we describe our visual software development environment that supports the
development of embedded systems.

2. Preliminaries

2.1 Embedded systems

An embedded system is a system that controls various components and specific functions of
the industrial equipment or consumer electronic device it is built into [12, 13]. Product life
cycles are currently being shortened, and the period from development to verification has
now been trimmed down to about three months. Four requirements are needed to implement
modern embedded systems.

• Concurrency
Multi-core and/or multi processors are becoming dominant in the architecture of
processors as a solution to the limits in circuit line width (manufacturing process),
increased generation of heat, and clock speed limits. Therefore, it is necessary to
implement applications by using methods with parallelism descriptions.

• Hierarchy
System modules are arranged in a hierarchal fashion in main systems, subsystems,
and sub-subsystems. Diversity and recycling must be improved, and the number of
development processes should be reduced as much as possible.

• Resource Constraints
It is necessary to comply with the constraints of built-in factors like memory and power
consumption.

• Safety and Reliability

System failure is a serious problem that can cause severe damage and potentially fatal
accidents. It is extremely important to guarantee the safety of a system.

LEGO MINDSTORMS [14] is a robotics environment that was jointly developed by the REGO

and MIT. MINDSTORMS consists of a block with an RCX or NXT micro processor. Robots that
are constructed with RCX or NXT and sensors can work autonomously, so a block with RCX
or NXT can control a robot’s behavior. RCX or NXT detects environment information through

186 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 1 3

attached sensors and then activates motors in accordance with the programs. RCX and NXT
are micro processors with a touch sensor, humidity sensor, photodetector, motor, and lamp.

ROBOLAB is a programming environment developed by National Instruments, the REGO,
and Tufts University. It is based on LABVIEW (developed by National Instruments) and
provides a graphical programming environment that uses icons.

It is easy for users to develop programs in a short amount of time because ROBOLAB uses
templates. These templates include various icons that correspond to different functions which
then appear in the developed program in pilot level. ROBOLAB has fewer options than
LABVIEW, but it does have some additional commands that have been customized for RCX.

Two programming levels, pilot level and inventor level, can be used in ROBOLAB. The steps
then taken to construct a program are as follows.

1. Choose icons from palette.

2. Put icons in a program window.

3. Set orders of icons and then connect them.

4. Transfer obtained program to the RCX.

Not Quite C (NQC) [15] is a language that can be used in LEGO MINDSTORM RCX. Its
specification is similar to that of C language, but differs in that it does not provide a pointer

but instead has functions specialized for LEGO MINDSTORMS, including "turn on motors,"
"check touch sensors value," and so on.

A typical NQC program starts from a “main“ task and can handle a maximum of ten tasks.

When we write NQC source codes, the below description is required.

Listing 1. Example1

task main ()
{
}

Here, we investigate functions and constants. The below program shows MINDSTORMS
going forward for four seconds, then backward for four seconds, and then stopping.

Listing 2. Example2

task main ()
{

OnFwd(OUT_A+OUT_C) ;
Wait (4 0 0) ;
OnRev(OUT_A+OUT_C) ;
Wait (4 0 0) ;
Off (OUT_A+OUT_C) ;

}

Here, the functions “OnFwd,“ “OnRev,“ etc. control RCX. Table 1 shows an example of
functions customized for NQC.

187A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

4 Embedded System

Functions Explanation Example of description

SetSensor(<sensor
name>,
<configuration>)

set type and mode of
sensors

SetSensor(SENSOR_1,
SENSOR_TOUCH)

SetSensorMode(<sensor
name>, <mode>)

set a sensor’s mode SetSensorMode(SENSOR_2,
SENSOR_MODE_PERCENT)

OnFwd(<outputs>) set direction and turn
on

OnFwd(OUT_A)

Table 1. Functions of RCX

As for the constants, they are constants with names and work to improve programmers’
understanding of NQC programs.

Table 2 shows an example of constants.

Constants category Constants

Setting for SetSensor() SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION

Mode for
SetSensorMode

SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION

Table 2. Constants of RCX

We adopt REGO MINDSTORMS as an example of embedded systems with sensors.

2.2 Program diagrams

In software design and development, program diagrams are often used for software
visualization. Many kinds of program diagrams, such as the previously mentioned
hierarchical flowchart language (Hichart), problem analysis diagram (PAD), hierarchical and
compact description chart (HCP), and structured programming diagram (SPD), have been

used in software development [2, 16]. Moreover, software development using these program
diagrams is steadily on the increase.

In our research, we used the Hichart program diagram [17], which was first introduced by

Yaku and Futatsugi [5]. Figure 1 shows a program called “Tower of Hanoi“ that was written
in Hichart.

Hichart has three key features:

1. A tree-flowchart diagram that has the flow control lines of a Neumann program flowchart,

188 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 2 5

Fig. 1. Example of Hichart: “Tower of Hanoi“.

a) process

c) continuous iteration

b) exclusive selection

d) caption

Fig. 2. Example of Hichart symbols.

2. Nodes of the different functions in a diagram that are represented by differently shaped
cells, and

3. A data structure hierarchy (represented by a diagram) and a control flow that are
simultaneously displayed on a plane, which distinguishes it from other program diagram
methodologies.

Hichart is described by cell and line. There are various type of cells, such as "process,"
"exclusive selection," "continuous iteration," "caption," and so on. Figure 2 shows an example
of some of the Hichart symbols.

3. Program diagrams for embedded systems

In this section, we describe program diagrams for embedded systems, specifically, a detailed
procedure for constructing program diagrams for an embedded system using Hichart for
NQC.

189A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

6 Embedded System

Hichart

internal data

Translate

from H to C

Translate

from C to H

C source code

Compile, execute

User

C source code

Hichart editor

Fig. 3. Overview of our previous study.

Figure 3 shows an overview of our previous study on a Hichart-C translation system.

In our previous system, it is possible to obtain internal Hichart data from C source code via a
C-to-H translator implemented using JavaCC. Users can edit a Hichart diagram on a Hichart

editor that visualizes the internal Hichart data as a Hichart diagram. The H-to-C translator
can generate C source codes from the internal Hichart data, and then we can obtain the C
source code corresponding to the Hichart diagrams. Our system can illustrate programs as
diagrams, which leads to an improved understanding of programs.

We expanded the above framework to treat embedded system programming. Specifically we
extended H-to-C and C-to-H specialized for NQC. Some of the alterations we made are as
follows.

1. task
The “task“ is a unique keyword of NQC, and we therefore added it to the C-to-H function.

2. start, stop
We added “start“ and “stop“ statements in Hichart (as shown in List 3) to control tasks.

Listing 3. Example3

task main ()
{

SetSensor (SENSOR_1 ,SENSOR_TOUCH) ;
s t a r t check_sensors ;
s t a r t move_square ;

}

task move_square ()
{

while (t r ue)
{

OnFwd(OUT_A+OUT_C) ; Wait (1 0 0) ;

190 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 3 7

Fig. 4. Screenshot of Hichart for NQC that correspond to List 3.

OnRev(OUT_C) ; Wait (6 8) ;
}

}

task check_sensors ()
{

while (t r ue)
{

i f (SENSOR_1 == 1)
{

s top move_square ;

OnRev (OUT_A+OUT_C) ; Wait (5 0) ;
OnFwd(OUT_A) ; Wait (8 5) ;
s t a r t move_square ;

}
}

}

There are some differences between C syntax and NQC syntax; therefore, we modified
JavaCC, which defines syntax, to cover them. Thus, we obtained program diagrams for
embedded systems.

Figure 4 shows a screenshot of Hichart for NQC that correspond to List 3.

191A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

8 Embedded System

4. A visual software development environment

We propose a visual software development environment based on Hichart for NQC. We

visualize NQC code by the abovementioned Hichart diagrams through a Hichart visual
software development environment called Hichart editor. Hichart diagrams or NQC source
codes are inputted into the editor, and the editor outputs NQC source codes after editing code
such as parameter values in diagrams.

In the Hichart editor, the program code is shown as a diagram. List 4 shows a sample program
of NQC, and Figure 5 shows the Hichart diagram corresponding to List 4.

Fig. 5. Screen of Hichart editor.

Listing 4. anti-drop program

task main ()
{

SetSensor (SENSOR_2 , SENSOR_LIGHT) ;

OnFwd(OUT_A+OUT_C) ;
while (t r ue)
{

i f (SENSOR_2 < 40)
{

OnRev (OUT_A+OUT_C) ;
Wait (5 0) ;
OnFwd(OUT_A) ;
Wait (6 8) ;
u n t i l (SENSOR_2 >= 4 0) ;
OnFwd(OUT_A+OUT_C) ;

192 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 4 9

}
}

}

This Hichart editor for NQC has the following characteristics.

1. Generation of Hichart diagram corresponding to NQC

2. Editing of Hichart diagrams

3. Generation of NQC source codes from Hichart diagrams

4. Layout modification of Hichart diagrams

Users can edit each diagram directly on the editor. For example, cells can be added by
double-clicking on the editor screen, after which cell information, such as type and label, is
embedded into the new cell.

Figure 6 shows the Hichart screen after diagram editing. In this case, some of the parameter’s
values have been changed.

Fig. 6. Hichart editor screen after editing.

The Hichart editor can read NQC source codes and convert them into Hichart codes using
the N-to-H function, and it can generate NQC source codes from Hichart codes by using the
H-to-N function. The Hichart codes consist of tree data structure. Each node of the structure
has four pointers (to parent node, to child cell, to previous cell, and to next cell) and node
information such as node type, node label, node label, and so on. To generate NQC codes by
the H-to-N function, tree structures can be traversed in preorder.

The obtained NQC source code can be transferred to the LEGO MINDSTORM RCX via
BricxCC. Figure 7 shows a screenshot of NQC source code generated by the Hichart editor.

193A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

10 Embedded System

Fig. 7. Screenshot of NQC source code generated by Hichart editor.

Sensitivity s 0-32 33-49 50-100

Recognize a table edge × © ©

Turn in its tracks © © ×

Table 3. Behavioral specifications table.

5. Testing environment based on behavioral specification and logical checking

To test embedded system behaviors, especially for those that have physical devices such as
sensors, two areas must be checked: the value of the sensors and the logical correctness of the
embedded system. Embedded systems with sensors are affected by the environment around
the machine, so it is important that developers are able to set the appropriate sensor value.
Of course, even if the physical parameters are appropriate, if there are logical errors in a
machine’s program, the embedded systems will not always work as we expect.

In this section, we propose two testing methods to check the behaviors of embedded systems.

5.1 Behavioral specifications table

A behavioral specifications table is used when users set the physical parameters of RCX.
An example of such a table is shown in Table 3. The leftmost column lists the behavioral
specifications and the three columns on the right show the parameter values. A circle indicates
an expected performance; a cross indicates an unexpected one. The numerical values indicate
the range of sensitivity parameters s.

For example, when the sensitivity parameter s was between 0 and 32, the moving object did
not recognize a table edge (the specifications for “recognizes a table edge“ were not met) and
did not spin around on that spot. When the sensitivity parameter s was between 33 and 49,
the specifications for “recognizes a table edge“ and “does not spin around on that spot“ were
both met.

194 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 5 11

Fig. 8. Screenshot of Hichart editor and behavioral specifications table.

The results in the table show that the RCX with a sensor value from 0 to 32 cannot distinguish
the edge of the table and so falls off. Therefore, users need to change the sensor value to the
optimum value by referencing the table and choosing the appropriate value. In this case, if
users only choose the column with the values from 33 to 49, the chosen value is reflected in
the Hichart diagram. This modified Hichart diagram can then generate an NQC source code.
This is an example of how developers can easily set appropriate physical parameters by using
behavioral specifications tables.

The behavioral specifications function has the following characteristics.

1. The editor changes the colors of Hichart cells that are associated with the parameters in the
behavioral specifications table.

2. The editor sets the parameter value of Hichart cells that are associated with the parameters
in the behavioral specifications table.

Here, we show an example in which an RCX runs without falling off a desk. In this example,
when a photodetector on the RCX recognizes the edge of the desk, the RCX reverses and turns.
Figure 8 shows a screenshot of the Hichart editor and the related behavioral specifications

table.

In the Hichart editor, the input-output cells related to a behavioral specifications table are
redrawn in green when the user chooses a menu that displays the behavioral specifications

table.

Figure 9 shows the behavior of an RCX after setting the appropriate physical parameters. The
RCX can distinguish the table edge and turn after reversing.

We also constructed a function that enables a behavioral specification table to be stored in a
database that was made using MySQL. After we test a given device, we can input the results
via the database function in the Hichart editor. Using stored information, we can construct a

behavioral specification table with an optimized parameter’s value.

195A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

12 Embedded System

Fig. 9. Screenshot of RCX that recognizes table edge.

5.2 Model checking

We propose a method for checking behavior in the Hichart development environment by
using the model checking tool SPIN [18, 19] to logically check whether a given behavior

specification is fulfilled before applying the program to a real machine. As described
previously, the behavioral specifications table can check the physical parameters of a real
machine. However, it cannot check logical behavior. We therefore built a model checking
function into our editor that can translate internal Hichart data into Promela code.

The major characteristics of the behavior specification verification function are listed below.

• Generation of Promela codes

Generating Promela codes from Hichart diagrams displayed on the Hichart editor.

• Execution of SPIN
Generating pan.c or LTL-formulas.

• Compilation
Compiling obtained pan.c to generate .exe file for model checking.

• Analyzing

• Analysis
We found that programs do not bear the behavior specification by model checking and so

generated trail files. The function then analyzes the trail files and feeds them back to the
Hichart diagrams.

The Promela code is used to check whether a given behavior specification is fulfilled.

Feedback from the checks is then sent to a Hichart graphical editor. If a given behavioral
specification is not fulfilled, the result of the checking is reflected in the implicated location of
the Hichart.

To give an actual example, we consider the specifications that make the RCX repeat forward
movements and turn left. If it is touch sensitive, the RCX changes course. This specification
means that RCX definitely swerves when touched. In this study, we checked whether the
created program met the behavior specification by using SPIN before applying the program
to real machines.

196 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 6 13

Listing 5. Source code of NQC

task move_square () {
while (t r ue) {

OnFwd(OUT_A + OUT_C) ;
Wait (1 0 0 0) ;
OnRev(OUT_C) ;
Wait (8 5) ;

}
}

Listing 6. Promela code

proctype move_square () {
do

: :
s t a t e = OnFwd ;
s t a t e = Wait ;
s t a t e = OnRev ;
s t a t e = Wait ;

od
}

Lists 5 and 6 show part of the NQC source code corresponding to the above specification and
the automatically generated Promela source code.

We explain the feedback procedure, which is shown in Fig. 10.

An assertion statement of “state == OnFwd“ is an example. If a moving object (RCX) is
moving forward at the point where the assertion is set, the statement is true. Otherwise, it
is false. For example, we can verify by steps (3)-(7) in Fig. 10 whether the moving object is
always moving forward or not.

Here, we show an example of manipulating our Hichart editor. We can embed an assertion
description through the Hichart editor, as shown in Fig. 11, and then obtain a Promela code
from the Hichart code. When we obtain this code, we have to specify the behaviors that we
want to check. Figure 12 shows a result obtained through this process.

Next, we execute SPIN. If we embed assertions in the Hichart code, we execute SPIN as it
currently stands, while if we use LTL-formulas, we execute SPIN with an “-f“ option and then
obtain pan.c. The model is checked by compiling the obtained pan.c. Figure 13 is a screenshot
of the model checking result using the Hichart editor.

If there are any factors that do not meet the behavioral specifications, trail files are generated.
Figure 14 shows some of the result of analyzing the trail file.

The trail files contain information on how frequently the processing calls and execution paths
were made. We use this information to narrow the search area of the entire program by using
the visual feedback. Users can detect a problematic area interactively by using the Hichart
editor with the help of this visual feedback.

197A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

14 Embedded System

1. Read NQC source codes

on Hichart editor.

2. Embed verification property (assertion)

to Hichart node.

3. Translate from Hichart internal data into

Promela codes to verify the property.

4. Generate a pan.c from Promela codes

and compile and execute the pan.c.

5. If there are errors, generate a trail file

or else end the feedback procedure.

6. Analyze the trail file.

7. Reflect analyzed result to Hichart editor.

Fig. 10. Feedback procedure.

Fig. 11. Embed an assertion on Hichart editor.

198 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 7 15

Fig. 12. Result of generating a Promela code.

Fig. 13. Result of model checking.

199A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

16 Embedded System

Fig. 14. Result of analyzing trail file.

Fig. 15. Part of Hichart editor feedback screen.

After analyzing the trail files, we can obtain feedback from the Hichart editor. Figure 15 shows
part of a Hichart editor feedback screen.

If the result is that programs did not meet the behavior specification by using SPIN, the
tasks indicated as the causes are highlighted. The locations that do not meet the behavior
specifications can be seen by using the Hichart feedback feature. This is an example of efficient
assistance for embedded software.

6. Conclusion

We described our application of a behavioral specification table and model-checking
methodologies to a visual software development environment we developed for embedded
software.

200 Embedded Systems – Theory and Design Methodology

www.intechopen.com

A Visual Software Development Environment that Considers Tests of Physical Units 8 17

A key element of our study was the separation of logical and physical behavioral
specifications. It is difficult to verify behaviors such as those of robot sensors without access
to the behaviors of real machines, and it is also difficult to simulate behaviors accurately.
Therefore, we developed behavioral specification tables, a model-checking function, and a
method of giving visual feedback.

It is rather difficult to set exact values for physical parameters under development
circumstances using a tool such as MATLAB/simulink because the physical parameters vary
depending on external conditions (e.g., weather), and therefore, there were certain limitations
to the simulations. We obtained a couple of examples demonstrating the validity of our
approach in both the behavioral specification table and the logical specification check by using
SPIN.

In our previous work, some visual software development environments were developed
based on graph grammar; however, the environment for embedded systems described in this
article is not yet based on graph grammars. A graph grammar for Hichart that supports NQC
is currently under development.

In our future work, we will construct a Hichart development environment with additional
functions that further support the development of embedded systems.

7. References

[1] T. Goto, Y. Shiono, T. Nishino, T. Yaku, and K. Tsuchida. Behavioral verification in hichart
development environment for embedded software. In Computer and Information Science
(ICIS), 2010 IEEE/ACIS 9th International Conference on, pages 337 –340, aug. 2010.

[2] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida, and T. Yaku. A visual programming
environment based on graph grammars and tidy graph drawing. In Proceedings of The
20th International Conference on Software Engineering (ICSE ’98), volume 2, pages 74–79,
1998.

[3] T. Goto, T. Kirishima, N. Motousu, K. Tsuchida, and T. Yaku. A visual software
development environment based on graph grammars. In Proc. IASTED Software
Engineering 2004, pages 620–625, 2004.

[4] Takaaki Goto, Kenji Ruise, Takeo Yaku, and Kensei Tsuchida. Visual software
development environment based on graph grammars. IEICE transactions on information

and systems, 92(3):401–412, 2009.
[5] Takeo Yaku and Kokichi Futatsugi. Tree structured flow-chart. In Memoir of IEICE, pages

AL–78, 1978.
[6] T. Nishino. Attribute graph grammars with applications to hichart program chart editors.

In Advances in Software Science and Technology, volume 1, pages 89–104, 1989.
[7] C. Ghezzi P. D. Vigna. Context-free graph grammars. In Information Control, volume 37,

pages 207–233, 1978.
[8] Y. Adachi, K. Anzai, K. Tsuchida, and T. Yaku. Hierarchical program diagram editor

based on attribute graph grammar. In Proc. COMPSAC, volume 20, pages 205–213, 1996.
[9] Masahiro Miyazaki, Kenji Ruise, Kensei Tsuchida, and Takeo Yaku. An NCE Attribute

Graph Grammar for Program Diagrams with Respect to Drawing Problems. IEICE
Technical Report, 100(52):1–8, 2000.

201A Visual Software Development Environment that Considers Tests of Physical Units

www.intechopen.com

18 Embedded System

[10] Grzegorz Rozenberg. Handbook of Graph Grammar and Computing by Graph Transformation
Volume 1. World Scientific Publishing, 1997.

[11] K. Ruise, K. Tsuchida, and T. Yaku. Parsing of program diagrams with attribute
precedence graph grammar. In Technical Report of IPSJ, number 27, pages 17–20, 2001.

[12] R. Zurawski. Embedded systems design and verification. CRC Press, 2009.
[13] S. Narayan. Requirements for specification of embedded systems. In ASIC Conference and

Exhibit, 1996. Proceedings., Ninth Annual IEEE International, pages 133 –137, sep 1996.
[14] LEGO. LEGO mindstorms. http://mindstorms.lego.com/en-us/Default.aspx.
[15] Not Quite C. http://bricxcc.sourceforge.net/nqc/.
[16] Kenichi Harada. Structure Editor. Kyoritsu Shuppan, 1987. (in Japanese).
[17] T. Yaku, K. Futatsugi, A. Adachi, and E. Moriya. HICHART -A hierarchical flowchart

description language-. In Proc. IEEE COMPSAC, volume 11, pages 157–163, 1987.
[18] G.J. Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,

23(5):279 –295, may 1997.
[19] M. Ben-Ari. Principles of the SPIN Model Checker. Springer, 2008.

202 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Takaaki Goto, Yasunori Shiono, Tomoo Sumida, Tetsuro Nishino, Takeo Yaku and Kensei Tsuchida (2012). A

Visual Software Development Environment that Considers Tests of Physical Units, Embedded Systems -

Theory and Design Methodology, Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-51-0167-3, InTech, Available

from: http://www.intechopen.com/books/embedded-systems-theory-and-design-methodology/a-visual-

software-development-environment-that-considers-tests-of-physical-units-

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

