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1. Introduction

Current VLSI technology allows the design of sophisticated digital systems with escalated

demands in performance and power/energy consumption. The annual increase of chip

complexity is 58%, while human designers productivity increase is limited to 21% per annum

(ITRS, 2011). The growing technology-productivity gap is probably the most important

problem in the industrial development of innovative products. A dramatic increase in

designer productivity is only possible through the adoption of methodologies/tools that

raise the design abstraction level, ingeniously hiding low-level, time-consuming, error-prone

details. New EDA methodologies aim to generate digital designs from high-level descriptions,

a process called High-Level Synthesis (HLS) (Coussy & Morawiec, 2008) or else hardware

compilation (Wirth, 1998). The input to this process is an algorithmic description (for example

in C/C++/SystemC) generating synthesizable and verifiable Verilog/VHDL designs (IEEE,

2006; 2009).

Our aim is to highlight aspects regarding the organization and design of the targeted hardware

of such process. In this chapter, it is argued that a proper Model of Computation (MoC) for

the targeted hardware is an adapted and extended form of the FSMD (Finite-State Machine

with Datapath) model which is universal, well-defined and suitable for either data- or

control-dominated applications. Several design examples will be presented throughout the

chapter that illustrate our approach.

2. Higher-level representations of FSMDs

This section discusses issues related to higher-level representations of FSMDs (Gajski &

Ramachandran, 1994) focusing on textual intermediate representations (IRs). It first provides

a short overview of existing approaches focusing on the well-known GCC GIMPLE and

LLVM IRs. Then the BASIL (Bit-Accurate Symbolic Intermediate Language) is introduced

as a more appropriate lightweight IR for self-contained representation of FSMD-based

hardware architectures. Lower-level graph-based forms are presented focusing on the CDFG

(Control-Data Flow Graph) procedure-level representation using Graphviz (Graphviz, 2011)

files. This section also illustrates a linear CDFG construction algorithm from BASIL. In

addition, an end-to-end example is given illustrating algorithmic specifications in ANSI
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2 Will-be-set-by-IN-TECH

C, BASIL, Graphviz CDFGs and their visualizations utilizing a 2D Euclidean distance

approximation function.

2.1 Overview of compiler intermediate representations

Recent compilation frameworks provide linear IRs for applying analyses, optimizations and

as input for backend code generation. GCC (GCC, 2011) supports the GIMPLE IR. Many

GCC optimizations have been rewritten for GIMPLE, but it is still undergoing grammar and

interface changes. The current GCC distribution incorporates backends for contemporary

processors such as the Cell SPU and the baseline Xtensa application processor (Gonzalez,

2000) but it is not suitable for rapid retargeting to non-trivial and/or custom architectures.

LLVM (LLVM, 2011) is a compiler framework that draws growing interest within the

compilation community. The LLVM compiler uses the homonymous LLVM bitcode, a

register-based IR, targeted by a C/C++ companion frontend named clang (clang homepage,

2011). It is written in a more pleasant coding style than GCC, but similarly the IR infrastructure

and semantics are excessive.

Other academic infrastructures include COINS (COINS, 2011), LANCE (LANCE, 2011) and

Machine-SUIF (Machine-SUIF, 2002). COINS is written entirely in Java, and supports two

IRs: the HIR (high level) and the LIR (low-level) which is based on S-expressions. COINS

features a powerful SSA-based optimizer, however its LISP-like IR is unsuitable for directly

expressing control and data dependencies and to fully automate the construction of a

machine backend. LANCE (Leupers et al., 2003) introduces an executable IR form (IR-C),

which combines the simplicity of three-address code with the executability of ANSI C code.

LANCE compilation passes accept and emit IR-C, which eases the integration of LANCE

into third-party environments. However, ANSI C semantics are neither general nor neutral

enough in order to express vastly different IR forms. Machine-SUIF is a research compiler

infrastructure built around the SUIFvm IR which has both a CFG (control-flow graph) and

SSA form. Past experience with this compiler has proved that it is overly difficult both to alter

or extend its semantics. It appears that the Phoenix (Microsoft, 2008) compiler is a rewrite and

extension of Machine-SUIF in C#. As an IR, the CIL (Common Intermediate Language) is used

which is entirely stack-based, a feature that hinders the application of modern optimization

techniques. Finally, CoSy (CoSy, 2011) is the prevalent commercial retargetable compiler

infrastructure. It uses the CCMIR intermediate language whose specification is confidential.

Most of these frameworks fall short in providing a minimal, multi-purpose compilation

infrastructure that is easy to maintain and extend.

The careful design of the compiler intermediate language is a necessity, due to its dual purpose

as both the program representation and an abstract target machine. Its design affects the

complexity, efficiency and ease of maintenance of all compilation phases; frontend, optimizer

and effortlessly retargetable backend.

The following subsection introduces the BASIL intermediate representation. BASIL supports

semantic-free n-input/m-output mappings, user-defined data types, and specifies a virtual

machine architecture. BASIL’s strength is its simplicity: it is inherently easy to develop a

CDFG (control/data flow graph) extraction API, apply graph-based IR transformations for

144 Embedded Systems – Theory and Design Methodology
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Data type Regular expression Example
UNSIGNED_INT [Uu][1-9][0-9]* u32
SIGNED_INT [Ss][1-9][0-9]* s11
UNSIGNED/
SIGNED_FXP

[Qq][0-9]+.[0-9]+[S|U] q4.4u, q2.14s

FLP [Ff][0|1].[0-9]+.[0-9]+ F1.8.23
fields: sign, exponent,
mantissa

Table 1. Data type specifications in BASIL.

domain specialization, investigate SSA (Static Single Assignment) construction algorithms

and perform other compilation tasks.

2.2 Representing programs in BASIL

BASIL provides arbitrary n-to-m mappings allowing the elimination of implicit side-effects,

a single construct for all operations, and bit-accurate data types. It supports scalar,

single-dimensional array and streamed I/O procedure arguments. BASIL statements are

labels, n-address instructions or procedure calls.

BASIL is similar in concept to the GIMPLE and LLVM intermediate languages but with

certain unique features. For example, while BASIL supports SSA form, it provides very light

operation semantics. A single construct is required for supporting any given operation as an

m-to-n mapping between source and destination sites. An n-address operation is actually the

specification of a mapping from a set of n ordered inputs to a set of m ordered outputs. An

n-address instruction (or else termed as an n, m-operation) is formatted as follows:

outp1, ..., outpm <= operation inp1, ..., inpn; where:

• operation is a mnemonic referring to an IR-level instruction

• outp1, ..., outpm are the m outputs of the operation

• inp1, ..., inpn are the n inputs of the operation

In BASIL all declared objects (global variables, local variables, input and output procedure

arguments) have an explicit static type specification. BASIL uses the notions of “globalvar”

(a global scalar or single-dimensional array variable), “localvar” (a local scalar or

single-dimensional array variable), “in” (an input argument to the given procedure), and

“out” (an output argument to the given procedure).

BASIL supports bit-accurate data types for integer, fixed-point and floating-point arithmetic.

Data type specifications are essentially strings that can be easily decoded by a regular

expression scanner; examples are given in Table 1.

The EBNF grammar for BASIL is shown in Fig. 1 where it can be seen that rules “nac” and

“pcall” provide the means for the n-to-m generic mapping for operations and procedure calls,

respectively. It is important to note that BASIL has no predefined operator set; operators are

defined through a textual mnemonic.

For instance, an addition of two scalar operands is written: a <= add b, c;.

Control-transfer operations include conditional and unconditional jumps explicitly visible in
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✞ ☎
basil_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_list ";".
proc_def = "procedure" [anum] "(" [arg_list] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_list "<="] anum [id_list] ";".
pcall = ["(" id_list ")" "<="] anum ["(" id_list ")"] ";".
id_list = id {"," id}.
decl_item_list = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg_list = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_list ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)).
✝ ✆

Fig. 1. EBNF grammar for BASIL.

the IR. An example of an unconditional jump would be: BB5 <= jmpun; while conditional

jumps always declare both targets: BB1, BB2 <= jmpeq i, 10;. This statement enables

a control transfer to the entry of basic block BB1 when i equals to 10, otherwise to BB2.

Multi-way branches corresponding to compound decoding clauses can be easily added.

An interesting aspect of BASIL is the support of procedures as non-atomic operations by

using a similar form to operations. In (y) <= sqrt(x); the square root of an operand

x is computed; procedure argument lists are indicated as enclosed in parentheses.

2.3 BASIL program structure and encoding

A specification written in BASIL incorporates the complete information of a translation unit

of the original program comprising of a list of “globalvar” definitions and a list of procedures

(equivalently: control-flow graphs). A single BASIL procedure is captured by the following

information:

• procedure name

• ordered input (output) arguments

• “localvar” definitions

• BASIL statements.

• basic block labels.

Label items point to basic block (BB) entry points and are defined as name, bb, addr

3-tuples, where name is the corresponding identifier, bb the basic block enumeration, and addr

the absolute address of the statement succeeding the label.

Statements are organized in the form of a C struct or equivalently a record (in other

programming languages) as shown in Fig. 2.

The Statement ADT therefore can be used to model an (n, m)-operation. The input and output

operand lists collect operand items, as defined in the OperandItem data structure definition

shown in Fig. 3.
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✞ ☎
typedef struct {
char *mnemonic; /* Designates the statement type. */
NodeType ntype; /* OPERATION or PROCEDURE_CALL. */
List opnds_in; /* Collects all input operands. */
List opnds_out; /* Collects all output operands. */
int bb; /* Basic block number. */
int addr; /* Absolute statement address. */

} _Statement;
typedef _Statement *Statement;
✝ ✆

Fig. 2. C-style record for encoding a BASIL statement.

✞ ☎
typedef struct {
char *name; /* Identifier name. */
char *dataspec; /* Data type string spec. */
OperandType otype; /* Operand type representation. */
int ix; /* Absolute operand item index. */

} _OperandItem;
typedef _OperandItem *OperandItem;
✝ ✆

Fig. 3. C-style record for encoding an OperandItem.

The OperandItem data structure is used for representing input arguments (INVAR), output

arguments (OUTVAR), local (LOCALVAR) and global (GLOBALVAR) variables and constants

(CONSTANT). If using a graph-based intermediate representation, arguments and constants

could use node and incoming or outgoing edge representations, while it is meaningful to

represent variables as edges as long as their storage sites are not considered.

The typical BASIL program is structured as follows:

✞ ☎
<Global variable declarations>

procedure name_1 (
<comma-separated input arguments>,
<comma-separated output arguments>

) {
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

}
...
procedure name_n (
<comma-separated input arguments>,
<comma-separated output arguments>

) {
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

}
✝ ✆

Fig. 4. Translation unit structure for BASIL.
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Mnemonic Description (Ni, No)
ldc Load constant (1,1)
neg, mov Unary arithmetic op. (1,1)
add, sub, abs, min, max, Binary arithmetic op. (2,1)
mul, div, mod, shl, shr
not, and, ior, xor Logical (2,1)
szz Comparison for zz: (2,1)

(eq,ne,lt,le,gt,ge)
muxzz Conditional selection (3,1)
load, store Load/Store register

from/to memory
(2,1)

sxt, zxt, trunc Type conversion (1,1)
jmpun Unconditional jump (0,1)
jmpzz Conditional jump (2,2)
print Diagnostic output (1,0)

Table 2. A set of basic operations for a BASIL-based IR.

2.4 A basic BASIL implementation

A basic operation set for RISC-like compilation is summarized in Table 2. Ni (No) denotes the

number of input (output) operands for each operation.

The memory access model defines dedicated address spaces per array, so that both loads

and stores require the array identifier as an explicit operand. For an indexed load in C (b

= a[i];), a frontend would generate the following BASIL: b <= load a, i;, while for an

indexed store (a[i] = b;) it is a <= store b, i;.

Pointer accesses can be handled in a similar way, although dependence extraction requires

careful data flow analysis for non-trivial cases. Multi-dimensional arrays are handled through

matrix flattening transformations.

2.5 CDFG construction

A novel, fast CDFG construction algorithm has been devised for both SSA and non-SSA

BASIL forms producing flat CDFGs as Graphviz files (Fig. 5). A CDFG symbol table

item is a node (operation, procedure call, globalvar, or constant) or edge (localvar) with

user-defined attributes: the unique name, label and data type specification; node and edge

type enumeration; respective order of incoming or outgoing edges; input/output argument

order of a node and basic block index. Further attributes can be defined, e.g. for scheduling

bookkeeping.

This approach is unique since it focuses on building the CDFG symbol table (st) from which

the associated graph (cdfg) is constructed as one possible of many facets. It naturally supports

loop-carried dependencies and array accesses.

2.6 Fixed-point arithmetic

The use of fixed-point arithmetic (Yates, 2009) provides an inexpensive means for improved

numerical dynamic range, when artifacts due to quantization and overflow effects can be

tolerated. Rounding operators are used for controlling the numerical precision involved in a

series of computations; they are defined for inexact arithmetic representations such as fixed-
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✞ ☎
BASILtoCDFG()
input List BASILs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;

begin

Insert constant, input/output arguments and global

variable operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and

outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg-reachability;
Generate cdfg from st;

end
✝ ✆

Fig. 5. CDFG construction algorithm accepting BASIL input.

and floating-point. Proposed and in-use specifications for fixed-point arithmetic of related

practice include:

• the C99 standard (ISO/IEC JTC1/SC22, 2007)

• lightweight custom implementations such as (Edwards, 2006)

• explicit data types with open source implementations (Mentor Graphics, 2011; SystemC,

2006)

Fixed-point arithmetic is a variant of the typical integral representation (2’s-complement

signed or unsigned) where a binary point is defined, purely as a notational artifact to signify

integer powers of 2 with a negative exponent. Assuming an integer part of width IW > 0

and a fractional part with −FW < 0, the VHDL-2008 sfixed data type has a range of

2IW−1 − 2|FW | to −2IW−1 with a representable quantum of 2|FW | (Bishop, 2010a;b). The

corresponding ufixed type has the following range: 2IW − 2|FW | to 0. Both are defined

properly given a IW-1:-FW vector range.

BASIL currently supports a proposed list of extension operators for handling fixed-point

arithmetic:

• conversion from integer to fixed-point format: i2ufx, i2sfx

• conversion from fixed-point to integer format: ufx2i, sfx2i

• operand resizing: resize, using three input operands; source operand src1 and src2,

src3 as numerical values that denote the new size (high-to-low range) of the resulting

fixed-point operand

• rounding primitives: ceil, fix, floor, round, nearest, convergent for rounding

towards plus infinity, zero, minus infinity, and nearest (ties to greatest absolute value, plus

infinity and closest even, respectively).

2.7 Scan-based SSA construction algorithms for BASIL

In our experiments with BASIL we have investigated minimal SSA construction schemes – the

Appel (Appel, 1998) and Aycock-Horspool (Aycock & Horspool, 2000) algorithms – that don’t

require the computation of the iterated dominance frontier (Cytron et al., 1991).
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App. LOC LOC P/V/E #φs #Instr.
(BASIL) (dot)

atsort 155 484 2/136/336 10 6907
coins 105 509 2/121/376 10 405726
cordic 56 178 1/57/115 7 256335
easter 47 111 1/46/59 2 3082
fixsqrt 32 87 1/29/52 6 833900
perfect 31 65 1/23/36 4 6590739
sieve 82 199 2/64/123 12 515687
xorshift 26 80 1/29/45 0 2000

Table 3. Application profiling with a BASIL framework.

In traditional compilation infrastructures (GCC, LLVM) (GCC, 2011; LLVM, 2011), Cytron’s

approach (Cytron et al., 1991) is preferred since it enables bit-vector dataflow frameworks

and optimizations that require elaborate data structures and manipulations. It can be argued

that rapid prototyping compilers, integral parts of heterogeneous design flows, would benefit

from straightforward SSA construction schemes which don’t require the use of sophisticated

concepts and data structures (Appel, 1998; Aycock & Horspool, 2000).

The general scheme for these methods consists of series of passes for variable numbering,

φ-insertion, φ-minimization, and dead code elimination. The lists of BASIL statements,

localvars and labels are all affected by the transformations.

The first algorithm presents a “really-crude” approach for variable renaming and φ-function

insertion in two separate phases (Appel, 1998). In the first phase, every variable is split at BB

boundaries, while in the second phase φ-functions are placed for each variable in each BB.

Variable versions are actually preassigned in constant time and reflect a specific BB ordering

(e.g. DFS). Thus, variable versioning starts from a positive integer n, equal to the number of

BBs in the given CFG.

The second algorithm does not predetermine variable versions at control-flow joins but

accounts φs the same way as actual computations visible in the original CFG. Due to this

fact, φ-insertion also presents dissimilarities. Both methods share common φ-minimization

and dead code elimination phases.

2.8 Application profiling with BASILVM

BASIL programs can be translated to low-level C for the easy evaluation of nominal

performance on an abstract machine, called BASILVM. To show the applicability of BASILVM

profiling, a set of small realistic integer/fixed-point kernels has been selected: atsort (an all

topological sorts algorithm (Knuth, 2011)), coins (compute change with minimum amount

of coins), easter (Easter date calculations), fixsqrt (fixed-point square root (Turkowski, 1995)),

perfect (perfect number detection), sieve (prime sieve of Eratosthenes) and xorshift (100 calls

to George Marsaglia’s PRNG (Marsaglia, 2003) with a 2128 − 1 period, which passes Diehard

tests).

Static and dynamic metrics have been collected in Table 3. For each application (App.),

the lines of BASIL and resulting CDFGs are given in columns 2-3, number of CDFGs (P:
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✞ ☎
void eda(int in1, int in2,

int *out1)
{

int t1, t2, t3,
t4, t5, t6, t7;

int x, y;

t1 = ABS(in1);
t2 = ABS(in2);
x = MAX(t1, t2);
y = MIN(t1, t2);
t3 = x >> 3;
t4 = y >> 1;
t5 = x - t3;
t6 = t4 + t5;
t7 = MAX(t6, x);

*out1 = t7;
}
✝ ✆

(a) ANSI C code.

✞ ☎
procedure eda (in s16 in1, in s16 in2,

out u16 out1)
{

localvar u16 x, y,
t1, t2, t3,
t4, t5, t6, t7;

S_1:
t1 <= abs in1;
t2 <= abs in2;
x <= max t1, t2;
y <= min t1, t2;
t3 <= shr x, 3;
t4 <= shr y, 1;
t5 <= sub x, t3;
t6 <= add t4, t5;
t7 <= max t6, x;
out1 <= mov t7;

}
✝ ✆

(b) BASIL code.

abs

max

t1

min

t1

abs

t2 t2

add

max

t6

1

shr

1

3

shr

3

in1 in2

x

x

sub

x

mov

t7

y

out1

t3

t4

t5

(c) CDFG code.

Fig. 6. Different facets of an euclidean distance approximation computation.

procedures), vertices and edges (for each procedure) in columns 4-5, amount of φ statements

(column 6) and the number of dynamic instructions for the non-SSA case. The latter is

measured using gcc-3.4.4 on Cygwin/XP by means of the executed code lines with the gcov

code coverage tool.

2.9 Representative example: 2D Euclidean distance approximation

A fast linear algorithm for approximating the euclidean distance of a point (x, y) from the

origin is given in (Gajski et al., 2009) by the equation: eda = MAX((0.875 ∗ x + 0.5 ∗ y), x)
where x = MAX(|a|, |b|) and y = MIN(|a|, |b|). The average error of this approximation

against the integer-rounded exact value (dist =
√

a2 + b2) is 4.7% when compared to the

rounded-down ⌊dist⌋ and 3.85% to the rounded-up ⌈dist⌉ value.

Fig. 6 shows the three relevant facets of eda: ANSI C code (Fig. 6(a)), a manually derived BASIL

implementation (Fig. 6(b)) and the corresponding CDFG (Fig. 6(c)). Constant multiplications

have been reduced to adds, subtracts and shifts. The latter subfigure naturally also shows the

ASAP schedule of the data flow graph, which is evidently of length 7.

3. Architecture and organization of extended FSMDs

This section deals with aspects of specification and design of FSMDs, especially their

interface, architecture and organization, as well as communication and integration issues. The

section is wrapped-up with realistic examples of CDFG mappings to FSMDs, alongside their

performance investigation with the help of HDL simulations.
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3.1 FSMD overview

A Finite State Machine with Data (FSMD) specification (Gajski & Ramachandran, 1994) is

an upgraded version of the well-known Finite State Machine representation providing the

same information as the equivalent CDFG (Gajski et al., 2009). The main difference is

the introduction of embedded actions within the next state generation logic. An FSMD

specification is timing-aware since it must be decided that each state is executed within a

certain amount of machine cycles. Also the precise RTL semantics of operations taking place

within these cycles must be determined. In this way, an FSMD can provide an accurate

model of an RTL design’s performance as well as serve as a synthesizable manifestation of

the designer’s intent. Depending on the RT-level specification (usually VHDL or Verilog) it

can convey sufficient details for hardware synthesis to a specific target platform, e.g. Xilinx

FPGA devices (Xilinx, 2011b).

3.2 Extended FSMDs

The FSMDs of our approach follow the established scheme of a Mealy FSM with

computational actions embedded within state logic (Chu, 2006). In this work, the extended

FSMD MoC describing the hardware architectures supports the following features, the most

relevant of which will be sufficiently described and supported by short examples:

• Support of scalar and array input and output ports.

• Support of streaming inputs and outputs and allowing mixed types of input and output

ports in the same design block.

• Communication with embedded block and distributed LUT memories.

• Design of a latency-insensitive local interface of the FSMD units to master FSMDs,

assuming the FSMD is a locally-interfaced slave.

• Design of memory interconnects for the FSMD units.

Advanced issues in the design of FSMDs that are not covered include the following:

• Mapping of SSA-form (Cytron et al., 1991) low-level IR (BASIL) directly to hardware, by

the hardware implementation of variable-argument φ functions.

• External interrupts.

• Communication to global aggregate type storage (global arrays) from within the context of

both root and non-root procedures using a multiplexer-based bus controlled by a scalable

arbiter.

3.2.1 Interface

The FSMDs of our approach use fully-synchronous conventions and register all their outputs

(Chu, 2006; Keating & Bricaud, 2002). The control interface is rather simple, yet can service all

possible designs:

• clk: signal from external clocking source

• reset (rst or arst): synchronous or asynchronous reset, depending on target specification
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Fig. 7. FSMD I/O interface.

• ready: the block is ready to accept new input

• valid: asserted when a certain data output port is streamed-out from the block (generally

it is a vector)

• done: end of computation for the block

ready signifies only the ability to accept new input (non-streamed) and does not address the

status of an output (streaming or not).

Multi-dimensional data ports are feasible based on their equivalent single-dimensional

flattened array type definition. Then, port selection is a matter of bitfield extraction. For

instance, data input din is defined as din: in std_logic_vector(M*N-1 downto

0);, where M, N are generics. The flattened vector defines M input ports of width N. A

selection of the form din((i+1)*N-1 downto i*N) is typical for a for-generate loop

in order to synthesize iterative structures.

The following example (Fig. 8) illustrates an element-wise copy of array b to c without the use

of a local array resource. Each interface array consists of 10 elements. It should be assumed

that the physical content of both arrays lies in distributed LUT RAM, from which custom

connections can be implemented.

Fig. 8(a) illustrates the corresponding function func1. The VHDL interface of func1 is

shown in Fig. 8(b), where the derived array types b_type and c_type are used for b, c,

respectively. The definitions of these types can be easily devised as aliases to a basic type

denoted as: type cdt_type is array (9 downto 0) of std_logic_vector(31

downto 0);. Then, the alias for b is: alias b_type is cdt_type;

3.2.2 Architecture and organization

The FSMDs are organized as computations allocated into n + 2 states, where n is the number

of required control steps as derived by an operation scheduler. The two overhead states are

the entry (S_ENTRY) and the exit (S_EXIT) states which correspond to the source and sink

nodes of the control-data flow graph of the given procedure, respectively.

Fig. 9 shows the absolute minimal example of a compliant FSMD written in VHDL. The FSMD

is described in a two-process style using one process for the current state logic and another

process for a combined description of the next state and output logic. This code will serve as

a running example for better explaining the basic concepts of the FSMD paradigm.
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✞ ☎
procedure func1 (in s32 b[10],

out s32 c[10]) {
localvar s32 i, t;

S_1:
i <= ldc 0;
S_2 <= jmpun;

S_2:
S_3, S_EXIT <= jmplt i, 10;

S_3:
t <= load b, i;
c <= store t, i;
i <= add i, 1;
S_2 <= jmpun;

S_EXIT:
nop;

}
✝ ✆

(a) BASIL code.

✞ ☎
entity func1 is

port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
b : in b_type;
c : out c_type;
done : out std_logic;
ready : out std_logic

);
end func1;
✝ ✆

(b) VHDL interface.

Fig. 8. Array-to-array copy without intermediate storage.

The example of Fig. 9(a), 9(b) implements the computation of assigning a constant value to

the output port of the FSMD: outp <= ldc 42;. Thus, lines 5–14 declare the interface

(entity) for the hardware block, assuming that outp is a 16-bit quantity. The FSMD requires

three states. In line 17, a state type enumeration is defined consisting of types S_ENTRY,

S_EXIT and S_1. Line 18 defines the signal 2-tuple for maintaining the state register, while

in lines 19–20 the output register is defined. The current state logic (lines 25–34) performs

asynchonous reset to all storage resources and assigns new contents to both the state and

output registers. Next state and output logic (lines 37–57) decode current_state in order

to determine the necessary actions for the computational states of the FSMD. State S_ENTRY

is the idle state of the FSMD. When the FSMD is driven to this state, it is assumed ready to

accept new input, thus the corresponding status output is raised. When a start prompt is

given externally, the FSMD is activated and in the next cycle, state S_1 is reached. In S_1 the

action of assigning CNST_42 to outp is performed. Finally, when state S_EXIT is reached,

the FSMD declares the end of all computations via done and returns to its idle state.

It should be noted that this design approach is a rather conservative one. One possible

optimization that can occur in certain cases is the merging of computational states that

immediately prediate the sink state (S_EXIT) with it.

Fig. 9(c) shows the timing diagram for the “minimal” design. As expected, the overall latency

for computing a sample is three machine cycles.

In certain cases, input registering might be desired. This intent can be made explicit by

copying input port data to an internal register. For the case of the eda algorithm, a new

localvar, a would be introduced to perform the copy as a <= mov in1;. The VHDL

counterpart is given as a_1_next <= in1;, making this data available through register

a_1_reg in the following cycle. For register r, signal r_next represents the value that is

available at the register input, and r_reg the stored data in the register.
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✞ ☎
1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.numeric_std.all;
4
5 entity minimal is

6 port (
7 clk : in std_logic;
8 reset : in std_logic;
9 start : in std_logic;

10 outp : out std_logic_vector(15 downto 0);
11 done : out std_logic;
12 ready : out std_logic

13 );
14 end minimal;
15
16 architecture fsmd of minimal is

17 type state_type is (S_ENTRY, S_EXIT, S_1);
18 signal current_state, next_state: state_type;
19 signal outp_next: std_logic_vector(15 downto 0);
20 signal outp_reg: std_logic_vector(15 downto 0);
21 constant CNST_42: std_logic_vector(15 downto 0)
22 := "0000000000101010";
23 begin

24 -- current state logic
25 process (clk, reset)
26 begin

27 if (reset = ’1’) then

28 current_state <= S_ENTRY;
29 outp_reg <= (others => ’0’);
30 elsif (clk = ’1’ and clk’EVENT) then

✝ ✆

(a) VHDL code.

✞ ☎
31 current_state <= next_state;
32 outp_reg <= outp_next;
33 end if;
34 end process;
35
36 -- next state and output logic
37 process (current_state, start, outp_reg)
38 begin

39 done <= ’0’;
40 ready <= ’0’;
41 outp_next <= outp_reg;
42 case current_state is

43 when S_ENTRY =>
44 ready <= ’1’;
45 if (start = ’1’) then

46 next_state <= S_1;
47 else

48 next_state <= S_ENTRY;
49 end if;
50 when S_1 =>
51 outp_next <= CNST_42;
52 next_state <= S_EXIT;
53 when S_EXIT =>
54 done <= ’1’;
55 next_state <= S_ENTRY;
56 end case;
57 end process;
58 outp <= outp_reg;
59 end fsmd;

✝ ✆

(b) VHDL code (cont.)

(c) Timing diagram.

Fig. 9. Minimal FSMD implementation in VHDL.

3.2.3 Communication with embedded memories

Array objects can be synthesized to block RAMs in contemporary FPGAs. These embedded

memories support fully synchronous read and write operations (Xilinx, 2005). A requirement

for asynchronous read mandates the use of memory residing in distributed LUT storage.

In BASIL, the load and store primitives are used for describing read and write memory

access. We will assume a RAM memory model with write enable, and separate data input

(din) and output (dout) sharing a common address port (rwaddr). To control access to

such block, a set of four non-trivial signals is needed: mem_we, a write enable signal, and

the corresponding signals for addressing, data input and output.

store is the simpler operation of the two. It requires raising mem_we in a given single-cycle

state so that data are stored in memory and made available in the subsequent state/machine

cycle.
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✞ ☎
when STATE_1 =>
mem_addr <= index;
waitstate_next <= not (waitstate_reg);
if (waitstate_reg = ’1’) then

mysignal_next <= mem_dout;
next_state <= STATE_2;

else

next_state <= STATE_1;
end if;

when STATE_2 =>
...

✝ ✆

Fig. 10. Wait-state-based communication for loading data from a block RAM.

Synchronous load requires the introduction of a waitstate register. This register assists in

devising a dual-cycle state for performing the load. Fig. 10 illustrates the implementation of

a load operation. During the first cycle of STATE_1 the memory block is addressed. In the

second cycle, the requested data are made available through mem_dout and are assigned to

register mysignal. This data can be read from mysignal_reg during STATE_2.

3.2.4 Hierarchical FSMDs

Our extended FSMD concept allows for hierarchical FSMDs defining entire systems with

calling and callee CDFGs. A two-state protocol can be used to describe a proper

communication between such FSMDs. The first state is considered as the “preparation” state

for the communication, while the latter state actually comprises an “evaluation” superstate

where the entire computation applied by the callee FSMD is effectively hidden.

The calling FSMD performs computations where new values are assigned to ⋆_next signals

and registered values are read from ⋆_reg signals. To avoid the problem of multiple signal

drivers, callee procedure instances produce ⋆_eval data outputs that can then be connected

to register inputs by hardwiring to the ⋆_next signal.

Fig. 11 illustrates a procedure call to an integer square root evaluation procedure. This

procedure uses one input and one output std_logic_vector operands, both considered

to represent integer values. Thus, a procedure call of the form (m) <= isqrt(x); is

implemented by the given code segment in Fig. 11.

STATE_1 sets up the callee instance. The following state is a superstate where control is

transferred to the component instance of the callee. When the callee instance terminates its

computation, the ready signal is raised. Since the start signal of the callee is kept low, the

generated output data can be transferred to the m register via its m_next input port. Control

then is handed over to state STATE_3.

The callee instance follows the established FSMD interface, reading x_reg data and

producing an exact integer square root in m_eval. Multiple copies of a given callee are

supported by versioning of the component instances.
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✞ ☎
when STATE_1 =>
isqrt_start <= ’1’;
next_state <= SUPERSTATE_2;

when SUPERSTATE_2 =>
if ((isqrt_ready = ’1’) and (isqrt_start = ’0’)) then

m_next <= m_eval;
next_state <= STATE_3;

else

next_state <= SUPERSTATE_2;
end if;

when STATE_3 =>
...
isqrt_0 : entity WORK.isqrt(fsmd)
port map (

clk, reset,
isqrt_start, x_reg, m_eval,
isqrt_done, isqrt_ready

);
✝ ✆

Fig. 11. State-superstate-based communication of a caller and callee procedure instance in
VHDL.

✞ ☎
(B) <= func1 (A);
(C) <= func2 (B);
(D) <= func3 (C);
...

✝ ✆

Fig. 12. Example of a functional pipeline in BASIL.

3.2.5 Steaming ports

ANSI C is the archetypical example of a general-purpose imperative language that does

not support streaming primitives, i.e. it is not possible for someone to express and

process streams solely based on the semantics of such language. Streaming (e.g. through

queues) suits applications with near-complete absence of control flow. Such example would

be the functional pipeline of the form of Fig. 12 with A, B, C, D either compound types

(arrays/vectors). Control flow in general applications is complex and it is not easy to intermix

streamed and non-streamed inputs/outputs for each FSMD, either calling or callee.

3.2.6 Other issues

3.2.6.1 VHDL packages for implicit fixed-point arithmetic support

The latest approved IEEE 1076 standard (termed VHDL-2008) (IEEE, 2009) adds signed

and unsigned (sfixed, ufixed) fixed-point data types and a set of primitives for their

manipulation. The VHDL fixed-point package provides synthesizable implementations of

fixed-point primitives for arithmetic, scaling and operand resizing (Ashenden & Lewis, 2008).

3.2.6.2 Design organization of an FSMD hardware IP

A proper FSMD hardware IP should seamlessly integrate to a hypothetical system. FSMD IPs

would be viewed as black boxes adhering to certain principles such as registered outputs.
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✞ ☎
globalvar B [...]=...;
...
() <= func1 (A);
() <= func2 ();
() <= func3 ();

✝ ✆

Fig. 13. The functional pipeline of Fig. 12 after argument globalization.

Unconstrained vectors help in maintaining generic blocks without the need of explicit

generics, and it is an interesting idea, however not easily applicable when derived types are

involved.

The outer product of two vectors A and B could be a theoretical case for a hardware block. The

outer (or “cross”) product is given by C = A × B or C = cross(A, B) for reading two matrices

A, B to calculate C. Matrices A, B, C will have appropriate derived types that are declared in

the cross_pkg.vhd package; a prerequisite for using the cross.vhd design file.

Regarding the block internals, the cross product of A, B is calculated and stored in a localvar

array called Clocal. Clocal is then copied (possibly in parallel) to the C interface array with

the help of a for-generate construct.

3.2.6.3 High-level optimizations relevant to hardware block development

Very important optimizations for increasing the efficiency of system-level communication are

matrix flattening and argument globalization. The latter optimization is related to choices at

the hardware interconnect level.

Matrix flattening deals with reducing the dimensions of an array from N to one. This

optimization creates multiple benefits:

• addressing simplification

• direct mapping to physical memory (where addressing is naturally single-dimensional)

• interface and communication simplifications

Argument globalization is useful for replacing multiple copies of a given array by a

single-access “globalvar” array. One important benefit is the prevention of exhausting

interconnect resources. This optimization is feasible for single-threaded applications. For

the example in Fig. 12 we assume that all changes can be applied sequentially on the B array,

and that all original data are stored in A.

The aforementioned optimization would rapidly increase the number of “globalvar” arrays.

A “safe” but conservative approach would apply a restriction on “globalvar” access, allowing

access to globals only by the root procedure of the call graph. This can be overcome by

the development of a bus-based hardware interface for “globalvar” arrays making globals

accessible by any procedure.

3.2.6.4 Low-level optimizations relevant to hardware block development

A significant low-level optimization that can boost performance while operating locally

at the basic block level is operation chaining. A scheduler supporting this optimization
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would assign to a single control step, multiple operations that are associated through

data dependencies. Operation chaining is popular for deriving custom instructions or

superinstructions that can be added to processor cores as instruction-set extensions (Pozzi

et al., 2006). Most techniques require a form of graph partitioning based on certain criteria

such as the maximum acceptable path delay.

A hardware developer could resort in a simpler means for selective operation chaining by

merging ASAP states to compound states. This optimization is only possible when a single

definition site is used per variable (thus SSA form is mandatory). Then, an intermediate

register is eliminated by assigning to a ⋆_next signal and reusing this value in the subsequent

chained computation, instead of reading from the stored ⋆_reg value.

3.3 Hardware design of the 2D Euclidean distance approximation

The eda algorithm shows good potential for speedup via operation chaining. Without this

optimization, 7 cycles are required for computing the approximation, while chaining allows

to squeeze all computational states into one; thus three cycles are needed to complete the

operation. Fig. 14 depicts VHDL code segments for an ASAP schedule with chaining disabled

(Fig. 14(a)) and enabled (Fig. 14(b)). Figures 14(c) and 14(d) show cycle timings for the relevant

I/O signals for both cases.

4. Non-trivial examples

4.1 Integer factorization

The prime factorization algorithm (p f actor) is a paramount example of the use of streaming

outputs. Output outp is streaming and the data stemming from this port should be accessed

based on the valid status. The reader can observe that outp is accessed periodically in

context of basic block BB3 as shown in Fig. 15(b).

Fig. 15 shows the four relevant facets of p f actor: ANSI C code (Fig. 15(a)), a manually

derived BASIL implementation (Fig. 15(b)) and the corresponding CFG (Fig. 15(c)) and CDFG

(Fig. 15(d)) views.

Fig. 16 shows the interface signals for factoring values 6 (a composite), 7 (a prime), and 8 (a

composite which is also a power-of-2).

4.2 Multi-function CORDIC

This example illustrates a universal CORDIC IP core supporting all directions (ROTATION,

VECTORING) and modes (CIRCULAR, LINEAR, HYPERBOLIC) (Andraka, 1998; Volder,

1959). The input/ouput interface is similar to e.g. the CORDIC IP generated by Xilinx

Core Generator (Xilinx, 2011a). It provides three data inputs (xin, yin, zin) and three data

outputs (xout, yout, zout) as well as the direction and mode control inputs. The testbench will

test the core for computing cos (xin), sin (yin), arctan(yin/xin), yin/xin ,
√

w, 1/
√

w, with

xin = w + 1/4, yin = w − 1/4, but it can be used for anything computable by CORDIC

iterations. The computation of 1/
√

w is performed in two stages: a) y = 1/w, b) z =
√

y. The
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✞ ☎
type state_type is (S_ENTRY, S_EXIT, S_1_1, S_1_2,

S_1_3, S_1_4, S_1_5, S_1_6, S_1_7);
signal current_state, next_state: state_type;
...

case current_state is

when S_ENTRY =>
ready <= ’1’;
if (start = ’1’) then

next_state <= S_1_1;
else

next_state <= S_ENTRY;
end if;

...
when S_1_3 =>

t3_next <= "000" & x_reg(15 downto 3);
t4_next <= "0" & y_reg(15 downto 1);
next_state <= S_1_4;

when S_1_4 =>
t5_next <= std_logic_vector(unsigned(x_reg)

- unsigned(t3_reg));
next_state <= S_1_5;

when S_1_5 =>
t6_next <= std_logic_vector(unsigned(t4_reg)

+ unsigned(t5_reg));
next_state <= S_1_6;

...
when S_1_7 =>

out1_next <= t7_reg;
next_state <= S_EXIT;

when S_EXIT =>
done <= ’1’;
next_state <= S_ENTRY;

✝ ✆

(a) VHDL code without chaining.

✞ ☎
type state_type is (S_ENTRY, S_EXIT, S_1_1);
signal current_state, next_state: state_type;
...
case current_state is

...
when S_ENTRY =>

ready <= ’1’;
if (start = ’1’) then

next_state <= S_1_1;
else

next_state <= S_ENTRY;
end if;

when S_1_1 =>
...
t3_next <= "000" & x_next(15 downto 3);
t4_next <= "0" & y_next(15 downto 1);
t5_next <= std_logic_vector(unsigned(x_next)

- unsigned(t3_next));
t6_next <= std_logic_vector(unsigned(t4_next)

+ unsigned(t5_next));
...
out1_next <= t7_next;
...

✝ ✆

(b) VHDL code with chaining.

(c) Timing diagram without chaining.

(d) Timing diagram with chaining.

Fig. 14. FSMD implementation in VHDL and timing for the eda algorithm.
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✞ ☎
void pfactor(unsigned int x,

unsigned int *outp)
{

unsigned int i, n;
i = 2;
n = x;
while (i <= n)
{

while ((n % i) == 0)
{

n = n / i;

*outp = i;
// emitting to file stream
PRINT(i);

}
i = i + 1;

}
}
✝ ✆

(a) ANSI C code.

✞ ☎
procedure pfactor (in u16 x, out u16 outp)
{

localvar u16 i, n, t0;
BB1:

n <= mov x;
i <= ldc 2;
BB2 <= jmpun;

BB2:
BB3, BB_EXIT <= jmple i, n;

BB3:
t0 <= rem n, i;
BB4, BB5 <= jmpeq t0, 0;

BB4:
n <= div n, i;
outp <= mov i;
BB3 <= jmpun;

BB5:
i <= add i, 1;
BB2 <= jmpun;

BB_EXIT:
nop;

}
✝ ✆

(b) BASIL code.

BB1

BB

U

BB3

T

BB6

F

BB4

T

BB5

FU

U

(c) CFG.

add

mov

i_6

0

jmpeq

0

1

1

2

ldc

2

div

mov

n_5

F

T

jmple

nop

F

rem

T

jmpun

U

jmpun

mov

U

jmpun

U

mov

i_1

mov

mov

n_1

mov

outp

outp

n_3

mov

n_3

n_3

i_2

i_2

i_2

i_2i_2

i_2

i_2

i_2

i_2i_2

n_2n_2

n_3

n_3

n_3

n_2n_2

t0_4

x

x

(d) CDFG.

Fig. 15. Different facets of a prime factorization algorithm.
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Fig. 16. Non-trivial interface signals for the p f actor FSMD design.

Design Description Max.
frequency

Area
(LUTs)

cordic1cyc 1-cycle/iteration; uses asynchronous
read LUT RAM

204.5 741

cordic5cyc 5-cycles/iteration; uses synchronous
read (Block) RAM

271.5 571, 1 BRAM

Table 4. Logic synthesis results for multi-function CORDIC.

design is a monolithic FSMD that does not include post-processing needed such as the scaling

operation for the square root.

The FSMD for the CORDIC uses Q2.14 fixed-point arithmetic. While the required lines

of ANSI C code are 29, the hand-coded BASIL representation uses 56 lines; the CDFG

representation and the VHDL design, 178 and 436, respectively, showing a clear tendency

among the different abstraction levels used for design representation.

The core achieves 18 (CIRCULAR, LINEAR) and 19 cycles (HYPERBOLIC) per sample or

n + 4 and n + 5 cycles, respectively, where n is the fractional bitwidth. When the operation

chaining optimization is not applied, 5 cycles per iteration are required instead of a single

cycle where all operations all collapsed. A single-cycle per iteration constraint imposes the

use of distributed LUT RAM, otherwise 3 cycles are required per sample.

Fig.17(a) shows a C-like implementation of the multi-function CORDIC inspired by recent

work (Arndt, 2010; Williamson, 2011). CNTAB is equivalent to fractional width n, HYPER,

LIN and CIRC are shortened names for CORDIC modes and ROTN for the rotation direction,

cordic_tab is the array of CORDIC coefficients and cordic_hyp_steps an auxiliary

table handling repeated iterations for hyperbolic functions. cordic_tab is used to access

coefficients for all modes with different offsets (0, 14 or 28 for our case).

Table 4 illustrates synthesis statistics for two CORDIC designs. The logic synthesis results with

Xilinx ISE 12.3i reveal a 217MHz (estimated) design when branching is entirely eliminated in

the CORDIC loop, otherwise a faster design can be achieved (271.5 MHz). Both cycles and

MHz could be improved by source optimization, loop unrolling for pipelining, and the use of

embedded multipliers (pseudo-CORDIC) that would eliminate some of the branching needed

in the CORDIC loop.
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✞ ☎
void cordic(dir, mode, xin, yin, zin, *xout, *yout, *zout) {

...
x = xin; y = yin; z = zin;
offset = ((mode == HYPER) ? 0 : ((mode == LIN) ? 14 : 28));
kfinal = ((mode != HYPER) ? CNTAB : CNTAB+1);
for (k = 0; k < kfinal; k++) {

d = ((dir == ROTN) ? ((z>=0) ? 0 : 1) : ((y<0) ? 0 : 1));
kk = ((mode != HYPER) ? k :

cordic_hyp_steps[k]);
xbyk = (x>>kk);
ybyk = ((mode == HYPER) ? -(y>>kk) : ((mode == LIN) ? 0 :

(y>>kk)));
tabval = cordic_tab[kk+offset];
x1 = x - ybyk; x2 = x + ybyk;
y1 = y + xbyk; y2 = y - xbyk;
z1 = z - tabval; z2 = z + tabval;
x = ((d == 0) ? x1 : x2);
y = ((d == 0) ? y1 : y2);
z = ((d == 0) ? z1 : z2);}

*xout = x; *yout = y; *zout = z;
}
✝ ✆

(a) C-like code.

✞ ☎
process (*)
begin

...
case current_state is ...
when S_3 =>

t1_next <= cordic_hyp_steps(
to_integer(unsigned(k_reg(3 downto 0))));

if (mode /= CNST_2) then

kk_next <= k_reg;
else

kk_next <= t1_next;
end if;
t2_next <= shr(y_reg, kk_next, ’1’);
...
x1_next <= x_reg - ybyk_next;
y1_next <= y_reg + xbyk_next;
z1_next <= z_reg - tabval_next;

...
when S_4 =>

xout_next <= x_5_reg;
yout_next <= y_5_reg;
zout_next <= z_5_reg;
next_state <= S_EXIT;

...
end process;
zout <= zout_reg;
yout <= yout_reg;
xout <= xout_reg;

✝ ✆

(b) Partial VHDL code.

Fig. 17. Multi-function CORDIC listings.

163FSMD-Based Hardware Accelerators for FPGAs

www.intechopen.com



22 Will-be-set-by-IN-TECH

5. Conclusion

In this chapter, a straightforward FSMD-style model of computation was introduced that

augments existing approaches. Our FSMD concept supports inter-FSMD communication,

embedded memories, streaming outputs, and seamless integration of user IPs/black boxes.

To raise the level of design abstraction, the BASIL typed assembly language is introduced

which can be used for capturing the user’s intend. We show that it is possible to convert this

intermediate representation to self-contained CDFGs and finally to provide an easier path for

designing a synthesizable VHDL implementation.

Along the course of this chapter, representative examples were used to illustrate the key

concepts of our approach such as a prime factorization algorithm and an improved FSMD

design of a multi-function CORDIC.
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