
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Context Aware Model-Checking
for Embedded Software

Philippe Dhaussy1, Jean-Charles Roger1

and Frédéric Boniol2

1Ensta-Bretagne
2ONERA

France

1. Introduction

Reactive systems are becoming extremely complex with the huge increase in high
technologies. Despite technical improvements, the increasing size of the systems makes
the introduction of a wide range of potential errors easier. Among reactive systems,
the asynchronous systems communicating by exchanging messages via buffer queues are
often characterized by a vast number of possible behaviors. To cope with this difficulty,
manufacturers of industrial systems make significant efforts in testing and simulation to
successfully pass the certification process. Nevertheless revealing errors and bugs in this huge
number of behaviors remains a very difficult activity. An alternative method is to adopt formal
methods, and to use exhaustive and automatic verification tools such as model-checkers.

Model-checking algorithms can be used to verify requirements of a model formally and
automatically. Several model checkers as (Berthomieu et al., 2004; Holzmann, 1997; Larsen
et al., 1997), have been developed to help the verification of concurrent asynchronous systems.
It is well known that an important issue that limits the application of model checking
techniques in industrial software projects is the combinatorial explosion problem (Clarke
et al., 1986; Holzmann & Peled, 1994; Park & Kwon, 2006). Because of the internal complexity
of developed software, model checking of requirements over the system behavioral models
could lead to an unmanageable state space.

The approach described in this chapter presents an exploratory work to provide solutions
to the problems mentioned above. It is based on two joint ideas: first, to reduce behaviors
system to be validated during model-checking and secondly, help the user to specify the
formal properties to check. For this, we propose to specify the behavior of the entities that
compose the system environment. These entities interact with the system. Their behaviors are
described by use cases (scenarios) called here contexts. They describe how the environment
interacts with the system. Each context corresponds to an operational phase identified as
system initialization, reconfiguration, graceful degradation, etc.. In addition, each context is
associated with a set of properties to check. The aim is to guide the model-checker to focus on
a restriction of the system behavior for verification of specific properties instead on exploring
the global system automaton.

8

www.intechopen.com

2 Will-be-set-by-IN-TECH

In this chapter, we describe the formalism called CDL (Context Description Language), such
as DSL1. This language serves to support our approach to reduce the state space. We report a
feedback on several case studies industrial field of aeronautics, which was conducted in close
collaboration with engineers in the field.

This chapter is organized as follows: Section 2 presents related work on the techniques to
improve model checking by state reduction and property specification. Section 3 presents the
principles of our approach for context aware formal verification. Section 4 describes the CDL
language for context specification. Our toolset used for the experiments is presented section
5. In Section 6, we give results of industrial case studies. Section 7 discusses our approach and
presents future work.

2. Related works

Several model checkers such as SPIN (Holzmann, 1997), Uppaal (Larsen et al., 1997),
TINA-SELT (Berthomieu et al., 2004), have been developed to assist in the verification of
concurrent asynchronous systems. For example, the SPIN model-checker based on the
formal language Promela allows the verification of LTL (Pnueli, 1977) properties encoded
in "never claim" formalism and further converted into Buchi automata. Several techniques
have been investigated in order to improve the performance of SPIN. For instance the
state compression method or partial-order reduction contributed to the further alleviation of
combinatorial explosion (Godefroid, 1995). In (Bosnacki & Holzmann, 2005) the partial-order
algorithm based on a depth-first search (DFS) has been adapted to the breadth first search
(BFS) algorithm in the SPIN model-checker to exploit interesting properties inherent to the
BFS. Partial-order methods (Godefroid, 1995; Peled, 1994; Valmari, 1991) aim at eliminating
equivalent sequences of transitions in the global state space without modifying the falsity of
the property under verification. These methods, exploiting the symmetries of the systems,
seemed to be interesting and were integrated into many verification tools (for instance SPIN).

Compositional (modular) specification and analysis techniques have been researched for a
long time and resulted in, e.g., assume/guarantee reasoning or design-by-contract techniques.
A lot of work exists in applying these techniques to model checking including, e.g. (Alfaro
& Henzinger, 2001; Clarke et al., 1999; Flanagan & Qadeer, 2003; Tkachuk & Dwyer, 2003)
These works deal with model checking/analyzing individual components (rather than whole
systems) by specifying, considering or even automatically determining the interactions that
a component has or could have with its environment so that the analysis can be restricted
to these interactions. Design by contract proposes to verify a system by verifying all its
components one by one. Using a specific composition operator preserving properties, it allows
assuming that the system is verified.

Our approach is different from compositional or modular analysis. We propose to
formally specify the context behavior of components in a way that allows a fully automatic
divide-and-conquer algorithm. We choose to explicit contexts separately from the model to be
validated. However, our approach can be used in conjunction with design by contract process.
It is about using the knowledge of the environment of a whole system (or model) to conduct
a verification to the end.

Another difficulty is about requirement specification. Embedded software systems
integrate more and more advanced features, such as complex data structures, recursion,

1 Domain Specific Language

168 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 3

multithreading. Despite the increased level of automation, users of finite-state verification
tools are still constrained to specify the system requirements in their specification language
which is often informal. While temporal logic based languages (example LTL or CTL (Clarke
et al., 1986)) allow a great expressivity for the properties, these languages are not adapted
to practically describe most of the requirements expressed in industrial analysis documents.
Modal and temporal logics are rather rudimentary formalisms for expressing requirements,
i.e., they are designed having in mind the straightforwardness of its processing by a tool such
as a model-checker rather than the user-friendliness. Their concrete syntax is often simplistic,
tailored for easing its processing by particular tools such as model checkers. Their efficient
use in practice is hampered by the difficulty to write logic formula correctly without extensive
expertise in the idioms of the specification languages.

It is thus necessary to facilitate the requirement expression with adequate languages by
abstracting some details in the property description, at a price of reducing the expressivity.
This conclusion was drawn a long time ago and several researchers (Dwyer et al., 1999;
Konrad & Cheng, 2005; Smith et al., 2002) proposed to formulate the properties using
definition patterns in order to assist engineers in expressing system requirements. Patterns
are textual templates that capture common logical and temporal properties and that can be
instantiated in a specific context. They represent commonly occurring types of real-time
properties found in several requirement documents for embedded systems.

3. Context aware verification

To illustrate the explosion problem, let us consider the example in Figure 1. We are trying
to verify some requirements by model checking using the TINA-SELT model checker. We
present the results for a part of the S_CP model. Then, we introduce our approach based on
context specifications.

3.1 An illustration

We present one part of an industrial case study: the software part of an anti-aircraft system
(S_CP). This controller controls the internal modes, the system physical devices (sensors,
actuators) and their actions in response to incoming signals from the environment. The S_CP
system interacts with devices (Dev) that are considered to be actors included in the S_CP
environment called here context.

The sequence diagrams of Figure 2 illustrate interactions between context actors and the S_CP
system during an initialization phase. This context describes the environment we want to
consider for the verification of the S_CP controller. This context is composed of several actors
Dev running in parallel or in sequence. All these actors interleave their behavior. After the
initializing phase, all actors Devi (i ∈ [1 . . . n]) wait for orders goInitDev from the system.
Then, actors Devi send logini and receive either ackLog(id) (Figure 2.a and 2.c) or nackLog(err)
(Figure 2.b) as responses from the system. The logged devices can send operate(op) (Figure
2.a and 2.c) and receive either ackOper(role) (Figure 2.a) or nackOper(err) (Figure 2.c). The
messages goInitDev can be received in parallel in any order. However, the delay between
messages logini and ackLog(id) (Figure 1) is constrained by maxD_log. The delay between
messages operate(op) and ackOper(role) (Figure 1) is constrained by maxD_oper. And finally
all Devi send logouti to end the interaction with the S_CP controller.

169Context Aware Model-Checking for Embedded Software

www.intechopen.com

4 Will-be-set-by-IN-TECH

Fig. 1. S_CP system: partial description during the initialization phase.

Fig. 2. An example of S_CP context scenario with 3 devices.

3.2 Model-checking results

To verify requirements on the system model2, we used the TINA-SELT model checker. To do
so, the system model is translated into FIACRE format (Farail et al., 2008) to explore all the
S_CP model behaviors by simulation, S_CP interacting with its environment (devices). Model
exploration generates a labeled transition system (LTS) which represents all the behaviors of
the controller in its environment. Table 1 shows3 the exploration time and the amount of
configurations and transitions in the LTS for different complexities (n indicates the number of
considered actors). Over four devices, we see a state explosion because of the limited memory
of our computer.

3.3 Combinatorial explosion reduction

When checking the properties of a model, a model-checker explores all the model behaviors
and checks whether the properties are true or not. Most of the time, as shown by previous

2 Here by system or system model, we refer to the model to be validated.
3 Tests were executed on Linux 32 bits - 3 Go RAM computer, with TINA vers.2.9.8 and Frac parser

vers.1.4.2.

170 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 5

N.of Exploration time N.of LTS N.of LTS
devices (sec) configurations transitions

1 10 16 766 82 541

2 25 66 137 320 388

3 91 269 977 1 297 987

4 118 939 689 4 506 637

5 Explosion – –

Table 1. Table highlighting the verification complexity for an industrial case study (S_CP).

results, the number of reachable configurations is too large to be contained in memory (Figure
3.a). We propose to restrict model behavior by composing it with an environment that
interacts with the model. The environment enables a subset of the behavior of the model. This
technique can reduce the complexity of the exploration by limiting the scope of the verification
to precise system behaviors related to some specific environmental conditions.

This reduction is computed in two stages: Contexts are first identified by the user (contexti, i ∈
[1..n] in Figure 3.b). They correspond to patterns of use of the component being modeled. The
aim is to circumvent the combinatorial explosion by restricting the behavior system with an
environment describing different configurations in which one wishes to check requirements.
Then each context is automatically partitioned into a set of sub-contexts. Here we precisely
define these two aspects implemented in our approach.

The context identification focuses on a subset of behavior and a subset of properties. In the
context of reactive embedded systems, the environment of each component of a system is
often well known. It is therefore more effective to identify this environment than trying reduce
the configuration space of the model system to explore.

Fig. 3. Traditional model checking (a) vs. context-aware model checking (b).

In this approach, we suppose that the designer is able to identify all possible interactions
between the system and its environment. We also consider that each context expressed
initially is finite, (i.e., there is a non infinite loop in the context). We justify this strong
hypothesis, particularly in the field of embedded systems, by the fact that the designer of

171Context Aware Model-Checking for Embedded Software

www.intechopen.com

6 Will-be-set-by-IN-TECH

a software component needs to know precisely and completely the perimeter (constraints,
conditions) of its system for properly developing it. It would be necessary to study formally
the validity of this working hypothesis based on the targeted applications. In this chapter, we
do not address this aspect that gives rise to a methodological work to be undertaken.

Moreover, properties are often related to specific use cases (such as initialization,
reconfiguration, degraded modes). Therefore, it is not necessary for a given property to take
into account all possible behaviors of the environment, but only the subpart concerned by the
verification. The context description thus allows a first limitation of the explored space search,
and hence a first reduction in the combinatorial explosion.

The second idea is to automatically split each identified context into a set of smaller
sub-contexts (Figure 4). The following verification process is then equivalent: (i) compose
the context and the system, and then verify the resulting global system, (ii) partition the
environment into k sub-contexts (scenarios), and successively deal each scenario with the
model and check the properties on the outcome of each composition. Actually, we transform
the global verification problem into k smaller verification sub problems. In our approach, the
complete context model can be split into pieces that have to be composed separately with the
system model. To reach that goal, we implemented a recursive splitting algorithm in our OBP
tool. Figure 4 illustrates the function explore_mc() for exploration of a model, with a context
and model-checking of a set of properties pty. The context is represented by acyclic graph.
This graph is composed with the model for exploration. In case of explosion, this context is
automatically split into several parts (taking into account a parameter d for the depth in the
graph for splitting) until the exploration succeeds.

Fig. 4. Context splitting and verification for each partition (sub-context).

In summary, the context aware method provides three reduction axes: the context behavior is
constrained, the properties are focused and the state space is split into pieces. The reduction
in the model behavior is particularly interesting while dealing with complex embedded
systems, such as in avionic systems, since it is relevant to check properties over specific
system modes (or use cases) which is less complex because we are dealing with a subset
of the system automata. Unfortunately, only few existing approaches propose operational
ways to precisely capture these contexts in order to reduce formal verification complexity
and thus improve the scalability of existing model checking approaches. The necessity of
a clear methodology has also to be identified, since the context partitioning is not trivial,
i.e., it requires the formalization of the context of the subset of functions under study. An

172 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 7

associated methodology must be defined to help users for modeling contexts (out of scope of
this chapter).

4. CDL language for context and property specification

We propose a formal tool-supported framework that combines context description and model
transformations to assist in the definition of requirements and of the environmental conditions
in which they should be satisfied. Thus, we proposed (Dhaussy et al., 2009) a context-aware
verification process that makes use of the CDL language. CDL was proposed to fill the gap
between user models and formal models required to perform formal verifications. CDL is
a Domain Specific Language presented either in the form of UML like graphical diagrams
(a subset of activity and sequence diagrams) or in a textual form to capture environment
interactions.

4.1 Context hierarchical description

CDL is based on Use Case Charts of (Whittle, 2006) using activity and sequence diagrams. We
extended this language to allow several entities (actors) to be described in a context (Figure
5). These entities run in parallel. A CDL4 model describes, on the one hand, the context
using activity and sequence diagrams and, on the other hand, the properties to be checked
using property patterns. Figure 5 illustrates a CDL model for the partial use cases of Figures
1 and 2. Initial use cases and sequence diagrams are transformed and completed to create the
context model. All context scenarios are represented, combined with parallel and alternative
operators, in terms of CDL.

A diagrammatical and textual concrete syntax is created for the context description and
a textual syntax for the property expression. CDL is hierarchically constructed in three
levels: Level-1 is a set of use case diagrams which describes hierarchical activity diagrams.
Either alternative between several executions (alternative/merge) or a parallelization of
several executions (fork/join) is available. Level-2 is a set of scenario diagrams organized
in alternatives. Each scenario is fully described at Level-3 by sequence diagrams. These
diagrams are composed of lifelines, some for the context actors and others for processes
composing the system model. Counters limit the iterations of diagram executions. This
ensures the generation of finite context automata.

From a semantic point of view, we can consider that the model is structured in a set of
sequence diagrams (MSCs) connected together with three operators: sequence (seq), parallel
(par) and alternative (alt). The interleaving of context actors described by a set of MSCs
generates a graph representing all executions of the actors of the environment. This graph
is then partitioned in such a way as to generate a set of subgraphs corresponding to the
sub-contexts as mentioned in 3.3.

The originality of CDL is its ability to link each expressed property to a context diagram,
i.e. a limited scope of the system behavior. The properties can be specified with property
pattern definitions that we do not describe here but can be found in (Dhaussy & Roger, 2011).
Properties can be linked to the context description at Level 1 or Level 2 (such as P1 and P3
in Figure 5) by the stereotyped links property/scope. A property can have several scopes
and several properties can refer to a single diagram. CDL is designed so that formal artifacts

4 For the detailed syntax, see (Dhaussy & Roger, 2011) available (currently in french) on
http://www.obpcdl.org.

173Context Aware Model-Checking for Embedded Software

www.intechopen.com

8 Will-be-set-by-IN-TECH

Fig. 5. S_CP case study: partial representation of the context.

required by existing model checkers could be automatically generated from it. This generation
is currently implemented in our prototype tool called OBP (Observer Based Prover) described
briefly in Section 5. We will now present the CDL formal syntax and semantics.

4.2 Formal syntax

A CDL model (also called “context”) is a finite generalized MSC C, following the formal
grammar:

C ::= M | C1; C2 | C1 + C2 | C1‖C2

M ::= 0 | a!; M | a?; M

In other words, a context is either (1) a single MSC M composed as a sequence of event
emissions a! and event receptions a? terminated by the empty MSC (0) which does nothing, or
(2) a sequential composition (seq denoted ;) of two contexts (C1; C2), or (3) a non deterministic
choice (alt denoted +) between two contexts (C1 + C2), or (4) a parallel composition (par
denoted ‖) between two contexts (C1‖C2).

For instance, let us consider the context Figure 5 graphically described. This context describes
the environment we want to consider for the validation of the system model. We consider that
the environment is composed of 3 actors Dev1, Dev2 and Dev3. All these actors run in parallel
and interleave their behavior. The model can be formalized, with the above textual grammar
as follows5.

C = Dev1 ‖ Dev2 ‖ Dev2

Devi = Logi; (Oper + (nackLog (err)?;0))
Logi = (goInitDev ? ; logini !)
Oper = (ackLog (id) ? ; operate (op) ! (Acki + (nackOper (err) ? ; . . . ; 0)))
Acki = (ackOper (role) ? ; logouti ! ; . . . ; 0)
Dev1, Dev2, Dev3 = Devi with i = 1, 2, 3

5 In this chapter, as an illustration, we consider that the behavior of actors extends, noted by the ". . .".

174 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 9

4.3 Semantics

The semantics is based on the semantics of the scenarios and expressed by construction rules
of sets of traces built using seq, alt and par operators. A scenario trace is an ordered events
sequence which describes a history of the interactions between the context and the model.

To describe the formal semantics, let us define a function wait(C) associating the context C
with the set of events awaited in its initial state:

Wait (0)
def
= ∅ Wait (a!; M)

def
= ∅ Wait (a?; M)

def
= {a}

Wait (C1 + C2)
def
= Wait (C1) ∪ Wait (C2) Wait (C1; C2)

def
= Wait (C1) i f C1 �= 0

Wait (0; C2)
def
= Wait (C2) Wait (C1‖C2)

def
= Wait (C1) ∪ Wait (C2)

We consider that a context is a process communicating in an asynchronous way with the
system, memorizing its input events (from the system) in a buffer. The semantics of CDL

is defined by the relation (C, B) a−→ (C′, B′) to express that the context C with the buffer B

“produces” a (which can be a sending or a receiving signal, or the nullσ signal if C does not
evolve) and then becomes the new context C′ with the new buffer B′. This relation is defined
by the 8 rules in Figure 6 (In these rules, a represents an event which is different from nullσ).

The pref1 rule (without any preconditions) specifies that an MSC beginning with a sending
event a! emits this event and continues with the remaining MSC. The pref2 rule expresses that
if an MSC begins by a reception a? and faces an input buffer containing this event at the
head of the buffer, the MSC consumes this event and continues with the remaining MSC. The
seq1 rule establishes that a sequence of contexts C1; C2 behaves as C1 until it has terminated.
The seq2 rule says that if the first context C1 terminates (i.e., becomes 0), then the sequence
becomes C2. The par1 and par2 rules say that the semantics of the parallel operation is based
on an asynchronous interleaving semantics. The alt rule expresses that the alternative context
C1 + C2 behaves either as C1 or as C2. Finally, the discard rule says that if an event a at the
head of the input buffer is not expected, then this event is lost (removed from the head of the
buffer).

4.4 Context and system composition

We can now formally define the “closure” composition < (C, B1) | (s,S , B2) > of a system S
in a state s ∈ Σ (Σ is the set of system states), with its input buffer B2, with its context C, with
its input buffer B1 (note that each component, system and context, has its own buffer). The
evolution of S closed by C is given by two relations: the relation (1):

< (C, B1)|(s,S , B2) >
a−→
σ

< (C′, B′
1)|(s

′,S , B′
2) > (1)

to express that S in the state s evolves to state s′ receiving event a, potentially empty (nulle),
(sent by the context) and producing the sequence of events σ, potentially empty (nullσ) (to the
context). and the relation (2):

< (C, B1)|(s,S , B2) >
t−→
σ

< (C, B1)|(s
′,S , B′

2) > (2)

to express that S in state s evolves to the state s′ by progressing time t, and producing the
sequence of events σ potentially empty (nullσ) (to the context). Note that in the case of timed

175Context Aware Model-Checking for Embedded Software

www.intechopen.com

10 Will-be-set-by-IN-TECH

[pref1]

(a!; M, B) a!−→ (M, B)

[pref2]

(a?; M, a.B) a?−→ (M, B)

C′
1 �= 0

(C1, B) a−→ (C′
1, B′)

[seq1]

(C1.C2, B) a−→ (C′
1.C2, B′)

(C1, B) a−→ (0, B′)
[seq2]

(C1.C2, B) a−→ (C2, B′)

C′
1 �= 0

(C1, B) a−→ (C′
1, B′)

[par1]

(C1‖C2, B) a−→ (C′
1‖C2, B′)

(C2‖C1, B) a−→ (C2‖C′
1, B′)

(C1, B) a−→ (0, B′)
[par2]

(C1‖C2, B) a−→ (C2, B′)

(C2‖C1, B) a−→ (C2, B′)

(C1, B) a−→ (C′
1, B′)

[alt]

(C1 + C2, B) a−→ (C′
1, B′)

(C2 + C1, B) a−→ (C′
1, B′)

a �∈ wait(C) [discardC]

(C, a.B) nullσ−−−→ (C, B)

Fig. 6. Context semantics.

evolution, only the system evolves, the context is not timed. The semantics of this composition
is defined by the four following rules (Figure 7).

Rule cp1: If S can produce σ, then S evolves and σ is put at the end of the buffer of C. Rule
cp2: If C can emit a, C evolves and a is queued in the buffer of S . Rule cp3: If C can consume
a, then it evolves whereas S remains the same. Rule cp4: If the time can progress in S , then
the time progress in the composition S and C.

Note that the “closure” composition between a system and its context can be compared with
an asynchronous parallel composition: the behavior of C and of S are interleaved, and they

communicate through asynchronous buffers. We will denote < (C, B)|(s,S , B′) > � −→ to

express that the system and its context cannot evolve (the system is blocked or the context
terminated). We then define the set of traces (called runs) of the system closed by its context
from a state s, by:

�C | (s,S)�
def
= {a1 · σ1 · . . . an · σn · endC |

< (C, nullσ) | (s, nullσ) >
a1−→
σ1

< (C1, B1) | (s1,S , B′
1) >

a2−→
σ2

. . . an−→
σn

< (Cn, Bn) | (sn,S , B′
n) > �−→ }

�C|(s,S)� is the set runs of S closed by C from the state s. Note that a context is built as
sequential or parallel compositions of finite loop-free MSCs. Consequently the runs of a
system model closed by a CDL context are necessarily finite. We then extend each run of
�C|(s,S)� by a specific terminal event endC allowing the observer to catch the ending of a
scenario and accessibility properties to be checked.

176 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 11

(s,S , B2)−→
σ
(s′,S , B′

2) [cp1]

< (C, B1)|(s,S , B2) >
nulle−−→

σ
< (C, B1.σ)|(s′,S , B′

2) >

(C, B1)
a!−→ (C′, B′

1) [cp2]

< (C, B1)|(s,S , B2) >
a−−→nullσ

< (C′, B′
1)|(s,S , B2.a) >

(C, B1)
a?−→ (C′, B′

1) [cp3]

< (C, B1)|(s,S , B2) >
nulle−−→nullσ

< (C′, B′
1)|(s,S , B2) >

(s,S , B2)
t−→
σ
(s′,S , B′

2) [cp4]

< (C, B1)|(s,S , B2) >
t−→
σ

< (C, B1)|(s
′,S , B′

2) >

Fig. 7. CDL context and system composition semantics.

4.5 Property specification patterns

Property specifying needs to use powerful yet easy mechanisms for expressing temporal
requirements of software source code. As example, let’s see a requirement of the S_CP
system described in section 3.1. This requirement was found in a document of our partner
and is shown in Listing 1. It refers to many events related to the execution of the model or
environment. It also depends on an execution history that has to be taken into account as a
constraint or pre-condition.

Requirement R: During initialization procedure, S_CP shall associate an identifier to each device
(Dev), after login request and before maxD_log time units.

Listing 1. Initialization requirement for the S_CP system described in section 3.

If we want to express this requirement with a temporal logic based language as LTL or CTL,
the logical formulas are of great complexity and become difficult to read and to handle by
engineers. So, for the property specification, we propose to reuse the categories of Dwyer
patterns (Dwyer et al., 1999) and extend them to deal with more specific temporal properties
which appear when high-level specifications are refined. Additionally, a textual syntax is
proposed to formalize properties to be checked using property description patterns (Konrad
& Cheng, 2005). To improve the expressiveness of these patterns, we enriched them with
options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity, Repeatability) using annotations
as (Smith et al., 2002). Choosing among these options should help the user to consider the
relevant alternatives and subtleties associated with the intended behavior. These annotations
allow these details to be explicitly captured. During a future work, we will adapt these
patterns taking into account the taxonomy of relevant properties, if this appears necessary.

We integrate property patterns description in the CDL language. Patterns are classified in
families, which take into account the timed aspects of the properties to be specified. The
identified patterns support properties of answer (Response), the necessity one (Precedence), of
absence (Absence), of existence (Existence) to be expressed. The properties refer to detectable

177Context Aware Model-Checking for Embedded Software

www.intechopen.com

12 Will-be-set-by-IN-TECH

events like transmissions or receptions of signals, actions, and model state changes. The
property must be taken into account either during the entire model execution, before, after or
between occurrences of events. Another extension of the patterns is the possibility of handling
sets of events, ordered or not ordered similar to the proposal of (Janssen et al., 1999). The
operators AN and ALL respectively specify if an event or all the events, ordered (Ordered) or
not (Combined), of an event set are concerned with the property.

We illustrate these patterns with our case study. The given requirement R (Listing 1) must
be interpreted and can be written with CDL in a property P1 as follow (cf. Listing 2). P1 is
linked to the communication sequence between the S_CP and device (Dev1). According to the
sequence diagram of figure 5, the association to other devices has no effect on P1.

Property P1;
ALL Ordered

exactly one occurence o f S_CP_hasReachState_Init
exactly one occurence o f login1

end
eventually leads − to [0..maxD_log]
AN

one or more occurence o f ackLog(id)
end
S_CP_hasReachState_Init may never occurs
login1 may never occurs
one o f ackLog(id) cannot occur be f ore login1
repeatibility : true

Listing 2. S_CP case study: A response pattern from R requirement.

P1 specifies an observation of event occurrences in accordance with figure 5. login1 refers
to login1 reception event in the model, ackLog refers to ackLog reception event by Dev1.
S_CP_hasReachState_Init refers a state change in the model under study.

For the sake of simplicity, we consider in this chapter that properties are modeled as observers.
Our OBP toolset transforms each property into an observer automaton including a reject node.
An observer is an automaton which observes the set of events exchanged by the system S
and its context C (and thus events occurring in the runs of �C|(init,S)�) and which produces
an event reject whenever the property becomes false. With observers, the properties we
can handle are of safety and bounded liveness type. The accessibility analysis consists of
checking if there is a reject state reached by a property observer. In our example, this reject
node is reached after detecting the event sequence of S_CP_hasReachState_Init and login1,
in that order, if the sequence of one or more of ackLog is not produced before maxD_log
time units. Conversely, the reject node is not reached either if S_CP_hasReachState_Init or
login1 are never received, or if ackLog event above is correctly produced with the right delay.
Consequently, such a property can be verified by using reachability analysis implemented in
our OBP Explorer. For that purpose, OBP translates the property into an observer automaton,
depicted in figure 8.

4.6 Formalization of observers

The third part of the formalization relies on the expression of the properties to be fulfilled. We
consider in the following that an observer is an automaton O = 〈Σo, inito, To, Sig, {reject}, Svo〉

178 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 13

Fig. 8. Observer automaton for the property P1 of Listing 2.

(a) emitting a single output event: reject, (b) where Sig is the set of matched events by the
observer; events produced and received by the system and its context and (c) such that all
transitions labelled reject arrive in a specific state called “unhappy”.

Semantics. We say that S in the state s ∈ Σ. S closed by C satisfies O, denoted C|(s,S) |= O,
if and only if no execution of O faced to the runs r of �C|(s,S)� produces a reject event. This
means:

C | (s,S) |= O ⇐⇒ ∀r ∈ �C | (s,S)�,

(inito,O, r)−−→nullσ
(s1,O, r1)−−→nullσ

. . . −−→nullσ
(sn,O, rn) �−→

Remark: executing O on a run r of �C|(s,S)� is equivalent to put r in the input buffer of O
and to execute O with this buffer. This property is satisfied if and only if only the empty event
(nullσ) is produced (i.e., the reject event is never emitted).

5. OBP toolset

To carry out our experiments, we used our OBP6 tool (Figure 9). OBP is an implementation
of a CDL language translation in terms of formal languages, i.e. currently FIACRE (Farail
et al., 2008). As depicted in Figure 9, OBP leverages existing academic model checkers such as
TINA or simulators such as our explorer called OBP Explorer. From CDL context diagrams,
the OBP tool generates a set of context graphs which represent the sets of the environment
runs. Currently, each generated graph is transformed into a FIACRE automaton. Each graph
represents a set of possible interactions between model and context. To validate the model
under study, it is necessary to compose each graph with the model. Each property on each
graph must be verified. To do so, OBP generates either an observer automaton (Halbwachs
et al., 1993) from each property for OBP Explorer, or SELT logic formula (Berthomieu et al.,
2004) for the TINA model checker. With OBP Explorer, the accessibility analysis is carried out
on the result of the composition between a graph, a set of observers and the system model
as described in (Dhaussy et al., 2009). If, for a given context, we face state explosion, the
accessibility analysis or model-checking is not possible. In this case, the context is split into a
subset of contexts and the composition is executed again as mentioned in 3.3.

To import models with standard format such as UML, SysML, AADL, SDL, we necessarily
need to implement adequate translators such as those studied in TopCased7 or Omega8

projects to generate FIACRE programs.

6 OBPt (OBP for TINA) is available on http://www.obpcdl.org.
7 http://www.topcased.org
8 http://www-Omega.imag.fr

179Context Aware Model-Checking for Embedded Software

www.intechopen.com

14 Will-be-set-by-IN-TECH

Fig. 9. CDL model transformation with OBP.

6. Experiments and results

Our approach was applied to several embedded systems applications in the avionic or
electronic industrial domain. These experiments were carried out with our French industrial
partners. We reported here the results of these experiments.

6.1 Requirement specification

This section reports on six case studies (CS1 to CS6). Four of the software components
come from an industrial A and two from a B9. For each industrial component, the industrial
partner provided requirement documents (use cases, requirements in natural language) and
the component executable model. Component executable models are described with UML,
completed by ADA or JAVA programs, or with SDL language. The number of requirements
in Table 2 evaluates the complexity of the component. To validate these models, we specify
properties and contexts.

CS1 CS2 CS3 CS4 CS5 CS6

Modeling SDL SDL SDL SDL UML2 UML2
language

Number of 4 000 15 000 30 000 15 000 38 000 25 000
code lines

Number of 49 94 136 85 188 151
requirements

Table 2. Industrial case study classification.

6.1.1 Property specification

Requirements are inputs of our approach. Here, the work consists in transforming
natural language requirements into temporal properties. To create the CDL models with
patterns-based properties, we analyzed the software engineering documents of the proposed
case studies. We transformed textual requirements. We focused on requirements which

9 CS5 corresponds to the case study partially described in section 3.1.

180 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 15

can be translated into observer automata. Firstly, we note that most of requirements had
to be rewritten into a set of several properties. Secondly, model requirements of different
abstraction levels are mixed. We extracted requirement sets corresponding to the model
abstraction level. Finally, we observe that most of the textual requirements are ambiguous. We
had to rewrite them consequently to discussion with industrial partners. Table 3 shows the
number of properties which are translated from requirements. We consider three categories
of requirements. Provable requirements correspond to requirements which can be captured
with our approach and can be translated into observers. The proof technique can be
applied on a given context without combinatorial explosion. Non-Computable requirements are
requirements which can be interpreted by a pattern but cannot be translated into an observer.
For example, liveness properties cannot be translated because they are unbounded. Observers
capture only bounded liveness properties. From the interpretation, we could generate
another temporal logic formula, which could feed a model checker as TINA. Non-Provable
requirements are requirements which cannot be interpreted at all with our patterns. It is the
case when a property refers to undetectable events for the observer, such as the absence of a
signal.

CS1 CS2 CS3 CS4 CS5 CS6 Average

Provable 38/49 73/94 72/136 49/85 155/188 41/151 428/703
properties (78%) (78%) (53%) (58%) (82%) 27%) (61%)

Non-computable 0/49 2/94 24/136 2/85 18/188 48/151 94/703
properties (0%) (2%) (18%) (2%) (10%) (32%) (13%)

Non-Provable 11/49 19/94 40/136 34/85 15/188 62/151 181/703
properties (22%) (20%) (29%) (40%) (8%) (41%) (26%)

Table 3. Table highlighting the number of expressible properties in 6 industrial case studies.

For the CS5 , we note that the percentage (82%) of provable properties is very high. One reason
is that the most of 188 requirements was written with a good property pattern matching. For
the CS6, we note that the percentage (27%) is very low. It was very difficult to re-write the
requirements from specification documentation. We should have spent much time to interpret
requirements with our industrial partner to formalize them with our patterns.

6.2 Context specification

For the S_CP case study, we constructed several CDL models with different complexities
depending on the number of devices. The tests are performed on each CDL model composed
with S_CP system.

N.of Exploration N.of N.of LTS N.of LTS
devices time (sec) sub-contexts config. trans.

1 11 3 16 884 82 855

2 26 3 66 255 320 802

3 92 3 270 095 1 298 401

4 121 3 939 807 4 507 051

5 240 3 2 616 502 12 698 620

6 2161 40 32 064 058 157 361 783

7 4 518 55 64 746 500 322 838 592

Table 4. Exploration with TINA explorer with context splitting using OBPt (S_CP case study).

181Context Aware Model-Checking for Embedded Software

www.intechopen.com

16 Will-be-set-by-IN-TECH

Table 4 shows the amount of TINA exploration10 for CDL examples with the use of context
splitting. The first column depicts the number n of Dev asking for login to the S_CP. The
other columns depict the exploration time and the cumulative amount of configurations and
transitions of all LTS generated during exploration by TINA with context splitting. Table 4
also shows the number of contexts split by OBP. For example, with 7 devices, we needed to
split the CDL context in 55 parts for successful exploration. Without splitting, the exploration
is limited to 4 devices by state explosion as shown Table 1. It is clear that device number limit
depends on the memory size of used computer.

7. Discussion and future work

CDL is a prototype language to formalize contexts and properties. However, CDL concepts
can be implemented in another language. For example, context diagrams are easily described
using full UML2. CDL permits us to study our methodology. In future work, CDL can
be viewed as an intermediate language. Today, the results obtained using the currently
implemented CDL language and OBP are very encouraging. For each case study, it was
possible to build CDL models and to generate sets of context graphs with OBP.

CDL contributes to overcoming the combinatorial explosion by allowing partial verification
on restricted scenarios specified by the context automata. CDL permits contexts and non
ambiguous properties to be formalized. Property can be linked to whole or specific contexts.
During experiments, we noted that some contexts and requirements were often described in
the available documentation in an incomplete way. With the collaboration between engineers
responsible for developing this documentation and ourselves, these engineers were motivated
to consider a more formal approach to express their requirements, which is certainly a positive
improvement.

In some case study, 70% textual requirements can be rewritten more easily with pattern
property. So, CDL permits a better formal verification appropriation by industrial partners.
Contexts and properties are verification data useful to perform proof activities and to validate
models. These data have to be capitalized if the implementation evolves over the development
life cycle.

In case studies, context diagrams were built, on the one hand, from scenarios described in
the design documents and, on the other hand, from the sentences of requirement documents.
Two major difficulties have arisen. The first is the lack of complete and coherent description
of the environment behavior. Use cases describing interactions between the system (S_CP for
instance) and its environment are often incomplete. For instance, data concerning interaction
modes may be implicit. CDL diagram development thus requires discussions with experts
who have designed the models under study in order to make explicit all context assumptions.
The problem comes from the difficulty in formalizing system requirements into formal
properties. These requirements are expressed in several documents of different (possibly
low) levels. Furthermore, they are written in a textual form and many of them can have
several interpretations. Others implicitly refer to an applicable configuration, operational
phase or history without defining it. Such information, necessary for verification, can only
be deduced by manually analyzing design and requirement documents and by interviewing
expert engineers.

10 Tests with same computer as for Table 1.

182 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Context Aware Model-Checking for Embedded Software 17

The use of CDL as a framework for formal and explicit context and requirement definition
can overcome these two difficulties: it uses a specification style very close to UML and
thus readable by engineers. In all case studies, the feedback from industrial collaborators
indicates that CDL models enhance communication between developers with different levels
of experience and backgrounds. Additionally, CDL models enable developers, guided by
behavior CDL diagrams, to structure and formalize the environment description of their
systems and their requirements. Furthermore, constraints from CDL can guide developers
to construct formal properties to check against their models. Using CDL, they have a means
of rigorously checking whether requirements are captured appropriately in the models using
simulation and model checking techniques.

One element highlighted when working on embedded software case studies with industrial
partners, is the need for formal verification expertise capitalization. Given our experience in
formal checking for validation activities, it seems important to structure the approach and the
data handled during the verifications. That can lead to a better methodological framework,
and afterwards a better integration of validation techniques in model development processes.
Consequently, the development process must include a step of environment specification
making it possible to identify sets of bounded behaviors in a complete way.

Although the CDL approach has been shown scalable in several industrial case studies,
the approach suffers from a lack of methodology. The handling of contexts, and then the
formalization of CDL diagrams, must be done carefully in order to avoid combinatorial
explosion when generating context graphs to be composed with the model to be validated.
The definition of such a methodology will be addressed by the next step of this work.

8. References

Alfaro, L. D. & Henzinger, T. A. (2001). Interface automata, Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE), ACM, Press, pp. 109–120.

Berthomieu, B., Ribet, P.-O. & Verdanat, F. (2004). The tool TINA - Construction of Abstract
State Spaces for Petri Nets and Time Petri Nets, International Journal of Production
Research 42.

Bosnacki, D. & Holzmann, G. J. (2005). Improving spin’s partial-order reduction for
breadth-first search, SPIN, pp. 91–105.

Clarke, E., Emerson, E. & Sistla, A. (1986). Automatic verification of finite-state concurrent
systems using temporal logic specifications, ACM Trans. Program. Lang. Syst.
8(2): 244–263.

Clarke, E. M., Long, D. E. & Mcmillan, K. L. (1999). Compositional model checking, MIT Press.
Dhaussy, P., Pillain, P.-Y., Creff, S., Raji, A., Traon, Y. L. & Baudry, B. (2009). Evaluating

context descriptions and property definition patterns for software formal validation,
in B. S. Andy Schuerr (ed.), 12th IEEE/ACM conf. Model Driven Engineering Languages
and Systems (Models’09), Vol. LNCS 5795, Springer-Verlag, pp. 438–452.

Dhaussy, P. & Roger, J.-C. (2011). Cdl (context description language) : Syntax and semantics,
Technical report, ENSTA-Bretagne.

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in property specifications for
finite-state verification, 21st Int. Conf. on Software Engineering, IEEE Computer Society
Press, pp. 411–420.

Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.-P., Filali, M., Berthomieu, B., Rodrigo, S.,
Vernadat, F., Garavel, H. & Lang, F. (2008). FIACRE: an intermediate language for

183Context Aware Model-Checking for Embedded Software

www.intechopen.com

18 Will-be-set-by-IN-TECH

model verification in the TOPCASED environment, European Congress on Embedded
Real-Time Software (ERTS), Toulouse, 29/01/2008-01/02/2008, SEE.

Flanagan, C. & Qadeer, S. (2003). Thread-modular model checking, SPIN’03.
Godefroid, P. (1995). The Ulg partial-order package for SPIN, SPIN Workshop .
Halbwachs, N., Lagnier, F. & Raymond, P. (1993). Synchronous observers and the verification

of reactive systems, in M. Nivat, C. Rattray, T. Rus & G. Scollo (eds), Third Int. Conf. on
Algebraic Methodology and Software Technology, AMAST’93, Workshops in Computing,
Springer Verlag, Twente.

Holzmann, G. (1997). The model checker SPIN, Software Engineering 23(5): 279–295.
Holzmann, G. & Peled, D. (1994). An improvement in formal verification, Proc. Formal

Description Techniques, FORTE94, Chapman & Hall, Berne, Switzerland, pp. 197–211.
Janssen, W., Mateescu, R., Mauw, S., Fennema, P. & Stappen, P. V. D. (1999). Model checking

for managers, SPIN, pp. 92–107.
Konrad, S. & Cheng, B. (2005). Real-time specification patterns, 27th Int. Conf. on Software

Engineering (ICSE05), St Louis, MO, USA.
Larsen, K. G., Pettersson, P. & Yi, W. (1997). UPPAAL in a nutshell, International Journal on

Software Tools for Technology Transfer 1(1-2): 134–152.
URL: citeseer.nj.nec.com/larsen97uppaal.html

Park, S. & Kwon, G. (2006). Avoidance of state explosion using dependency analysis in model
checking control flow model, ICCSA (5), pp. 905–911.

Peled, D. (1994). Combining Partial-Order Reductions with On-the-fly Model-Checking,
CAV ’94: Proceedings of the 6th International Conference on Computer Aided Verification,
Springer-Verlag, London, UK, pp. 377–390.

Pnueli, A. (1977). The temporal logic of programs, SFCS ’77: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, USA, pp. 46–57.

Smith, R., Avrunin, G., Clarke, L. & Osterweil, L. (2002). Propel: An approach supporting
property elucidation, 24st Int. Conf. on Software Engineering(ICSE02), St Louis, MO,
USA, ACM Press, pp. 11–21.

Tkachuk, O. & Dwyer, M. B. (2003). Automated environment generation for software model
checking, In Proceedings of the 18th International Conference on Automated Software
Engineering, pp. 116–129.

Valmari, A. (1991). Stubborn sets for reduced state space generation, Proceedings of the
10th International Conference on Applications and Theory of Petri Nets, Springer-Verlag,
London, UK, pp. 491–515.

Whittle, J. (2006). Specifying precise use cases with use case charts, MoDELS’06, Satellite
Events, pp. 290–301.

184 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Philippe Dhaussy, Jean-Charles Roger and Frédéric Boniol (2012). Context Aware Model-Checking for

Embedded Software, Embedded Systems - Theory and Design Methodology, Dr. Kiyofumi Tanaka (Ed.), ISBN:

978-953-51-0167-3, InTech, Available from: http://www.intechopen.com/books/embedded-systems-theory-

and-design-methodology/context-aware-model-checking-for-embedded-software

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

