We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



4

Simulation and Synthesis Techniques
for Soft Error-Resilient Microprocessors

Makoto Sugihara
Kyushu University

Japan

1. Introduction

A single event upset (SEU) is a change of state which is caused by a high-energy particle
striking to a sensitive node in semiconductor devices. An SEU in an integrated circuit (IC)
component often causes a false behavior of a computer system, or a soft error. A soft error
rate (SER) is the rate at which a device or system encounters or is predicted to encounter soft
errors during a certain time. An SER is often utilized as a metric for vulnerability of an IC
component.

May first discovered that particles emitted from radioactive substances caused SEUs in
DRAM modules (May & Wood, 1979). Occurrence of SEUs in SRAM memories is increasing
and becoming more critical as technology continues to shrink (Karnik et al., 2001; Seifert et
al., 2001a, 2001b). The feature size of integrated circuits has reached nanoscale and the nano-
scale transistors have become more soft-error sensitive (Baumann, 2005). Soft error
estimation and highly-reliable design have become of utmost concern in mission-critical
systems as well as consumer products. Shivakumar et al. predicted that the SER of
combinational logic would increase to be comparable to the SER of memory components in
the future (Shivakumar et al., 2002). Embedding vulnerable IC components into a computer
system deteriorates its reliability and should be carefully taken into account under several
constraints such as performance, chip area, and power consumption. From the viewpoint of
system design, accurate reliability estimation and design for reliability (DFR) are becoming
critical in order that one applies reasonable DFR to vulnerable part of the computer system
at an early design stage. Evaluating reliability of an entire computer system is essential
rather than separately evaluating that of each component because of the following reasons.

1. A computer system consists of miscellaneous IC components such as a CPU, an SRAM
module, a DRAM module, an ASIC, and so on. Each IC component has its own SER
which may be entirely different from one another.

2. Depending on DFR techniques such as parity coding, the SER, access latency and chip
area may be completely different among SRAM modules. A DFR technique should be
chosen to satisfy the design requirement of the computer system so that one can avoid a
superfluous cost rise, performance degradation, and power rise.

3. The behavior of a computer system is determined by hardware, software, and input to
the system. Largely depending on a program, the behavior of the computer system
varies from program to program. Some programs use large memory space and the
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74 Embedded Systems — Theory and Design Methodology

others do not. Furthermore, some programs efficiently use as many CPU cores of a
multiprocessor system as possible and the others do not. The behavior of a computer
system determines temporal and spatial usage of vulnerable components.

This chapter reviews a simulation technique for soft error vulnerability of a microprocessor
system (Sugihara et al., 2006, 2007b) and a synthesis technique for a reliable microprocessor
system (Sugihara et al., 2009b, 2010b).

2. Simulation technique for soft error vulnerability of microprocessors
2.1 Introduction

Recently, several techniques for estimating reliability were proposed. Fault injection
techniques were discussed for microprocessors (Degalahal et al., 2004; Rebaudengo et al.,
2003; Wang et al.,, 2004). Soft error simulation in logic circuits was also studied and
developed (Tosaka, 1997, 1999, 2004a, 2004b). In contrast, the structure of memory modules
is so regular and monotonous that it is comparatively easy to estimate their vulnerability
because that can be calculated with the SERs obtained by field or accelerated tests.
Mukherjee et al. proposed a vulnerability estimation method for microprocessors
(Mukherjee et al., 2003). Their methodology estimates only vulnerability of a microprocessor
whereas a computer system consists of various components such as CPUs, SRAM modules
and DRAM modules. Their approach would be effective in case the vulnerability of a CPU is
most dominant in a computer system. Asadi et al. proposed a vulnerability estimation
method for computer systems that had L1 caches (Asadi et al., 2005). They pointed out that
SRAM-based L1 caches were most vulnerable in most of current designs and gave a
reliability model for computing critical SEUs in L1 caches. Their assumption is true in most
of current designs and false in some designs. Vulnerability of DRAM modules would be
dominant in entire vulnerability of a computer system if plain DRAM modules and ECC
SRAM ones are utilized. As technology proceeds, a latch becomes more vulnerable than an
SRAM memory cell (Baumann, 2005). It is important to obtain a vulnerability estimate of an
entire system by considering which part of a computer system is vulnerable.

An SER for a memory module is a vulnerability measurement characterizing it rather than
one reflecting its actual behavior. SERs of memory modules become pessimistic when they
are embedded into computer systems. More specifically, every SEU occurring in memory
modules is regarded as a critical error when memory modules are under field or accelerated
tests. This implicitly assumes that every SEU on memory cells of a memory module makes a
computer system faulty. Since memory modules are used spatially and temporally in
computer systems, some of SEUs on the memory modules make the computer system faulty
and the others not. Therefore, the soft errors in an entire computer system should be
estimated in a different way from the way used for memory modules.

Accurate soft error estimation of an entire computer system is one of the themes of urgent
concern. The SER is the rate at which a device or system encounters or is predicted to
encounter soft errors. The SER is quite effective measurement for evaluating memory
modules but not for computer systems. Accumulating SERs of all memories in a computer
system causes pessimistic soft error estimation because memory cells are used spatially and
temporally during program execution and some of SEUs make the computer system faulty.
This chapter models soft errors at the architectural level for a computer system, which has
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several memory hierarchies with it, in order that one can accurately estimate the reliability
of the computer system within reasonable computation time. We define a critical SEU as one
which is a possible cause of faulty behavior of a computer system. We also define an SEU
vulnerability factor for a job to run on a computer system as the expected number of critical
SEUs which occur during executing the job on the computer system, unlike a classical
vulnerability factor such as the SER one. The architectural-level soft-error model identifies
which part of memory modules is utilized temporally and spatially and which SEUs are
critical to the program execution of the computer system at the cycle-accurate ISS
(instruction set simulation) level. Our architectural-level soft-error model is capable of
estimating the reliability of a computer system that has several memory hierarchies with it
and finding which memory module is vulnerable in the computer system. Reliability
estimation helps one apply reliable design techniques to vulnerable part of their design.

2.2 SEUs on a word item

Unlike memory components, the SER of a computer system varies every moment because
the computer system uses memory modules spatially and temporally. Since only active
part of the memory modules affects reliability of the computer system, it is essential to
identify the active part of memory modules for accurately estimating the number of soft
errors occurring in the computer system. A universal soft error metric other than an SER
is necessary to estimate reliability of computer systems because an SER is a reliability
metric suitable for components of regular and monotonous structure like memory
modules but not for computer systems. In this chapter, the number of soft errors which
occur during execution of a program is adopted as a soft error metric for computer
systems. In computer systems, a word item is a basic element for computation in CPUs. A
word item is an instruction item in an instruction memory while that is a data item in a
data memory. A collective of word items is required to be processed in order to run a
program. We consider the reliability to process all word items as the reliability of a
computer system. The total number of SEUs which are expected to occur on all the word
items is regarded as the number of SEUs of the computer system. This section discusses
an estimation model for the number of soft errors on a word item. A CPU-centric
computer system typically has the hierarchical structure of memory modules which
includes a register file, cache memory modules, and main memory modules. The
computer system at which we target has Npe, levels of memory modules,
My, My,---,My__ in order of accessibility from/to the CPU. In the hierarchical memory
system, instruction items are generally processed as follows.

1. Instruction items are generated by a compiler and loaded into a main memory. The
birth time of an instruction item is the time when the instruction item is loaded into the
main memory, from the viewpoint of program execution.

2. When the CPU requires an instruction item, it fetches the instruction item from the
memory module closest to it. The instruction item is duplicated into all levels of
memory modules which reside between the CPU and the source memory module.

Note that instruction items are basically read-only. Duplication of instruction items are
unidirectionally made from a low level to a high level of a memory module. Data items in
data memory are processed as follows.
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1. Some data items are given as initial values of a program when the program is generated
with a compiler. The birth time of such a data item is the time when the program is
loaded into a main memory. The other data items are generated during execution of the
program by the CPU. The birth time of the data item which is made on-line is the time
when the data item is made and saved to the register file.

2. When a data item is required by a CPU, the CPU fetches it from the memory module
closest to the CPU. If the write allocate policy is adopted, the data item is duplicated at
all levels of memory modules which reside between the CPU and the master memory
module, and otherwise it is not duplicated at the interjacent memory modules.

Note that data items are writable as well as readable. This means that data items can be
copied from a high level to a low level of a memory module, and vice versa. In CPU centric
computer systems, data items are utilized as constituent elements. The data items vary in
lifetime and the numbers of soft errors on the data items vary from data item to data item.

Let an SER of a word item in Memory Module M; be SER,,. When a word item w is retained
during Time time(w) in Memory Module M;, the number of soft errors, errory, (w), which is
expected to occur on the word item, is described as follows:

errory,(w) = SERy, - time(w). 1)

Word item w is required to be retained during Time retain_timey,(w) in Memory Module
M; to transfer to the CPU. The number of soft errors, error,y mems(W), which occur from the
birth time to the time when the CPU fetches is given as

erroryy mems(W) = X; SERy, - retain_timey, (w) ()

where retain_timey,(w) is necessary and minimal time to transfer the word item from the
master memory module to the CPU, and depends on the memory architecture. This kind of
retention time is exactly obtained with cycle-accurate simulation of the computer system.

2.3 SEUs in instruction memory

Each instruction item has its own lifetime while a program runs. The lifetime of each
instruction item is different from that of one another and is not necessarily equal to the
execution time of a program. Generally speaking, the birth time of instruction items is the
time when they are loaded into main memory, from the viewpoint of program execution. It
is necessary to identify which part of retention time of an instruction item in a memory
module affects reliability of the computer system. Now let us break down into the number
of soft errors in an instruction item before we discuss the total number of soft errors in
instruction memory. The time when a CPU fetches an instruction item of Address a for the
i-th time is shown by if(a,i). if (a,0) denotes the time when the instruction is loaded into
the main memory. An example of several instruction fetches is shown in Fig. 1. In this
figure, the boxes show that the copies of the instruction item reside in the corresponding
memory modules. The labels on the boxes show when the copies of the instruction items are
born. In this example, the instruction item is fetched three times by the CPU.

On the first instruction fetch for the instruction item, a copy of the instruction item exists in
neither the L1 nor L2 cache memories. The instruction item resides only in the main
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L2 Cache

L1 Cache
Register Vifia, 1 ifla,3)
ifla,1) flush flush  flush  ifla,2) flush ifla3)  flush Time
SEUs counted on if{a,1) SEUs counted on if{a,2)
. SEUs counted on if{a,3) D SEUs which does not affect the computer system

Fig. 1. SEUs which are read by the CPU.

memory. The instruction item is required to be transferred from the main memory to the
CPU. On transferring the instruction item to the CPU, its copies are made in the L1 and L2
cache memory modules. In this example, we assume that some latency is necessary to
transfer the instruction item between memory modules. When the instruction item in a
source memory module is fetched by the CPU, any SEUs which occur after completing
transferring the instruction item have no influence on the instruction fetch. In the figure, the
boxes with slanting lines are the retention times whose SEUs make the instruction fetch at
if (a,1) faulty. The SEUs during any other retention times are unknown to make the
computer system faulty.

On the second instruction fetch for the instruction item, the instruction item resides only in
the main memory, same as on the first instruction fetch. The instruction item is fetched from
the main memory to the CPU, same as on the first instruction fetch. The dotted boxes are
found to be the retention times whose SEUs make the instruction fetch at if (a, 2) faulty.
Note that the SEUs on the box with slanting lines in the main memory are already treated on
the instruction fetch at if (a,1) and are not treated on the one at if (a,2) in order to avoid
counting SEUs duplicately.

On the third instruction fetch for the instruction item, the highest level of memory module
that retains the instruction item is the L1 cache memory. SEUs on the gray boxes are treated
as the ones which make Instruction Fetch if (a, 3) faulty. The SEUs on any other boxes are
not counted for the instruction fetch at if (a, 3). Now assume that a program is executed in a
computer system. Given an input data to a program, let an instruction fetch sequence be
i1,ip,*,iy, ., to Tun the program. And let the necessary and minimal retention time for
Instruction Fetch i; to be on Memory Module M; be retain_timey, (i;). The number of soft
errors on Instruction Fetch i;, error(i;), is given as follows.

erT0Tgingle_inst(i) = Xj SE Ry, - retain_timey, (i;). (3)
The total number of soft errors in the computer system is shown as follows:

€TTO0T 41 insts (l) = Zi € Trorsingle_inst(ii)

= XijSERy, - retain_timey, (i;)

(4)

where i={i_1,i_2,...,i_N_inst}. Given the program of the computer system, retain_timey, (i;)
can be exactly obtained by performing cycle-accurate simulation for the computer system.
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2.4 SEUs in data memory

Data memory is writable as well as readable. It is more complex than instruction memory
because word items are bidirectionally transferred between a high level of memory and a
low level of memory. Some data items are given as an input to a program and the others are
born during the program execution. Some data items are used and the others are unused
even if they reside in memory modules. The SEUs which occur during some retention time
of a data item are influential in a computer system. The SEUs which occur during the other
retention time are not influential even if the data item is used by the CPU. A data item has
valid or invalid part of time with regard to soft errors of the computer system. It is quite
important to identify valid or invalid part of retention time of a data item in order to
accurately estimate the number of soft errors of a computer system. In this chapter, valid
retention time is sought out by using the following rules.

e A data item which is generated on compilation is born when it is loaded into main
memory.

e A data item as input to a computer system is born when it is inputted to the computer
system.

e A dataitem is born when the CPU issues a store instruction for the data item.

e A dataitem is valid at least until the time when the CPU loads the data item and uses it
in its operation.

e A dataitem which a user explicitly specifies as a valid one is valid even if the CPU does
not issue a load instruction for the data item.

The bidirectional copies between high-level and low-level memory modules must be taken
into account in data memory because data memory is writable as well as readable. There are

two basic options on cache hit when writing to the cache as follows (Hennessy & Patterson,
2002).

e  Write through: the information is written to both the block in the cache and to the block
in the lower-level memory.

e  Write back: the information is written only to the block in the cache. The modified cache
block is written to main memory only when it is replaced.

The write policies affect the estimation for the number of soft errors and should be taken
into account.

2.4.1 Soft error model in a write-back system

A soft-error estimation model in write-back systems is discussed in this section. Let the time
when the i-th store operation of a CPU at Address a is issued be s(a,i) and the time when
the j-th load operation at Address a is issued be I(a,j). Fig. 2 shows an example of the
behavior of a write-back system. Each box in the figure shows the existence of the data item
in the corresponding memory module. The labels on the boxes show when the data items
are born. In the example, two store operations and two load operations are executed. First, a
store operation is executed and only the L1 cache is updated with the data item. The L2
cache or main memory is not updated with the store operation. A load operation on the data
item which resides at Address a follows. The data item resides in the L1 cache memory and
is transferred from the L1 cache to the CPU. The SEUs on the boxes with slanting lines are
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influential in reliability of the computer system by the issue of a load at I(a, 1). The other
boxes with Label s(a, 1) are unknown to be influential in the reliability. Next, the data item
in the L1 cache goes out to the L2 cache by the other data item. The L2 cache memory
becomes the highest level of memory which retains the data item. Next, a load operation at
l(a, 2) is issued and the data item is transferred from the L2 cache memory to the CPU. With
the load operation at I(a, 2), the SEUs on the dotted boxes are found to be influential in
reliability of the computer system. SEUs on the white boxes labeled as s(a,2) are not
counted on the load at I(a, 2).

RAM
L2 Cache 5a,2) li
L1 Cache s(a,2) ——
Register
s(a,1) I(a,1) s(a,2) L1 flushed (a,2) Time
SEUs counted on /(a,1) SEUs counted on /(a,2) D SEUs which does not affect the computer system

Fig. 2. Critical time in the write-back system.

2.4.2 Soft error model in a write-through system

A soft-error estimation model in write-through systems is discussed in this section. An
example of the behavior of a write-through system is shown in Fig. 3. First, a store operation
at Address a is issued. The write-through policy makes multiple copies of the data item in
the cache memories and the main memory. Next, a load operation follows. The CPU fetches
the data item from the L1 cache and SEUs on the boxes with slanting lines are found to be
influential in reliability of the computer system. Next, a store operation at s(a, 2) comes. The
previous data item at Address a is overridden and the white boxes labeled as s(a, 1) are no
longer influential in reliability of the computer system. Next, the data item in the L1 cache is
replaced with the other data item. The L2 cache becomes the highest level of memory which
has the data item of Address a. Next, a load operation at [(a, 2) follows and the data item is
transferred from the L2 cache to the CPU. With the load operation at l(a, 2), SEUs on the
dotted boxes are found to be influential in reliability of the computer system.

RAM ——| ' W@ ' s —
L2 Cache —-—| @b .
L1 Cache 7 s(a,1) . | s(a,2) I

5(a,2) |

Register M
s(a,1) l(a,1) s(a,2) L1 flushed l(a,2) Time
/ EUs counted on /(a,1) EUs counted on /(a,2) EUs which does not affect the computer system
% S d on I(a,1 S d on I(a,2 S hich d ffect th p

Fig. 3. Critical time in the write-through system.
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2.5 Simulation-based soft error estimation

As discussed in the previous sections, the retention time of every word item in memory
modules needs to be obtained so that the number of soft errors in a computer system can be
estimated. We adopted a cycle-accurate ISS which can obtain the retention time of every
word item. A simplified algorithm to estimate the number of soft errors for a computer
system to finish a program is shown in Fig. 4. The input to the algorithm is an instruction
sequence, and the output from the algorithm is the accurate number of soft errors,
erT0Tsystem, Which occur during program execution.

First, several variables are initialized. Variable errorgysiem is initialized with 0. The birth
times of all data items are initialized with the time when the program starts. A for-loop
sentence follows. A cycle-accurate ISS is executed in the for-loop. An iteration loop
corresponds to an execution of an instruction. The number of soft errors is counted for every
instruction item and is accumulated to variable errorsysiem. When variable errorgygiem is
updated, the birth time of the corresponding word item is also updated with the present
time. Some computation is additionally done when the present instruction is a store or a
load operation. If the instruction is a load operation, the number of SEUs on the data item
which is found to be critical in the reliability of the computer system is added to variable
errorsystem- A load operation updates the birth time of the data item with the present time. If
the instruction is a store operation, the birth time of all changed word items is updated with
the present time. After the above procedure is applied to all instructions, errorsysiem is
outputted as the number of soft errors which occur during the program execution.

Procedure EstimateSoftError
Input: Instruction sequence given by a trace.
Output: the number of soft errors for the system, errorgysiem
begin
eTT0Tsystem 18 initialized with 0.
Birth time of every word iterm is initialized with the beginning time.
for all instructions do
// Computation for soft errors in instruction memory
Add the number of critical soft errors of the instruction item to errorgystem.
Update the birth time on the instruction item with the present time.

// Computation for soft errors in data memory

if the current instruction is a load then

Fig. 4. A soft error estimation algorithm.

2.6 Experiments

Using several programs, we examined the number of soft errors during executing each of
them.
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2.6.1 Experimental setup

We targeted a microprocessor-based system consisting of an ARM processor (ARMv4T,
200MHz), an instruction cache module, and a data cache module, and a main memory
module as shown in Fig. 5. The cache line size and the number of cache-sets are 32-byte and
32, respectively. We adopted the least recently used (LRU) policy as the cache replacement
policy. We evaluated reliability of computer systems with the two write policies, write-
through and write-back ones. The cell-upset rates of both SRAM and DRAM modules are
shown in Table 1. We used the cell-upset rates shown in (Slayman, 2005) as the cell-upset
rates of plain SRAMs and DRAMs. According to Baumann, error detection and correction
(EDAC) or error correction codes (ECC) protection will provide a significant reduction in
failure rates (typically 10k or more times reduction in effective error rates) (Baumann, 2005).
We assumed that introducing an ECC circuit makes reliability of memory modules 10k
times higher.

[-Cache

CPU core

Main Memory

fy vy
by v

"|ID-Cache

Fig. 5. The target system.

Cell Upset Rate
[FIT/bit] [errors/word/cycle]
w/o ECC w. ECC w/o ECC w. ECC
SRAM 1.0 x 1074 1.0 x 1078 4.4 x 10724 44 x 10728
DRAM 1.0 x 1078 1.0 x 10712 4.4 x 10724 4.4 x 10732

Table 1. Cell upset rates for experiments.

We used three benchmark programs: Compress version 4.0 (Compress), JPEG encoder
version 6b (JPEG), and MPEG2 encoder version 1.2 (MPEG2). We used the GNU C compiler
and debugger to generate address traces. We chose to execute 100 million instructions in
each benchmark program. This allowed the simulations to finish in a reasonable amount of
time. All programs were compiled with “-O3” option. Table 2 shows the code size, activated
code size, and activated data size in words for each benchmark program. The activated code
and data sizes represent the number of instruction and data addresses which were accessed
during the execution of 100 million instructions, respectively.

Code size Activated code size Activated data size
Scode [Words] AS.oqe [Words] ASgata [Words]
Compress 10,716 1,874 140,198
JPEG 30,867 6,129 33,105
MPEG2 33,850 7,853 258,072

Table 2. Specification for benchmark programs.

www.intechopen.com




82 Embedded Systems — Theory and Design Methodology

2.6.2 Experimental results

Figures 6, 7, and 8 show the results of our soft error estimation method. Four different
memory configurations were considered as follows:

1. non-ECC L1 cache memory and non-ECC main memory,
2. non-ECC L1 cache memory and ECC main memory,
3.  ECCL1 cache memory and non-ECC main memory,
4. and ECC L1 cache memory and ECC main memory.

Note that Asadi’s vulnerability estimation methodology (Asadi et al., 2005) does not cover
vulnerability estimation for the second configuration above because their approach is
dedicated to estimating vulnerability of L1 caches. The vertical axis presents the number of
soft errors occurring during the execution of 100 million instructions. The horizontal axis
presents the number of cache ways in a data cache. The other cache parameters, i.e., the line
size and the number of lines in a cache way, are unchanged. The size of the data cache is,
therefore, linear to the number of cache ways in this experiment. The cache sizes
corresponding to the values shown on the horizontal axis are 1 KB, 2 KB, 4 KB, 8 KB, 16 KB,
32 KB, and 64 KB, respectively.

Compress (non-ECC L1, non-ECC main memoil Compress (non-ECC L1, ECC main memory)

@ 4.5e-12 T T T T T T X ) 4.5e-12 T T T T T T .o
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= Write Back ---x--- = Write Back ---x---
S 3.5e-12 - S 3.5e-12 —
2 Se-12 - 1 2 3e-12 | -
Z 2b5e12 . Z 25e-12 .
g 2e-12 | = 2e-12 | -
w 1.5e-12 | 4 o 15e12f s
5 1e-12 . 5 1e-12 - .
e 5e-13 2 5e-13

1 2 4 8 16 32 64 1 2 4 8 16 32 64

# Cache Ways # Cache Ways
Compress (ECC L1, non-ECC main memory) Compress (ECC L1, ECC main memory)

g 3.5e-14 T T 1 T T T ) 4.5e-16 T T T T T T .S
2 x Write Through —+— 2 4e-16 L Write Through —+— .
= 3e-14 |- 7\ Write Back ---x--- = Write Back ---x--- /
S S 3.5e-16 -
g 2.5e-14 B g 3e-16 L i
1:; 2e-14 | . % 2.5e-16 —
S 15e-14 | 1 ¢ 2e-16 |- y
w w  1.5e-16 - .
5 leldr 1 5 et .
2 5e-15 2 5e-17

1 2 4 8 16 32 64 1 2 4 8 16 32 64

# Cache Ways # Cache Ways

Fig. 6. Experimental results for Compress.
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JPEG (non-ECC L1, non-ECC main memory)
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. 7. Experimental results for JPEG.
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Fig. 8. Experimental results for MPEG2.
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According to the experimental results shown in Figures 6, 7, and 8, the number of soft errors
which occurred during a program execution depends on the reliability design of the
memory hierarchy. When the cell-upset rate of SRAMs was higher than that of DRAMs, the
soft errors on cache memories became dominant in the whole soft errors of the computer
systems. The number of soft errors in a computer system, therefore, increased as the size of
cache memories increased. When the cell-upset rate of SRAM modules was equal to that of
DRAM ones, the soft errors on main memories became dominant in the system soft errors in
contrast. The number of soft errors in a computer system, therefore, decreased as the size of
cache memories increased because the larger size of cache memories reduced runtime of a
program as well as usage of the main memory. Table 3 shows the number of CPU cycles to
finish executing the 100 million instructions of each program.

The number of cache ways in a cache memory (1 way = 1 KB)
1 2 4 8 16 32 64
Compress WT 968 523 422 405 390 371 348
WB 1,058 471 325 303 286 267 243
JPEG WT 548 455 364 260 247 245 244
WB 474 336 237 129 110 104 101
WT 497 179 168 168 167 167 167
MPEG2 WB 446 124 110 110 110 110 110

Table 3. The number of CPU cycles for 100 million instructions.

Table 4 shows the results of more naive approaches and our approach. The two naive
approaches, M1 and M2, calculated the number of soft errors using the following equations.

SE; = {Scache *SERg + (Scode + ASdata) ' SERD} ' Ncycle (5)
SE, = {Scache SERg + (AScode + ASdata) ' SERD} ! Ncycle (6)

where Scaches Scoder AScoder ASdatar Neycles SERs, SERp denote the cache size, the code size, the
activated code size, the activated data size, the number of CPU cycles, the SER per word per
cycle for SRAM, and the SER per word per cycle for DRAM, respectively. M1 and M2
appearing in Table 4 correspond to the calculations using Equations (5) and (6), respectively.
Our method corresponds to M3. It is obvious that the simple summation of SERs resulted in
large overestimation of soft errors. This indicates that accumulating SERs of all memory
modules in a system resulted in pessimistic estimation. The universal soft error metric other
than the SER is necessary to estimate reliability of computer systems which behave
dynamically. The number of soft errors which occur during execution of a program would
be the universal soft error metric of computer systems.
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The number of cache ways

1 2 4 8 16 32 64
M1 | 2267 | 2417 | 3869 | 7394 | 14216 | 27068 | 50755
WT | M2 | 2263 | 2415 | 3867 | 7393 | 14214 | 27067 | 50754
& M3 | 776 | 852 | 1248 | 1458 | 1541 | 1724 | 2446
Ofipess M1 | 2478 | 2175 | 2976 | 5530 | 10423 | 19461 | 35410
WB | M2 | 2474 | 2173 | 2975 | 5529 | 10439 | 19460 | 35410
M3 | 999 | 881 | 1101 | 1372 | 1722 | 2484 | 4426
M1 | 1262 | 2083 | 3324 | 4735 | 9013 | 17867 | 35556
WT [ M2 | 1255 | 2078 | 3320 | 4732 | 9010 | 17864 | 35553
IPEG M3 | 384 | 670 | 1355 | 2209 | 3417 | 4801 | 7977
M1 | 1092 | 1540 | 2160 | 2355 | 4024 | 7593 | 14759
WB | M2 | 1087 | 1536 | 2157 | 2354 | 4023 | 7592 | 14758
M3 | 369 | 558 | 941 | 1147 | 1664 | 2323 | 3407
M1 | 1197 | 838 | 1550 | 3167 | 6310 | 12217 | 24411
WT | M2 | 1191 | 836 | 1548 | 3069 | 6118 | 12215 | 24410
MPEC M3 | 561 | 453 | 613 | 705 | 718 754 813
M1 | 1073 | 578 | 1019 | 2016 | 4016 | 8017 | 16016
WB | M2 | 1067 | 577 | 1018 | 2015 | 4015 | 8016 | 16015
M3 | 494 | 321 | 410 | 474 | 492 534 616

Table 4. The number of soft errors which occur during execution [10~17errors/instruction].

2.7 Conclusion

This section discussed the simulation-based soft error estimation technique which sought the
accurate number of soft errors for a computer system to finish running a program. Depending
on application programs which are executed on a computer system, its reliability changes. The
important point to emphasize is that seeking for the number of soft errors to run a program is
essential for accurate soft-error estimation of computer systems. We estimated the accurate
number of soft errors of the computer systems which were based on ARM V4T architecture.
The experimental results clearly showed the following facts.

e It was found that there was a great difference between the number of soft errors
derived with our technique and that derived from the simple summations of the static
SERs of memory modules. The dynamic behavior of computer systems must be taken
into account for accurate reliability estimation.

e The SER of a computer system virtually increases with a larger cache memory adopted
because the SER is calculated by summing up the SERs of memory modules utilized in
the system. It was, however, found that the number of soft errors to finish a program
was reduced with larger cache memories in the computer system that had an ECC L1
cache and a non-ECC main memory. This is because the soft errors in cache memories
were negligible and the retention time of data items in the main memory was reduced

by the performance improvement.
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3. Reliable microprocessor synthesis for embedded systems

DFR is one of the themes of urgent concern. Coding and parity techniques are popular
design techniques for detecting or correcting SEUs in memory modules. Exploiting triple
modular redundancy (TMR) is also a popular design technique which decides a correct
value by voting on a correct value among three identical modules. These techniques have
been well studied and developed. Elakkumanan et al. proposed a DFR technique for logic
circuits, which exploits time redundancy by using scan flip-flops (Elakkumanan, 2006).
Their approach updates a pair of flip-flops at different moments for an output signal to
duplicate for higher reliability. Their approach is effective in ICs which have scan paths. We
reported that there exists a trade-off between performance and reliability in a computer
system and proposed a DFR technique by adjusting the size of vulnerable cache memory
online (Sugihara et al., 2007a, 2008b). The work presented a reliable cache architecture which
offered performance and reliability modes. More cache memory is used in the performance
mode while less cache memory is used in the reliability mode to avoid SEUs. All tasks are
statically scheduled under real-time and reliability constraints. The demerit of the approach
is that switching operation modes causes performance and area overheads and might be
unacceptable to high-performance or general-purpose microprocessors. We also proposed a
task scheduling scheme which minimized SEU vulnerability of a heterogeneous
multiprocessor under real-time constraints (Sugihara, 2008a, 2009a). Architectural
heterogeneity among CPU cores offers a variety of reliability for a task. We presented a task
scheduling problem which minimized SEU vulnerability of an entire system under a real-
time constraint. The demerit of the approach is that the fixed heterogeneous architecture
loses general-purpose programmability. We also presented a dynamic continuous signature
monitoring technique which detects a soft error on a control signal (Sugihara, 2010a, 2011).

This section reviews a system synthesis approach for a heterogeneous multiprocessor
system under performance and reliability constraints (Sugihara, 2009b, 2010b). To our best
knowledge, this is the first study to synthesize a heterogeneous multiprocessor system with
a soft error issue taken into account. In this section we use the SEU vulnerability factor as a
vulnerability factor. The other vulnerability factors, however, are applicable to our system
synthesis methodology as far as they are capable to estimating task-wise vulnerability on a
processor. If a single event transient (SET) is a dominant factor to fail a system, a
vulnerability factor which can treat SETs should be used in our heterogeneous
multiprocessor synthesis methodology. Our methodology assumes that a set of tasks are
given and that several variants of processors are given as building blocks. It also assumes
that real-time and vulnerability constraints are given by system designers. Simulation with
every combination of a processor model and a task characterizes performance and
reliability. Our system synthesis methodology uses the values of the chip area of every
building block, the characterized runtime and vulnerability, and the given real-time and
vulnerability constraints in order to synthesize a heterogeneous multiprocessor system
whose chip area is minimal under the constraints.

3.1 Performance and reliability in various processor configurations

A processor configuration, which specifies instruction set architecture, the number of
pipeline stages, the size of cache memory, cache architecture, coding redundancy, structural
redundancy, temporal redundancy, and so on, is a major factor to determine chip area,
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performance and reliability of a computer system. One must carefully select a processor
configuration for each processor core of their products so that they can make the price of
their products competitive. From the viewpoint of reliability, processor configurations are
mainly characterized by the following design parameters.

e Coding techniques, i.e. parity and Hamming codes.

e Modular redundancy techniques i.e. double modular redundancy (DMR) and triple
modular redundancy (TMR).

e Temporal redundancy techniques, i.e. multiple executions of a task and multi-timing
sampling of outputs of a combinational circuit.

e The size of cache memory. We reported that SRAM is a vulnerable component and the

size of cache memory would be one of the factors which characterize processor
reliability (Sugihara et al., 2006, 2007b).

Design parameters are required to offer various alternatives which cover a wide range of
chip area, performance, and reliability for building a reliable and small multiprocessor. This
chapter mainly focuses on the size of cache memory as an example of variable design
parameters in explanation of our design methodology. The other design parameters as
mentioned above, however, are applicable to our heterogeneous multiprocessor synthesis
paradigm.
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Fig. 9. Cache size vs SEU vulnerability and performance for susan (input_small, smooth).

Fig. 9 is an example that the cache size, which is one of design parameters, changes runtime
and reliability of a computer system. We assumed that the cache line size is 32 bytes and
that the number of cache-sets is 32. Changing the number of cache ways from 0 to 64 ranges
from 0 to 64 KB of cache memory. For plotting the graph, we utilized an ARM CPU core
(ARMvAT instruction set, 200 MHz) and a benchmark program susan, which is a program
from the MiBench benchmark suite (Guthaus et al., 2001), with an input file input small and
an option “-s”. We utilized the vulnerability estimation approach we had formerly proposed
(Sugihara, 2006, 2007b). For the processor configuration, we assumed that SRAM and
DRAM modules have their own SEC-DED (single error correction and double error
detection) circuits. We regarded SETs in logic circuitry as negligible ones because of its
infrequency. Note that vulnerability of SRAM in the L1 cache is dominant in the entire
vulnerability of the system and that of DRAM in main memory is too small to see in the
figure. The figure shows that, as the cache size increases, runtime decreases and SEU
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vulnerability increases. The figure shows that the SEU vulnerability converged at 16 KB of a
cache memory. This is because using more cache ways than 16 ones did not contribute to
reducing conflict misses and did not increase temporal and spatial usage of the cache
memory, which determined the SEU vulnerability factor. The cache size at which SEU
vulnerability converges depends on a program, input to the program, and cache parameters
such as the size of a cache line, the number of cache sets, the number of cache ways, and its
replacement policy. The figure shows that most of SEU vulnerability of a system is caused
by SRAM circuitry. It clearly shows that there is a trade-off between performance and
reliability. A design paradigm in which chip area, performance and reliability can be taken
into account is of critical importance in the multi-CPU core era.

3.2 Heterogeneous multiprocessor synthesis

It is quite important to consider the trade-off among chip area, performance, and reliability
of a system which one develops. As we discussed in the previous section, chip area,
performance and reliability vary among processor configurations. This section discusses a
heterogeneous multiprocessor synthesis methodology in which an optimal set of processor
configurations are sought under real-time and reliability constraints so that the chip area of
a multiprocessor system is minimized.

3.2.1 Overview of heterogeneous multiprocessor synthesis

We show an overview of a heterogeneous multiprocessor synthesis methodology, that is a
design paradigm in which a heterogeneous multiprocessor is synthesized and its chip area
is minimized under real-time and SEU vulnerability constraints. Figure 10 shows the design
flow based on our design paradigm. In the design flow, designers begin with specifying
their system. Once they fix their specification, they begin to develop their hardware and
software. They may use IP (intellectual property) of processor cores which they designed or
purchased before. They may also develop a new processor core if they do not have one
appropriate to their system. Various processor configurations are to be prepared by
changing design parameters such as their cache size, structural redundancy, temporal
redundancy, coding redundancy, and anything else which strongly affects vulnerability,
performance, and chip area. Increasing design parameters expands the number of processor
configurations, enlarges design space to explore, and causes a long synthesis time. Design
parameters should be chosen to offer design alternatives among chip area, performance, and
reliability. Even if any design parameter can be treated in a general optimization procedure,
design parameters should be carefully chosen in order to avoid large design space
exploration. A design parameter which offers slight difference regarding chip area,
performance, and reliability would result in a long synthesis time and should be possibly
excluded from our multiprocessor synthesis. Software is mainly developed at a granularity
level of tasks. ISS is performed with the object codes for obtaining accurate runtime and SEU
vulnerability on every processor configuration. SEU vulnerability can be easily obtained
with the vulnerability estimation techniques previously mentioned. We used the reliability
estimation technique (Sugihara et al., 2006, 2007b) throughout this chapter but any other
technique can be used as far as it is capable of estimating task-wise reliability on a processor
configuration. When SETs become dominant in reliability of a computer system, one should
use a reliability estimation technique which treats SETs. Our heterogeneous multiprocessor
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synthesis paradigm is basically independent of a reliability estimation technique as far as it
characterizes task-wise runtime and vulnerability. One should specify reliability and
performance constraints from which one obtains the upper bound of the SEU vulnerability
factor for every task, the upper bound of the SEU vulnerability for total tasks, and arrival
and deadline times of all tasks. From the specification and the hardware and software
components which one has given, a mixed integer linear programming (MILP) model to
synthesize a heterogeneous multiprocessor system is automatically generated. By solving
the MILP model with the generic solving procedure, an optimal configuration of the
heterogeneous multiprocessor is sought. This chapter mainly focuses on defining the
heterogeneous multiprocessor synthesis problem and building an MILP model to synthesize
a heterogeneous multiprocessor system. Subsection 3.2.2 formally defines the heterogeneous
multiprocessor synthesis problem and Subsection 3.2.3 gives an MILP model for the
problem.

Determine all
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Specify possible
pl‘OCCSSOl‘
confi gurations

Specify timing and

Code all tasks reliability constraints

]

/ Programs /

Archilecture
models

[

/L

Arrival and deadline

times of all tasks and

the upper bounds of
EU vulnerability factors

L

Synthesize a l'lelllbl with
RTL data for all processor
conngurations

Objeu codes Area and delay of
all processors

Peform ISS to estimate
runtime and
SEU vulnerability

Compile

I

Estimates for
runtime and
SEU vulnerability,

Generate an MILP model
to synthesize a heterogeneous
multiprocessor system

{

A heterogeneous
multiprocessor

Fig. 10. Our design paradigm.

3.2.2 Problem definition

We now address a mathematical problem in which we synthesize a heterogeneous
multiprocessor system and minimize its chip area under real-time and SEU vulnerability
constraints. We synthesize a heterogeneous multiprocessor on which N tasks are
executed. Ncpy processor configurations are given as building blocks for the heterogeneous
multiprocessor system. The chip area of Processor Configuration k, 1 < k < Ncpy, is given
with Ay. We assume that all the tasks are non-preemptive on the heterogeneous
multiprocessor system. Preemption causes large deviations between the worst-case
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execution times (WCET) of tasks that can be statically guaranteed and average-case
behavior. Non-preemptivity gives a better predictability on runtime since the worst-case is
closer to the average case behavior. Task i, 1 < i < N5k, becomes available to start at its
arrival time Tjrjval, and must finish by its deadline time Tyeaqiine,- Task i runs for Duration
Druntime;,, on Processor Configuration k. The SEU vulnerability factor for Task i to run on
Processor Configuration k, V;, is the number of critical SEUs which occur during the task
execution. We assume that one specifies the upper bound of the SEU vulnerability factor of
Task i, Veonst,, and the upper bound of the SEU vulnerability factor of the total tasks, Veonst,,-

The heterogeneous multiprocessor synthesis problem that we address in this subsection is to
minimize the chip area of a heterogeneous multiprocessor system by optimally determining
a set of processor cores constituting a heterogeneous multiprocessor system, the start times
51,52, S, fOr all tasks, and assignments of a task to a processor core. The heterogeneous
multiprocessor synthesis problem Pyys is formally stated as follows.

e Pyys: For given Niygx tasks, Ncpy processor configurations, the chip area A, of Processor
Configuration k, arrival and deadline times of Task i, Tyrrival, and Tgeadiine,, duration
Druntime;,, for which Task i runs on Processor Configuration k, the SEU vulnerability
factor V; for Task i to run on Processor Configuration k, the upper bound of the SEU
vulnerability factor for Task i, Vionst, , and the upper bound of the SEU vulnerability
factor for total tasks, Vonst,,, determine an optimal set of processor cores, assign every
task to an optimal processor core, and determine the optimal start time of every task
such that (1) every task is executed on a single processor core, (2) every task starts at or
after its arrival time and completes by its deadline, (3) the SEU vulnerability of every
task is less than or equal to that given by system designers, (4) the total SEU
vulnerability of the system is less than or equal to that given by system designers and
(5) the chip area is minimized.

3.2.3 Problem definition

We now build an MILP model for Problem Pyys. From the assumption of non-preemptivity,
the upper bound of the number of processors of the multiprocessor system is given by the
number of tasks, N,gr. Let x;;, 1 <1 < Niggr, 1 < j < Niugx be a binary variable defined as
follows:

— {1 if Task i is assigned to Processor j,
“ 10 otherwise.

)
Let yjx, 1 < j < Nasks 1 < k < N¢py be a binary variable defined as follows:

Vi = {1 if one takes Processor Configuration k as the one of Processor j,
7k o otherwise.

®)

The chip area of the heterogeneous multiprocessor is the sum of the total chip areas of all
processor cores used in the system. The total chip area Achip, which is the objective function,
is, therefore, stated as follows:

Achip = 2jk AkYj k- 9)
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The assumption of non-preemptivity causes a task to run on only a single processor. The
following constraint is, therefore, introduced.

Z_] xi,j = 1, 1<Vvi< Ntask- (10)

If a task is assigned to a single processor, the processor must have its entity. The following
constraint, therefore, is introduced.

xi‘j =1- Zk yj,k = 1, 1<Vvi< NtaskJ 1< V] < Ntask- (11)

The reliability requirement varies among tasks, depending on the disprofit of a failure event
of a task. We assume that one specifies the upper bound of the SEU vulnerability factor for
each task. The SEU vulnerability factor of Task i must be less than or equal to Vonst,- The
SEU vulnerability factor of a task is determined by assignment of the task to a processor.
The following constraint, therefore, is introduced.

Zj,k Vi,k xi,jyj,k < Vconstir l1<svis< Ntask- (12)

The SEU vulnerability factor of the heterogeneous multiprocessor system is the sum of the
SEU vulnerability factors of all tasks. The SEU vulnerability of the computer system Vepip,
therefore, is stated as follows.

Venip = Zijk Vik XijYjk- (13)

We assume that one specifies an SEU vulnerability constraint, which is the upper bound of
the SEU vulnerability of the system, and so the following constraint is introduced.

Vchip =< Vconsta“- (14)

Task i starts between its arrival time Typriva), and its deadline time Tyeadiine,- A variable for
start time s; is, therefore, bounded as follows.

Tarrivali <5 < Tdeadlinei/ 1<svis< Ntask (15)

Task i must finish by its deadline time Tyeagiine;- A constraint on the deadline time of the
task is introduced as follows.

s; + Zj,k Druntimei,k Xi,jYVjk < Tdeadlineir l1<svis< Ntask (16)

Now assume that two tasks il and i2 are assigned to Processor j and that its processor
configuration is Processor Configuration k. Formal expressions for these assumptions are
shown as follows:

Xi1,j = Xizj = Yjk = 1. (17)

Two tasks are simultaneously inexecutable on the single processor. The two tasks must be
sequentially executed on the single processor. Two tasks il and i2 are inexecutable on the
single processor if s;; < Siz + Druntime;,, @0 Si1 + Druntime;, , > Siz- The two tasks, inversely,
are executable on the processor under the following constraints.

Xi1,j = Xizj = Vjk =1 {(Su + Druntime;, . < Siz) \ (Siz + Druntime;, , < si1)},
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1<Vil<Vi2 < Ntaskl 1< VJ < Ntaskl and 1 < Vk < NCPU' (18)

The heterogeneous multiprocessor synthesis problem is now stated as follows.

Minimize the cost function Acpip = Xjx Ak Vjk

subject to

1. ¥jx;=11<Vi< Ny

2. x;=1- Dk Vik =11 S Vi < Nigg, 1 < Vj < Nigge

3. Zj,k Vi,k xi,jyj,k < Vconsti' 1<svi< Ntask~

4. Zj,k Vi,k xi,jyj,k < Vconsta“-

5. s+ Zj,k Druntimei,k xi,jyj,k < Tdeadlinei' 1<svis Ntask-

6. X =%Xiz;=Yjix=1-{(sn+ Druntimey, , = siz) V (siz + Druntimey,, < si)), 1<Vil<

Vi2 < Nuasio 1 £ Vj < Nasioand 1 < Vk < Nepy.
Variables
e Xx;;isa binary variable, 1 < Vi < Ny, 1 < Vj < Niggk-
® Yk isabinary variable, 1 < Vj < Nig, 1 < Vk < Nepy.

e s;isareal variable, 1 < Vi < Niygk.

Bounds

¢ Tarrivali S5 = Tdeadlineir 1 < Vi < Negsk-

The above nonlinear mathematical model can be transformed into a linear one using
standard techniques (Williams, 1999) and can be solved with an LP solver. Seeking optimal
values for the above variables determines hardware and software for the heterogeneous
system. Variables x; ; and s; determine the optimal software and Variable y;, determines
the optimal hardware. The other variables are the intermediate ones in the problem. As we
showed in Subsection 3.2.2, the values Nysk, Ncpus Ak, Tarrival;r Druntime;r Viks Veonst; - and
Veonst,; are given. Once these values are given, the above MILP model can be generated
automatically. Solving the generated MILP model optimally determines a set of processors,
assignment of every task to a processor core, and start time of every task. The set of
processors constitutes a heterogeneous multiprocessor system which satisfies the minimal
chip area under real-time and SEU vulnerability constraints.

3.3 Experiments and results
3.3.1 Experimental setup

We experimentally synthesized heterogeneous multiprocessor systems under real-time and
SEU vulnerability constraints. We prepared several processor configurations in which the
system consists of multiple ARM CPU cores (ARMv4T, 200 MHz). Table 5 shows all the
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processor configurations we hypothetically made. They are different from one another
regarding their cache sizes. For the processor configurations, we adopted write-through
policy (Hennessy & Patterson, 2002) as write policy on hit for the cache memory. We also
adopted the LRU policy (Hennessy & Patterson, 2002) for cache line replacement. For
experiment, we assumed that each of ARM cores has its own memory space and does not
interfere the execution of the others. The cache line size and the number of cache-sets are 32
bytes and 32, respectively. We did not adopt error check and correct (ECC) circuitry for all
memory modules. Note that the processor configurations given in Table 5 are just examples
and the other design parameters such as coding redundancy, structural redundancy,
temporal redundancy, and anything else which one wants, are available. The units for
runtime and vulnerability in the table are M cycles/execution and 107! errors/execution
respectively.

L1 cache size [KB] Hypothetical chip area [a.u.]
Conf. 1 0 64
Conf. 2 1 80
Conf. 3 2 96
Conf. 4 4 128
Conf. 5 8 192
Conf. 6 16 320

Table 5. Hypothetical processor configurations for experiment.

We used 11 benchmark programs from MiBench, the embedded benchmark suite (Guthaus
et al., 2001). We assumed that there were 25 tasks with the 11 benchmark programs. Table 6
shows the runtime, the SEU vulnerability, and the SER of a task on every processor
configuration.

As the size of input to a program affects its execution time, we regarded execution instances
of a program, which are executed for distinct input sizes, as distinct jobs. We also assumed
that there was no inter-task dependency. The table shows runtime and SEU vulnerability for
every task to run on all processor configurations. These kinds of vulnerabilities can be
obtained by using the estimation techniques formerly mentioned. In our experiments, we
assumed that the SER of SRAM modules is 1.0 X 10~* [FIT/bit], for which we referred to
Slayman’s paper (Slayman, 2005), and utilized the SEU vulnerability estimation technique
which mainly estimated the SEU vulnerability of the memory hierarchy of systems
(Sugihara et al., 2006, 2007b). Note that our synthesis methodology does not restrict
designers to a certain estimation technique. Our synthesis technique is effective as far as the
trade-off between performance and reliability exists among several processor
configurations.

We utilized an ILOG CPLEX 11.2 optimization engine (ILOG, 2008) for solving MILP
problem instances shown in Section 3.2 so that optimal heterogeneous multiprocessor
systems whose chip area was minimal were synthesized. We solved all heterogeneous
multiprocessor synthesis problem instances on a PC which has two Intel Xeon X5365
processors with 2 GB memory. We gave 18000 seconds to each problem instance for
computation. We took a temporal schedule for unfinished optimization processes.
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Task 1 Task 2 Task 3 | Task4 | Task5 | Task 6 Task 7
Program name bscmth bitcnts bf bf bf cre dijkstra
Input bscmth_sml | bitents_sml | bf_sml1 | bf_sml2|bf_sml3| crc_sml | dijkstra_sml
Runtime on Conf. 1 1980.42 239.91 328.69 1.37 2.46 188.22 442 41
Runtime on Conf. 2 1011.63 53.32 185.52 1.05 1.66 43.72 187.67
Runtime on Conf. 3 834.11 53.25 93.68 0.32 0.63 4297 134.31
Runtime on Conf. 4 684.62 53.15 75.03 0.26 0.51 4297 93.31
Runtime on Conf. 5 448.90 53.15 74.86 0.26 0.51 4297 86.51
Runtime on Conf. 6 205.25 53.15 74.86 0.26 0.51 4297 83.05
Vulnerability on Conf. 1 4171.4 315.1 376.1 1.7 3.1 171.2 2370.3
Vulnerability on Conf. 2 | 965179.8 41038.1 [334963.9| 1708.0 | 2705.0 {132178.3| 277271.4
Vulnerability on Conf. 3 | 1459772.8 947999 |546614.4| 1540.6 | 3154.7 |152849.7| 385777.1
Vulnerability on Conf. 4 | 2388614.3 222481.6 |709463.0( 1301.9 | 3210.0 |186194.8| 591639.0
Vulnerability on Conf. 5 | 5602028.0 424776.5 |740064.1| 1354.9 | 3367.6 |191300.9| 846289.5
Vulnerability on Conf. 6 | 6530436.1 426503.9 |740064.1| 1354.9 | 3367.6 |193001.8| 1724177.3
Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 | Task 15 | Task 16
dijkstra fft fft jpeg jpeg jpeg jpeg gsort sha
dijkstra_lIrg | fft_smll | fft smI2 |jpeg smll |jpeg_sml2| jpeg_lrgl |jpeg_lrg2 | gsort_sml | sha_sml
2057.38 850.96 1923.92 238.82 66.30 896.22 229.97 153.59 95.28
832.04 412.71 935.99 86.04 32.56 319.03 111.72 75.57 20.04
626.39 286.91 641.06 58.85 18.51 270.63 59.29 46.12 17.23
434.72 22498 479.29 52.79 14.62 198.36 51.36 45.00 17.06
400.41 183.04 417.04 51.17 14.12 192.59 50.00 44.05 16.74
382.88 182.60 417.02 50.89 14.12 191.62 49.23 43.04 16.74
11417.5 3562.3 12765.0 4160.3 169.2 56258.2 755.9 10589.2 140.6
1252086.8 | 463504.7 |1091299.2 | 140259.8 | 53306.2 |11540509.4| 161705.0 | 118478.2 | 30428.2
1811976.1 | 667661.5 |1598447.8 | 18441715 | 70113.3 |11850739.6 | 206141.0 | 130503.2 | 46806.2
2880579.7 |1133958.1 | 2651166.5| 316602.2 | 118874.8 | 1151005.5 | 415712.0 | 174905.9 | 88481.7
4148898.8 |1476214.0|3038682.2 | 501870.4 | 197558.2 | 1855734.6 | 620950.8 | 223119.3 |153368.5
8638330.6 |4042453.5|3223703.4 | 655647.4 | 283364.1 | 2480431.9 |1181311.0| 323458.3 |153589.2
Task 17 Task 18 Task 19 Task 20 | Task21 | Task22 | Task23 | Task24 | Task25
sha strsrch strsrch ssn ssn ssn ssn ssn ssn
sha_lrg | strgsrch_sml | strsrch_Irg | ssn_smll | ssn_sml2 | ssn_sml3 | ssn_lrgl | ssn_lrg2 |ssn_lrg3
991.69 1.75 43.02 143.30 28.42 12.13 2043.75 849.21 226.69
208.21 1.04 23.63 30.08 11.71 5.10 390.87 379.17 105.44
177.25 0.62 14.33 20.96 7.45 2.82 282.18 245.82 58.83
173.88 0.45 10.49 20.25 5.09 242 279.57 148.28 43.05
173.88 0.45 10.48 20.24 5.07 242 279.48 147.57 43.02
173.88 0.45 10.48 20.24 5.05 242 279.45 147.57 43.01
1465.8 1.2 68.7 2229 121.9 443 16179.7 | 38144.7 | 11476.0
317100.1 1106.5 27954.0 52800.4 | 12776.3 7369.5 | 515954.7 | 467280.9 | 267585.5
487613.4 1611.7 51986.9 55307.3 | 21487.3 8247.0 | 665690.1 | 930325.9 |309314.3
929878.2 1732.8 80046.3 79470.4 | 24835.8 | 10183.9 |2215638.8 | 1152520.6 | 315312.6
1618482.9 1773.3 87641.1 | 168981.9 | 31464.6 | 13495.2 |2748450.9 | 1373224.1 | 377518.1
1620777.6 1773.3 89015.0 | 196048.8 | 46562.1 | 16895.8 |2896506.3 | 1662613.3 | 439999.9

Table 6. Benchmark programs.
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3.3.2 Experimental results

We synthesized heterogeneous multiprocessor systems under various real-time and SEU
vulnerability constraints so that we could examine their chip areas. We assumed that the
arrival time of every task was zero and that the deadline time of every task was same as the
others. We also assumed that there was no SEU vulnerability constraint on each task, that is
Veonstraint; = . Generally speaking, the existence of loosely-bounded variables causes long
computation time. It is quite easy to guess that the assumptions make exploration space
huge and result in long computation time. The assumption, however, is helpful to obtaining
the lower bound on chip area for given SEU vulnerability constraints. The deadline time of
all tasks ranged from 3500 to 9500 million cycles and SEU vulnerability constraints of an
entire system ranged from 500 to 50000 [10~5 errors/system]. Fig. 11 shows the results of
heterogeneous multiprocessor synthesis. Chip area ranged from 80 to 320 in arbitrary unit.
When we tightened the SEU vulnerability constraints under fixed real-time constraints,
more processor cores which have no cache memory were utilized. Similarly, when we
tightened the real-time constraints under fixed SEU vulnerability constraints, more
processor cores which had a sufficient and minimal size of cache memory were utilized.
Tighter SEU vulnerability constraints worked for selecting a smaller size of a cache memory
while tighter real-time constraints worked for selecting a larger size of a cache memory. The
figure clearly shows that relaxing constraints reduced the chip area of a multiprocessor
system.

e

200

Chip area
150  [@.u]

| 100

50

3500
4500
5500

6500

7500 1000

Real time constraint
(deadline time)
[M cycles]

SEU vulnerability
constraint
[10°" errors/system]

Fig. 11. Heterogeneous multiprocessor synthesis result.

We show four synthesis examples in Tables 7, 8, 9, and 10. We name them HS;, HS,, HS3,
and HS, respectively. For Synthesis HS;, we gave the constraints that Tyeagiine, = 3500 [M
cycles] and Vopst,, = 5000 [107'5 errors/system]. In this synthesis, a heterogeneous
multiprocessor was synthesized which had two Conf. 1 processor cores and a Conf. 2
processor core as shown in Table 7.
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For Synthesis HS,, we gave the constraints that Tqeaqiine; = 3500 [M cycles] and Viopst,, =
500 [10715 errs/syst]. Only the constraint on Veonst,, became tighter in Synthesis HS, than in
Synthesis HS;. Table 8 shows that more reliable processor cores were utilized for achieving
the tighter vulnerability constraint.

For Synthesis HS3;, we gave the constraints that Tgeadiine, = 3500 [M cycles] and Vgpst,,, =
50000 [10715 errs/syst]. Only the constraint on Veonst,, became looser than in Synthesis HS;.
In this synthesis, a single Conf. 4 processor core was utilized as shown in Table 9. The looser
constraint caused that a more vulnerable and greater processor core was utilized. The chip
area was reduced in total.

For Synthesis HS,, we gave the constraints that Tyeaqiine; = 4500 and Veopst,,, = 5000 [10715
errs/syst]. Only the constraint on Tyeaqiine; became looser than in Synthesis HS;. In this
synthesis, a Conf. 1 processor core and a Conf. 2 processor core were utilized as shown in
Table 10. The looser constraint on deadline time caused that a subset of the processor cores
in Synthesis HS; were utilized to reduce chip area.

‘ Tasks
CPU 1 (Conf. 1) {10, 13, 20, 25}
CPU 2 (Conf. 1) {17, 23}
CPU 3 (Conf. 2) {1,2,3,4,5,6,7,8,9,11, 12,14, 15, 16, 18, 19, 21, 22, 24}

Table 7. Result for HS; (Tgeadiine; = 3.5 X 10 cycles, Veonsr,, = 5 X 10712 errs/syst).

Tasks
CPU 1 (Conf. 1) {1,2,3,4,5,6,7,11, 18, 22}
CPU 2 (Conf. 1) {8, 9,14, 15, 16, 21}
CPU 3 (Conf. 1) {10, 12, 13, 19, 25}
CPU 4 (Conf. 1) {17, 20, 23}
CPU 5 (Conf. 1) {24}

Table 8. Result for HS, (Tyeadline; = 3-5 X 10° cycles, Voons,, = 5 X 10713 errs/syst).

| Tasks
CPU 1 (Conf. 4)|{1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Table 9. Result for HS3 (Tyeadline; = 3-5 X 10° cycles, Voons,, = 5 x 107 errs/syst).

| Tasks
CPU 1 (Conf. 1) {1, 6,10, 14, 16, 19, 21, 25}
CPU 2 (Conf. 2) {2,3,4,5,7,8,9,11,12, 13, 14,15, 17, 18, 20, 22, 23, 24}

Table 10. Result for HS, (Tgeadiine; = 4.5 X 10% cycles, Voonst,, = 5 X 10712 errs/syst).

3.3.3 Conclusion

We reviewed a heterogeneous multiprocessor synthesis paradigm in which we took real-
time and SEU vulnerability constraints into account. We formally defined a heterogeneous
multiprocessor synthesis problem in the form of an MILP model. By solving the problem
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instances, we synthesized heterogeneous multiprocessor systems. Our experiment showed
that relaxing constraints reduced chip area of heterogeneous multiprocessor systems. There
exists a trade-off between chip area and another constraint (performance or reliability) in
synthesizing heterogeneous multiprocessor systems.

In the problem formulation we mainly focused on heterogeneous “multi-core” processor
synthesis and ignored inter-task communication overhead time under two assumptions: (i)
computation is the most dominant factor in execution time, (ii) sharing main memory and
communication circuitry among several processor cores does not affect execution time.
From a practical point of view, runtime of a task changes, depending on the other tasks
which run simultaneously because memory accesses from multiple processor cores may
collide on a shared hardware resource such as a communication bus. If task collisions on a
shared communication mechanism cause large deviation on runtime, system designers may
generate a customized on-chip network design with both a template processor configuration
and the Drinic’s technique (Drinic et al., 2006) before heterogeneous system synthesis so that
such collisions are reduced.

From the viewpoint of commodification of ICs, we think that a heterogeneous
multiprocessor consisting of a reliable but slow processor core and a vulnerable but fast one
would be sufficient for many situations in which reliability and performance requirements
differ among tasks. General-purpose processor architecture should be studied further for
achieving both reliability and performance in commodity processors.

4. Concluding remarks

This chapter presented simulation and synthesis technique for a computer system. We
presented an accurate vulnerability estimation technique which estimates the
vulnerability of a computer system at the ISS level. Our vulnerability estimation technique
is based on cycle-accurate ISS level simulation which is much faster than logic, transistor,
and device simulations. Our technique, however, is slow for simulating large-scale
programs. From the viewpoint of practicality fast vulnerability estimation techniques
should be studied.

We also presented a multiprocessor synthesis technique for an embedded system. The
multiprocessor synthesis technique is powerful to develop a reliable embedded system. Our
synthesis technique offers system designers a way to a trade-off between chip area,
reliability, and real-time execution. Our synthesis technique is mainly specific to “multi-
core” processor synthesis because we simplified overhead time for bus arbitration. Our
synthesis technique should be extended to “many-core” considering overhead time for
arbitration of communication mechanisms.
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