
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Vulnerability Analysis and Risk Assessment
for SoCs Used in Safety-Critical

Embedded Systems

Yung-Yuan Chen and Tong-Ying Juang
National Taipei University

Taiwan

1. Introduction

Intelligent systems, such as intelligent automotive systems or intelligent robots, require a
rigorous reliability/safety while the systems are in operation. As system-on-chip (SoC)
becomes more and more complicated, the SoC could encounter the reliability problem due
to the increased likelihood of faults or radiation-induced soft errors especially when the chip
fabrication enters the very deep submicron technology [Baumann, 2005; Constantinescu,
2002; Karnik et al., 2004; Zorian et al., 2005]. SoC becomes prevalent in the intelligent safety-
related applications, and therefore, fault-robust design with the safety validation is required
to guarantee that the developed SoC is able to comply with the safety requirements defined
by the international norms, such as IEC 61508 [Brown, 2000; International Electrotechnical
Commission [IEC], 1998-2000]. Therefore, safety attribute plays a key metric in the design of
SoC systems. It is essential to perform the safety validation and risk reduction process to
guarantee the safety metric of SoC before it is being put to use.

If the system safety level is not adequate, the risk reduction process, which consists of the
vulnerability analysis and fault-robust design, is activated to raise the safety to the required
level. For the complicated IP-based SoCs or embedded systems, it is unpractical and not
cost-effective to protect the entire SoC or system. Analyzing the vulnerability of
microprocessors or SoCs can help designers not only invest limited resources on the most
crucial regions but also understand the gain derived from the investments [Hosseinabady et
al., 2007; Kim & Somani, 2002; Mariani et al., 2007; Mukherjee et al., 2003; Ruiz et al., 2004;
Tony et al., 2007; Wang et al., 2004].

The previous literature in estimating the vulnerability and failure rate of systems is based on

either the analytical methodology or the fault injection approach at various system modeling

levels. The fault injection approach was used to assess the vulnerability of high-performance

microprocessors described in Verilog hardware description language at RTL design level

[Kim & Somani, 2002; Wang et al., 2004]. The authors of [Mukherjee et al., 2003] proposed a

systematic methodology based on the concept of architecturally correct execution to

compute the architectural vulnerability factor. [Hosseinabady et al., 2007] and [Tony et al.,

2007] proposed the analytical methods, which adopted the concept of timing vulnerability

factor and architectural vulnerability factor [Mukherjee et al., 2003] respectively to estimate

www.intechopen.com

Embedded Systems – Theory and Design Methodology

52

the vulnerability and failure rate of SoCs, where a UML-based real time description was

employed to model the systems.

The authors of [Mariani et al., 2007] presented an innovative failure mode and effects
analysis (FMEA) method at SoC-level design in RTL description to design in compliance
with IEC61508. The methodology presented in [Mariani et al., 2007] was based on the
concept of sensible zone to analyze the vulnerability and to validate the robustness of the
target system. A memory sub-system embedded in fault-robust microcontrollers for
automotive applications was used to demonstrate the feasibility of their FMEA method.
However, the design level in the scheme presented in [Mariani et al., 2007] is RTL level,
which may still require considerable time and efforts to implement a SoC using RTL
description due to the complexity of oncoming SoC increasing rapidly. A dependability
benchmark for automotive engine control applications was proposed in paper [Ruiz et al.,
2004]. The work showed the feasibility of the proposed dependability benchmark using a
prototype of diesel electronic control unit (ECU) control engine system. The fault injection
campaigns were conducted to measure the dependability of benchmark prototype. The
domain of application for dependability benchmark specification presented in paper [Ruiz
et al., 2004] confines to the automotive engine control systems which were built by
commercial off-the-shelf (COTS) components. While dependability evaluation is performed
after physical systems have been built, the difficulty of performing fault injection campaign
is high and the costs of re-designing systems due to inadequate dependability can be
prohibitively expensive.

It is well known that FMEA [Mikulak et al., 2008] and fault tree analysis (FTA) [Stamatelatos

et al., 2002] are two effective approaches for the vulnerability analysis of the SoC. However,

due to the high complexity of the SoC, the incorporation of the FMEA/FTA and fault-

tolerant demand into the SoC will further raise the design complexity. Therefore, we need to

adopt the behavioral level or higher level of abstraction to describe/model the SoC, such as

using SystemC, to tackle the complexity of the SoC design and verification. An important

issue in the design of SoC is how to validate the system dependability as early in the

development phase to reduce the re-design cost and time-to-market. As a result, a SoC-level

safety process is required to facilitate the designers in assessing and enhancing the

safety/robustness of a SoC with an efficient manner.

Previously, the issue of SoC-level vulnerability analysis and risk assessment is seldom
addressed especially in SystemC transaction-level modeling (TLM) design level [Thorsten et
al., 2002; Open SystemC Initiative [OSCI], 2003]. At TLM design level, we can more
effectively deal with the issues of design complexity, simulation performance, development
cost, fault injection, and dependability for safety-critical SoC applications. In this study, we
investigate the effect of soft errors on the SoCs for safety-critical systems. An IP-based SoC-
level safety validation and risk reduction (SVRR) process combining FMEA with fault
injection scheme is proposed to identify the potential failure modes in a SoC modeled at
SystemC TLM design level, to measure the risk scales of consequences resulting from
various failure modes, and to locate the vulnerability of the system. A SoC system safety
verification platform was built on the SystemC CoWare Platform Architect design
environment to demonstrate the core idea of SVRR process. The verification platform
comprises a system-level fault injection tool and a vulnerability analysis and risk assessment
tool, which were created to assist us in understanding the effect of faults on system

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

53

behavior, in measuring the robustness of the system, and in identifying the critical parts of
the system during the SoC design process under the environment of CoWare Platform
Architect.

Since the modeling of SoCs is raised to the level of TLM abstraction, the safety-oriented
analysis can be carried out efficiently in early design phase to validate the safety/robustness
of the SoC and identify the critical components and failure modes to be protected if
necessary. The proposed SVRR process and verification platform is valuable in that it
provides the capability to quickly assess the SoC safety, and if the measured safety cannot
meet the system requirement, the results of vulnerability analysis and risk assessment will
be used to help us develop a feasible and cost-effective risk reduction process. We use an
ARM-based SoC to demonstrate the robustness/safety validation process, where the soft
errors were injected into the register file of ARM CPU, memory system, and AMBA AHB.

The remaining paper is organized as follows. In Section 2, the SVRR process is presented. A
risk model for vulnerability analysis and risk assessment is proposed in the following
section. In Section 4, based on the SVRR process, we develop a SoC-level system safety
verification platform under the environment of CoWare Platform Architect. A case study with
the experimental results and a thorough vulnerability and risk analysis are given in Section
5. The conclusion appears in Section 6.

2. Safety validation and risk reduction process

We propose a SVRR process as shown in Fig. 1 to develop the safety-critical electronic
systems. The process consists of three phases described as follows:

Phase 1 (fault hypothesis): this phase is to identify the potential interferences and develop
the fault injection strategy to emulate the interference-induced errors that could possibly
occur during the system operation.

Phase 2 (vulnerability analysis and risk assessment): this phase is to perform the fault
injection campaigns based on the Phase 1 fault hypothesis. Throughout the fault injection
campaigns, we can identify the failure modes of the system, which are caused by the
faults/errors injected into the system while the system is in operation. The probability
distribution of failure modes can be derived from the fault injection campaigns. The risk-
priority number (RPN) [Mollah, 2005] is then calculated for the components inside the
electronic system. A component’s RPN aims to rate the risk of the consequence caused by
component’s failure. RPN can be used to locate the critical components to be protected. The
robustness of the system is computed based on the adopted robustness criterion, such as
safety integrity level (SIL) defined in the IEC 61508 [IEC, 1998-2000]. If the robustness of the
system meets the safety requirement, the system passes the validation; else the
robustness/safety is not adequate, so Phase 3 is activated to enhance the system
robustness/safety.

Phase 3 (fault-tolerant design and risk reduction): This phase is to develop a feasible risk-
reduction approach by fault-tolerant design, such as the schemes presented in [Austin, 1999;
Mitra et al., 2005; Rotenberg, 1999; Slegel et al., 1999;], to improve the robustness of the
critical components identified in Phase 2. The enhanced version then goes to Phase 2 to
recheck whether the adopted risk-reduction approach can satisfy the safety/robustness
requirement or not.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

54

Identify possible

interferences

Develop fault

injection strategy to

emulate interference-

induced errors

Perform fault

injection campaigns

Identify failure

modes

Assess risk-priority

number

Locate critical

components to be

protected

Robustness?

Robustness

criterion

(IEC 61508)
End

Add fault-tolerant

design to improve

the robustness of

critical components

identified in Phase 2

Phase 1:

Fault Hypothesis

Phase 2:

Vulnerability

Analysis & Risk

Assessment

Phase 3:

Risk

Reduction

Acceptable

Unacceptable

Fig. 1. Safety validation and risk reduction process.

3. Vulnerability analysis and risk assessment

Analyzing the vulnerability of SoCs or systems can help designers not only invest limited

resources on the most crucial region but also understand the gain derived from the

investment. In this section, we propose a SoC-level risk model to quickly assess the SoC’s

vulnerability at SystemC TLM level. Conceptually, our risk model is based on the FMEA

method with the fault injection approach to measure the robustness of SoCs. From the

assessment results, the rank of component vulnerability related to the risk scale of causing

the system failure can be acquired. The notations used in the risk model are developed

below.

 n: number of components to be investigated in the SoC;

 z: number of possible failure modes of the SoC;

 C(i): the ith component, where 1  i  n;

 ER_C(i): raw error rate of the ith component;

 SFR_C(i): the part of SoC failure rate contributed from the error rate of the ith
component;

 SFR: SoC failure rate;

 FM(k): the kth failure mode of the SoC, where 1  k  z;

 NE: no effect which means that a fault/error happening in a component has no impact
on the SoC operation at all;

 P (i, FM(K)): probability of FM(K) if an error occurs in the ith component;

 P (i, NE): probability of no effect for an error occurring in the ith component;

 P(i, SF): probability of SoC failure for an error occurring in the ith component;

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

55

 SR_FM(k): severity rate of the effect of kth failure mode, where 1  k  z;

 RPN_C(i): risk priority number of the ith component;

 RPN_FM(k): risk priority number of the kth failure mode.

3.1 Fault hypothesis

It is well known that the rate of soft errors caused by single event upset (SEU) increases
rapidly while the chip fabrication enters the very deep submicron technology [Baumann,
2005; Constantinescu, 2002; Karnik et al., 2004; Zorian et al., 2005]. Radiation-induced soft
errors could cause a serious dependability problem for SoCs, electronic control units, and
nodes used in the safety-critical applications. The soft errors may happen in the flip-flop,
register file, memory system, system bus and combinational logic. In this work, single soft
error is considered in the derivation of risk model.

3.2 Risk model

The potential effects of faults on SoC can be identified from the fault injection campaigns.
We can inject the faults into a specific component, and then investigate the effect of
component’s errors on the SoC behaviors. Throughout the injection campaigns for each
component, we can identify the failure modes of the SoC, which are caused by the errors of
components in the SoC. The parameter P(i, FM(k)) defined before can be derived from the
fault injection campaigns.

In general, the following failure behaviors: fatal failure (FF), such as system crash or process
hang, silent data corruption (SDC), correct data/incorrect time (CD/IT), and infinite loop
(IL) (note that we declare the failure as IL if the execution of benchmark exceeds the 1.5
times of normal execution time), which were observed from our previous work, represent
the possible SoC failure modes caused by the faults occurring in the components. Therefore,
we adopt those four SoC failure modes in this study to demonstrate our risk assessment
approach. We note that a fault may not cause any trouble at all, and this phenomenon is
called no effect of the fault.

One thing should be pointed out that to obtain the highly reliable experimental results to
analyze the robustness/safety and vulnerability of the target system we need to perform the
adequate number of fault injection campaigns to guarantee the validity of the statistical data
obtained. In addition, the features of benchmarks could also affect the system response to
the faults. Therefore, several representative benchmarks are required in the injection
campaigns to enhance the confidence level of the statistical data.

In the derivation of P(i, FM(K)), we need to perform the fault injection campaigns to collect
the fault simulation data. Each fault injection campaign represents an experiment by
injecting a fault into the ith component, and records the fault simulation data, which will be
used in the failure mode classification procedure to identify which failure mode or no effect
the SoC encountered in this fault injection campaign. The failure mode classification
procedure inputs the fault-free simulation data, and fault simulation data derived from the
fault injection campaigns to analyze the effect of faults occurring in the ith component on the
SoC behavior based on the classification rules for potential failure modes.

The derivation process of P(i, FM(K)) by fault injection process is described below. Several
notations are developed first:

www.intechopen.com

Embedded Systems – Theory and Design Methodology

56

 SoC_FM: a set of SoC failure modes used to record the possible SoC failure modes
happened in the fault injection campaigns.

 counter(i, k): an array which is used to count the number of the kth SoC failure mode

occurring in the fault injection experiments for the ith component, where 1  i  n, and 1

 k  z. counter(i, z+1) is used to count the number of no effect in the fault injection
campaigns.

 no_fi(i): the number of fault injection campaigns performed in the ith component, where

1  i  n.

Fault injection process:

z = 4; SoC_FM = {FF, SDC, CD/IT, IL};
for i = 1 to n //fault injection experiments for the ith component;//
{for j = 1 to no_fi(i)

{//injecting a fault into the ith component, and investigating the effect of component’s
fault on the SoC behavior by failure mode classification procedure; the result of classification
is recorded in the parameter ‘classification’.//
 switch (classification)
{ case ‘FF’: counter(i, 1) = counter(i, 1) + 1;
case ‘SDC’: counter(i, 2) = counter(i, 2) + 1;
case ‘CD/IT’: counter(i, 3) = counter(i, 3) + 1;
case ‘IL’: counter(i, 4) = counter(i, 4) + 1;
case ‘NE’: counter(i, 5) = counter(i, 5) + 1;}

}}

The failure mode classification procedure is used to classify the SoC failure modes caused by
the component’s faults. For a specific benchmark program, we need to perform a fault-free
simulation to acquire the golden results that are used to assist the failure mode classification
procedure in identifying which failure mode or no effect the SoC encountered in this fault
injection campaign.

Failure mode classification procedure:

Inputs: fault-free simulation golden data and fault simulation data for an injection

campaign;

Output: SoC failure mode caused by the component’s fault or no effect of the fault in this

injection campaign.

{if (execution of fault simulation is complete)

then if (execution time of fault simulation is the same as execution time of fault-free
simulation)

then if (execution results of fault simulation are the same as execution results of
fault-free simulation)

then classification := ‘NE’;

else classification := ‘SDC’;

else if (execution results of fault simulation are the same as execution results of fault-
free simulation)

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

57

then classification := ‘CD/IT’;

else classification := ‘SDC’;

else if (execution of benchmark exceeds the 1.5 times of normal execution time)

then classification := ‘IL’;

else //execution of fault simulation was hung or crash due to the injected fault;//

classification := ‘FF’;

}

After carrying out the above injection experiments, the parameter of P(i, FM(K)) can be
computed by

(,)

(, ())
_ ()

counter i k
P i FM K

no fi i


Where 1  i  n and 1  k  z. The following expressions are exploited to evaluate the terms
of P(i, SF) and P(i, NE).

1

(,) (, ())
z

k

P i SF P i FM k




(,) 1 (,)P i NE P i SF 

The derivation of the component’s raw error rate is out of the scope of this paper, so we here

assume the data of ER_C(i), for 1  i  n, are given. The part of SoC failure rate contributed

from error rate of the ith component can be calculated by

_ () _ () (,)SFR C i ER C i P i SF 

If each component C(i), 1  i  n, must operate correctly for the SoC to operate correctly and

also assume that other components not shown in C(i) list are fault-free, the SoC failure rate

can be written as

1

_ ()
n

i

SFR SFR C i




The meaning of the parameter SR_FM(k) and the role it playing can be explained from the
aspect of FMEA process [Mollah, 2005]. The method of FMEA is to identify all possible failure
modes of a SoC and analyze the effects or consequences of the identified failure modes. In
general, an FMEA records each potential failure mode, its effect in the next level, and the cause
of failure. We note that the faults occurring in different components could cause the same SoC
failure mode, whereas the severity degree of the consequences resulting from various SoC
failure modes could not be identical. The parameter SR_FM(k) is exploited to express the

severity rate of the consequence resulting from the kth failure mode, where 1  k  z.

We illustrate the risk evaluation with FMEA idea using the following example. An ECU
running engine control software is employed for automotive engine control. Its outputs are

www.intechopen.com

Embedded Systems – Theory and Design Methodology

58

used to control the engine operation. The ECU could encounter several types of output failures
due to hardware or software faults in ECU. The various types of failure mode of ECU outputs
would result in different levels of risk/criticality on the controlled engine. A risk assessment is
performed to identify the potential failure modes of ECU outputs as well as the likelihood of
failure occurrence, and estimate the resulting risks of the ECU-controlled engine.

In the following, we propose an effective SoC-level FMEA method to assess the risk-priority
number (RPN) for the components inside the SoC and for the potential SoC failure modes. A
component’s RPN aims to rate the risk of the consequences caused by component’s faults. In
other words, a component’s RPN represents how serious is the impact of component’s errors
on the system safety. A risk assessment should be carried out to identify the critical
components within a SoC and try to mitigate the risks caused by those critical components.
Once the critical components and their risk scales have been identified, the risk-reduction
process, for example fault-tolerant design, should be activated to improve the system
dependability. RPN can also give the protection priority among the analyzed components.
As a result, a feasible risk-reduction approach can be developed to effectively protect the
vulnerable components and enhance the system robustness and safety.

The parameter RPN_C(i), i.e. risk scale of failures occurring in the ith component, can be
computed by

1

_ () _ () (, ()) _ ()
z

k

RPN C i ER C i P i FM k SR FM k


  

where 1  i  n. The expression of RPN_C(i) contains three terms which are, from left to
right, error rate of the ith component, probability of FM(K) if a fault occurs in the ith
component, and severity rate of the kth failure mode. As stated previously, a component’s
fault could result in several different system failure modes, and each identified failure mode
has its potential impact on the system safety. So, RPN_C(i) is the summation of the following

expression ER_C(i)  P (i, FM(K))  SR_FM(k), for k from one to z. The term of ER_C(i)  P (i,
FM(K)) represents the occurrence rate of the kth failure mode, which is caused by the ith
component failing to perform its intended function.

The RPN_FM(k) represents the risk scale of the kth failure mode, which can be calculated by

1

_ () _ () _ () (, ())
n

i

RPN FM k SR FM k ER C i P i FM k


  

where 1  k  z.
1

_ () (, ())
n

i

ER C i P i FM k


 expresses the occurrence rate of the kth failure mode

in a SoC. This sort of assessment can reveal the risk levels of the failure modes to its system
and identify the major failure modes for protection so as to reduce the impact of failures to
the system safety.

4. System safety verification platform

We have created an effective safety verification platform to provide the capability to quickly
handle the operation of fault injection campaigns and dependability analysis for the system

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

59

design with SystemC. The core of the verification platform is the fault injection tool [Chang
& Chen, 2007; Chen et al., 2008] under the environment of CoWare Platform Architect
[CoWare, 2006], and the vulnerability analysis and risk assessment tool. The tool is able to
deal with the fault injection at the following levels of abstraction [Chang & Chen, 2007; Chen
et al., 2008]: bus-cycle accurate level, untimed functional TLM with primitive channel
sc_fifo, and timed functional TLM with hierarchical channel. An interesting feature of our
fault injection tool is to offer not only the time-triggered but also the event-triggered
methodologies to decide when to inject a fault. Consequently, our injection tool can
significantly reduce the effort and time for performing the fault injection campaigns.
Combining the fault injection tool with vulnerability analysis and risk assessment tool, the
verification platform can dramatically increase the efficiency of carrying out the system
robustness validation and vulnerability analysis and risk assessment. For the details of our
fault injection tool, please refer to [Chang & Chen, 2007; Chen et al., 2008].

However, the IP-based SoCs designed by CoWare Platform Architect in SystemC design
environment encounter the injection controllability problem. The simulation-based fault
injection scheme cannot access the fault targets inside the IP components imported from
other sources. As a result, the injection tool developed in SystemC abstraction level may lack
the capability to inject the faults into the inside of the imported IP components, such as CPU
or DSP. To fulfill this need, we exploit the software-implemented fault injection scheme
[Sieh, 1993; Kanawati et al., 1995] to supplement the injection ability. The software-
implemented fault injection scheme, which uses the system calls of Unix-type operating
system to implement the injection of faults, allows us to inject the faults into the targets of
storage elements in processors, like register file in CPU, and memory systems. As discussed,
a complete IP-based SoC system-level fault injection tool should consist of the software-
implemented and simulation-based fault injection schemes.

Due to the lack of the support of Unix-type operating system in CoWare Platform Architect,
the current version of safety verification platform cannot provide the software-implemented
fault injection function in the tool. Instead, we employed a physical system platform built by
ARM-embedded SoC running Linux operating system to validate the developed software-
implemented fault injection mechanism. We note that if the CoWare Platform Architect can
support the UNIX-type operating system in the SystemC design environment, our software-
implemented fault injection concept should be brought in the SystemC design platform.
Under the circumstances, we can implement the so called hybrid fault injection approach,
which comprises the software-implemented and simulation-based fault injection
methodologies, in the SystemC design environment to provide more variety of injection
functions.

5. Case study

An ARM926EJ-based SoC platform provided by CoWare Platform Architect [CoWare, 2006]
was used to demonstrate the feasibility of our risk model. The illustrated SoC platform was
modeled at the timed functional TLM abstraction level. This case study is to investigate
three important components, which are register file in ARM926EJ, AMBA Advanced High-
performance Bus (AHB), and the memory sub-system, to assess their risk scales to the SoC-
controlled system. We exploited the safety verification platform to perform the fault
injection process associated with the risk model presented in Section 3 to obtain the risk-
related parameters for the components mentioned above. The potential SoC failure modes

www.intechopen.com

Embedded Systems – Theory and Design Methodology

60

classified from the fault injection process are fatal failure (FF), silent data corruption (SDC),
correct data/incorrect time (CD/IT), and infinite loop (IL). In the following, we summarize
the data used in this case study.

 n = 3, {C(1), C(2), C(3)} = {AMBA AHB, memory sub-system, register file in
ARM926EJ}.

 z = 4, {FM(1), FM(2), FM(3), FM(4)} = {FF, SDC, CD/IT, IL}.

 The benchmarks employed in the fault injection process are: JPEG (pixels: 255  154),

matrix multiplication (M-M: 50  50), quicksort (QS: 3000 elements) and FFT (256
points).

5.1 AMBA AHB experimental results

The system bus, such as AMBA AHB, provides an interconnected platform for IP-based SoC.

Apparently, the robustness of system bus plays an important role in the SoC reliability. It is

evident that the faults happening in the bus signals will lead to the data transaction errors

and finally cause the system failures. In this experiment, we choose three bus signals

HADDR[31:0], HSIZE[2:0], and HDATA[31:0] to investigate the effect of bus errors on the

system. The results of fault injection process for AHB system bus under various benchmarks

are shown in Table 1 and 2. The results of a particular benchmark in Table 1 and 2 were

derived from the six thousand fault injection campaigns, where each injection campaign

injected 1-bit flip fault to bus signals. The fault duration lasts for the length of one-time data

transaction. The statistics derived from six thousand times of fault injection campaigns have

been verified to guarantee the validity of the analysis.

From Table 1, it is evident that the susceptibility of the SoC to bus faults is benchmark-

dependent and the rank of system bus vulnerability over different benchmarks is JPEG > M-

M > FFT > QS. However, all benchmarks exhibit the same trend in that the probabilities of

FF show no substantial difference, and while a fault arises in the bus signals, the occurring

probabilities of SDC and FF occupy the top two ranks. The results of the last row offer the

average statistics over four benchmarks employed in the fault injection process. Since the

probabilities of SoC failure modes are benchmark-variant, the average results illustrated in

Table 1 give us the expected probabilities for the system bus vulnerability of the developing

SoC, which are very valuable for us to gain the robustness of the system bus and the

probability distribution of failure modes. The robustness measure of the system bus is only

26.78% as shown in Table 1, which means that a fault occurring in the system bus, the SoC

has the probability of 26.78% to survive for that fault.

The experimental results shown in Table 2 are probability distribution of failure modes with

respect to the various bus signal errors for the used benchmarks. From the data illustrated in

the NE column, we observed that the most vulnerable part is the address bus HADDR[31:0].

Also from the data displayed in the FF column, the faults occurring in address bus will have

the probability between 38.9% and 42.3% to cause a serious fatal failure for the used

benchmarks. The HSIZE and HDATA signal errors mainly cause the SDC failure. In

summary, our results reveal that the address bus HADDR should be protected first in the

design of system bus, and the SDC is the most popular failure mode for the demonstrated

SoC responding to the bus faults or errors.

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

61

 FF (%) SDC (%) CD/IT (%) IL(%) SF (%) NE (%)

JPEG 18.57 45.90 0.16 15.88 80.51 19.49

M-M 18.95 55.06 2.15 3.57 79.73 20.27

FFT 20.18 21.09 15.74 6.38 63.39 36.61

QS 20.06 17.52 12.24 5.67 55.50 44.50

Avg. 19.41 38.16 7.59 8.06 73.22 26.78

Table 1. P (1, FM(K)), P (1, SF) and P (1, NE) for the used benchmarks.

FF (%) SDC (%) CD/IT (%)

1 2 3 4 1 2 3 4 1 2 3 4

HADDR 38.9 39.7 42.3 42 42.9 43.6 18.2 15.2 0.08 1.94 14.4 11.4

HSIZE 0.16 0.0 0.0 0 68.2 67.6 25.6 22.6 0.25 9.64 37.4 38.5

HDATA 0.0 0.0 0.0 0 46.8 65.4 23.6 19.4 0.24 1.66 15.0 10.6

IL (%) NE (%)

1 2 3 4 1 2 3 4

HADDR 11.5 2.02 3.41 2.02 6.62 12.7 21.7 29.4

HSIZE 11.6 2.38 6.97 7.53 19.8 20.4 30.0 31.4

HDATA 20.7 5.23 9.29 9.15 32.3 27.7 52.1 60.9

Table 2. Probability distribution of failure modes with respect to various bus signal errors
for the used benchmarks (1, 2, 3 and 4 represent the jpeg, m-m, fft and qs benchmark,
respectively).

5.2 Memory sub-system experimental results

The memory sub-system could be affected by the radiation articles, which may cause the bit-
flipped soft errors. However, the bit errors won’t cause damage to the system operation if
one of the following situations occurs:

 Situation 1: The benchmark program never reads the affected words after the bit errors
happen.

 Situation 2: The first access to the affected words after the occurrence of bit errors is the
‘write’ action.

Otherwise, the bit errors could cause damage to the system operation. Clearly, if the first

access to the affected words after the occurrence of bit errors is the ‘read’ action, the bit

errors will be propagated and could finally lead to the failures of SoC operation. So, whether

the bit errors will become fatal or not, it all depends on the occurring time of bit errors, the

locations of affected words, and the benchmark’s memory access patterns after the

occurrence of bit errors.

According to the above discussion, two interesting issues arise; one is the propagation
probability of bit errors and another is the failure probability of propagated bit errors. We
define the propagation probability of bit errors as the probability of bit errors which will be
read out and propagated to influence the execution of the benchmarks. The failure
probability of propagated bit errors represents the probability of propagated bit errors
which will finally result in the failures of SoC operation.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

62

Initially, we tried performing the fault injection campaigns in the CoWare Platform Architect
to collect the simulation data. After a number of fault injection and simulation campaigns,
we realized that the length of experimental time will be a problem because a huge amount
of fault injection and simulation campaigns should be conducted for each benchmark and
several benchmarks are required for the experiments. From the analysis of the campaigns,
we observed that a lot of bit-flip errors injected to the memory sub-system fell into the
Situation 1 or 2, and therefore, we must carry out an adequate number of fault injection
campaigns to obtain the validity of the statistical data.

To solve this dilemma, we decide to perform two types of experiments termed as Type 1
experiment and Type 2 experiment, or called hybrid experiment, to assess the propagation
probability and failure probability of bit errors, respectively. As explained below, Type 1
experiment uses a software tool to emulate the fault injection and simulation campaigns to
quickly gain the propagation probability of bit errors, and the set of propagated bit errors.
The set of propagated bit errors will be used in the Type 2 experiment to measure the failure
probability of propagated bit errors.

Type 1 experiment: we develop the experimental process as described below to measure the
propagation probability of bit errors. The following notations are used in the experimental
process.

 Nbench: the number of benchmarks used in the experiments.

 Ninj(j): the number of fault injection campaigns performed in the jth benchmark’s
experiment.

 Cp-b-err: counter of propagated bit errors.

 Np-b-err: the expected number of propagated bit errors.

 Sm: address space of memory sub-system.

 Nd-t: the number of read/write data transactions occurring in the memory sub-system
during the benchmark execution.

 Terror: the occurring time of bit error.

 Aerror: the address of affected memory word.

 Sp-b-err(j): set of propagated bit errors conducted in the jth benchmark’s experiment.

 Pp-b-err: propagation probability of bit errors.

Experimental Process: We injected a bit-flipped error into a randomly chosen memory
address at random read/write transaction time for each injection campaign. As stated
earlier, this bit error could either be propagated to the system or not. If yes, then we add one
to the parameter Cp-b-err. The parameter Np-b-err is set by users and employed as the terminated
condition for the current benchmark’s experiment. When the value of Cp-b-err reaches to Np-b-

err, the process of current benchmark’s experiment is terminated. The Pp-b-err can then be
derived from Np-b-err divided by Ninj. The values of Nbench, Sm and Np-b-err are given before
performing the experimental process.

for j = 1 to Nbench
{
Step 1: Run the jth benchmark in the experimental SoC platform under CoWare Platform

Architect to collect the desired bus read/write transaction information that include
address, data and control signals of each data transaction into an operational profile
during the program execution. The value of Nd-t can be obtained from this step.

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

63

Step 2: Cp-b-err = 0; Ninj(j) = 0;
While Cp-b-err < Np-b-err do

 {Terror can be decided by randomly choosing a number x between one and Nd-t. It
means that Terror is equivalent to the time of the xth data transaction occurring in the
memory sub-system. Similarly, Aerror is determined by randomly choosing an address
between one and Sm. A bit is randomly picked up from the word pointed by Aerror,
and the bit selected is flipped. Here, we assume that the probability of fault
occurrence of each word in memory sub-system is the same.

If ((Situation 1 occurs) or (Situation 2 occurs))
then {the injected bit error won’t cause damage to the system operation;}
else {Cp-b-err = Cp-b-err + 1;

record the related information of this propagated bit error to Sp-b-err(j)
including Terror, Aerror and bit location.}

//Situation 1 and 2 are described in the beginning of this Section. The operational
profile generated in Step 1 is exploited to help us investigate the resulting situation
caused by the current bit error. From the operational profile, we check the memory
access patterns beginning from the time of occurrence of bit error to identify which
situation the injected bit error will lead to. //
Ninj(j) = Ninj(j) + 1;}

}

For each benchmark, we need to perform the Step 1 of Type 1 experimental process once to
obtain the operational profile, which will be used in the execution of Step 2. We then created
a software tool to implement the Step 2 of Type 1 experimental process. We note that the
created software tool emulates the fault injection campaigns required in Step 2 and checks
the consequences of the injected bit errors with the support of operational profile derived
from Step 1. It is clear to see that the Type 1 experimental process does not utilize the
simulation-based fault injection tool implemented in safety verification platform as
described in Section 4. The reason why we did not exploit the safety verification platform in
this experiment is the consideration of time efficiency. The comparison of required
simulation time between the methodologies of hybrid experiment and the pure simulation-
based fault injection approach implemented in CoWare Platform Architect will be given later.

The Type 1 experimental process was carried out to estimate Pp-b-err, where Nbench, Sm and Np-b-

err were set as the values of 4, 524288, and 500 respectively. Table 3 shows the propagation

probability of bit errors for four benchmarks, which were derived from a huge amount of

fault injection campaigns to guarantee their statistical validity. It is evident that the

propagation probability is benchmark-variant and a bit error in memory would have the

probability between 0.866% and 3.551% to propagate the bit error from memory to system.

The results imply that most of the bit errors won’t cause damage to the system. We should

emphasize that the size of memory space and characteristics of the used benchmarks (such

as amount of memory space use and amount of memory read/write) will affect the result of

Pp-b-err. Therefore, the data in Table 3 reflect the results for the selected memory space and

benchmarks.

Type 2 experiment: From Type 1 experimental process, we collect Np-b-err bit errors for each
benchmark to the set Sp-b-err(j). Those propagated bit errors were used to assess the failure
probability of propagated bit errors. Therefore, Np-b-err simulation-based fault injection

www.intechopen.com

Embedded Systems – Theory and Design Methodology

64

Benchmark Ninj Np-b-err Pp-b-err

M-M 14079 500 3.551%

QS 23309 500 2.145%

JPEG 27410 500 1.824%

FFT 57716 500 0.866%

Table 3. Propagation probability of bit errors.

campaigns were conducted under CoWare Platform Architect, and each injection campaign
injects a bit error into the memory according to the error scenarios recorded in the set Sp-b-

err(j). Therefore, we can examine the SoC behavior for each injected bit error.

As can be seen from Table 3, we need to conduct an enormous amount of fault injection
campaigns to reach the expected number of propagated bit errors. Without the use of Type 1
experiment, we need to utilize the simulation-based fault injection approach to assess the
propagation probability and failure probability of bit errors as illustrated in Table 3, 5, and
6, which require a huge number of simulation-based fault injection campaigns to be
conducted. As a result, an enormous amount of simulation time is required to complete the
injection and simulation campaigns. Instead, we developed a software tool to implement the
experimental process described in Type 1 experiment to quickly identify which situation the
injected bit error will lead to. Using this approach, the number of simulation-based fault
injection campaigns performed in Type 2 experiment decreases dramatically. The
performance of software tool adopted in Type 1 experiment is higher than that of
simulation-based fault injection campaign employed in Type 2 experiment. Therefore, we
can save a considerable amount of simulation time.

The data of Table 3 indicate that without the help of Type 1 experiment, we need to carry
out a few ten thousand simulation-based fault injection campaigns in Type 2 experiment. As
opposite to that, with the assistance of Type 1 experiment, only five hundred injection
campaigns are required in Type 2 experiment. Table 4 gives the experimental time of the
Type 1 plus Type 2 approach and pure simulation-based fault injection approach, where the
data in the column of ratio are calculated by the experimental time of Type 1 plus Type 2
approach divided by the experimental time of pure simulation-based approach. The
experimental environment consists of four machines to speed up the validation, where each
machine is equipped with Intel® Core™2 Quad Processor Q8400 CPU, 2G RAM, and
CentOS 4.6. In the experiments of Type 1 plus Type 2 approach and pure simulation-based
approach, each machine is responsible for performing the simulation task for one
benchmark. According to the simulation results, the average execution time for one
simulation-based fault injection experiment is 14.5 seconds. It is evident that the
performance of Type 1 plus Type 2 approach is quite efficient compared to the pure
simulation-based approach because Type 1 plus Type 2 approach employed a software tool
to effectively reduce the number of simulation-based fault injection experiments to five
hundred times compared to a few ten thousand simulation-based fault injection
experiments for pure simulation-based approach.

Given Np-b-err and Sp-b-err(j), i.e. five hundred simulation-based fault injection campaigns, the
Type 2 experimental results are illustrated in Table 5. From Table 5, we can identify the
potential failure modes and the distribution of failure modes for each benchmark. It is clear
that the susceptibility of a system to the memory bit errors is benchmark-variant, and the M-

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

65

M is the most critical benchmark among the four adopted benchmarks, according to the
results of Table 5.

We then manipulated the data of Table 3 and 5 to acquire the results of Table 6. Table 6
shows the probability distribution of failure modes if a bit error occurs in the memory sub-
system. Each datum in the row of ‘Avg.’ was obtained by mathematical average of the
benchmarks’ data in the corresponding column. This table offers the following valuable
information: the robustness of memory sub-system, the probability distribution of failure
modes and the impact of benchmark on the SoC dependability. Probability of SoC failure for
a bit error occurring in the memory is between 0.738% and 3.438%. We also found that the
SoC has the highest probability to encounter the SDC failure mode for a memory bit error. In
addition, the vulnerability rank of benchmarks for memory bit errors is M-M > QS > JPEG >
FFT.

Table 7 illustrates the statistics of memory read/write for the adopted benchmarks. The
results of Table 7 confirm the vulnerability rank of benchmarks as observed in Table 6.
Situation 2 as mentioned in the beginning of this section indicates that the occurring
probability of Situation 2 increases as the probability of performing the memory write
operation increases. Consequently, the robustness of a benchmark rises with an increase in
the probability of Situation 2.

Benchmark Type 1 + 2 (minute) Pure approach (minute) Ratio

M-M 312 1525 20.46%

QS 835 2719 30.71%

JPEG 7596 15760 48.20%

FFT 3257 9619 33.86%

Table 4. Comparison of experimental time between type 1 + 2 & pure simulation-based
approach.

Benchmark FF SDC CD/IT IL NE

M-M 0 484 0 0 16

QS 0 138 103 99 160

JPEG 0 241 1 126 132

FFT 0 177 93 156 74

Table 5. Type 2 experimental results.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

66

 FF (%) SDC (%) CD/IT (%) IL (%) SF (%) NE (%)

M-M 0.0 3.438 0.0 0.0 3.438 96.562

QS 0.0 0.592 0.442 0.425 1.459 98.541

JPEG 0.0 0.879 0.004 0.460 1.343 98.657

FFT 0.0 0.307 0.161 0.270 0.738 99.262

Avg. 0.0 1.304 0.152 0.289 1.745 98.255

Table 6. P (2, FM(K)), P (2, SF) and P (2, NE) for the used benchmarks.

 #R/W #R R(%) #W W(%)

M-M 265135 255026 96.187% 10110 3.813%

QS 226580 196554 86.748% 30027 13.252%

JPEG 1862291 1436535 77.138% 425758 22.862%

FFT 467582 240752 50.495% 236030 49.505%

Table 7. The statistics of memory read/write for the used benchmarks.

5.3 Register file experimental results

The ARM926EJ CPU used in the experimental SoC platform is an IP provided from CoWare
Platform Architect. Therefore, the proposed simulation-based fault injection approach has a
limitation to inject the faults into the register file inside the CPU. This problem can be solved
by software-implemented fault injection methodology as described in Section 4. Currently,
we cannot perform the fault injection campaigns in register file under CoWare Platform
Architect due to lack of the operating system support. We note that the literature [Leveugle
et al., 2009; Bergaoui et al., 2010] have pointed out that the register file is vulnerable to the
radiation-induced soft errors. Therefore, we think the register file should be taken into
account in the vulnerability analysis and risk assessment. Once the critical registers are
located, the SEU-resilient flip-flop and register design can be exploited to harden the register
file. In this experiment, we employed a similar physical system platform built by
ARM926EJ-embedded SoC running Linux operating system 2.6.19 to derive the
experimental results for register file.

The register set in ARM926EJ CPU used in this experiment is R0 ~ R12, R13 (SP), R14 (LR),
R15 (PC), R16 (CPSR), and R17 (ORIG_R0). A fault injection campaign injects a single bit-flip
fault to the target register to investigate its effect on the system behavior. For each
benchmark, we performed one thousand fault injection campaigns for each target register
by randomly choosing the time instant of fault injection within the benchmark simulation
duration, and randomly choosing the target bit to inject 1-bit flip fault. So, eighteen
thousand fault injection campaigns were carried out for each benchmark to obtain the data
shown in Table 8. From Table 8, it is evident that the susceptibility of the system to register
faults is benchmark-dependent and the rank of system vulnerability over different
benchmarks is QS > FFT > M-M. However, all benchmarks exhibit the same trend in that

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

67

while a fault arises in the register set, the occurring probabilities of CD/IT and FF occupy
the top two ranks. The robustness measure of the register file is around 74% as shown in
Table 8, which means that a fault occurring in the register file, the SoC has the probability of
74% to survive for that fault.

 FF (%) SDC (%) CD/IT (%) IL (%) SF (%) NE (%)

M-M 6.94 1.71 10.41 0.05 19.11 80.89

FFT 8.63 1.93 15.25 0.04 25.86 74.14

QS 5.68 0.97 23.44 0.51 30.59 69.41

Avg. 7.08 1.54 16.36 0.2 25.19 74.81

Table 8. P (3, FM(K)), P (3, SF) and P (3, NE) for the used benchmarks.

REG #
SoC failure probability

REG #
SoC failure probability

M-M (%) FFT (%) QS (%) M-M (%) FFT (%) QS (%)

R0 7.9 13.0 5.6 R9 12.4 7.3 20.6

R1 31.1 18.3 19.8 R10 23.2 32.5 19.9

R2 19.7 14.6 19.2 R11 37.5 25.3 19.2

R3 18.6 17.0 15.4 R12 22.6 13.1 25.3

R4 4.3 12.8 21.3 R13 34.0 39.0 20.3

R5 4.0 15.2 20.4 R14 5.1 100.0 100.0

R6 7.4 8.8 21.6 R15 100.0 100.0 100.0

R7 5.0 14.6 23.9 R16 3.6 8.3 49.4

R8 4.0 9.7 24.7 R17 3.6 15.9 24.0

Table 9. Statistics of SoC failure probability for each target register with various benchmarks.

Table 9 illustrates the statistics of SoC failure probability for each target register under the

used benchmarks. Throughout this table, we can observe the vulnerability of each register

for different benchmarks. It is evident that the vulnerability of registers quite depends on

the characteristics of the benchmarks, which could affect the read/write frequency and

read/write syndrome of the target registers. The bit errors won’t cause damage to the

system operation if one of the following situations occurs:

 Situation 1: The benchmark never uses the affected registers after the bit errors happen.

 Situation 2: The first access to the affected registers after the occurrence of bit errors is
the ‘write’ action.

It is apparent to see that the utilization and read frequency of R4 ~ R8 and R14 for

benchmark M-M is quite lower than FFT and QS, so the SoC failure probability caused by

the errors happening in R4 ~ R8 and R14 for M-M is significantly lower than FFT and QS as

illustrated in Table 9. We observe that the usage and write frequency of registers, which

reflects the features and the programming styles of benchmark, dominates the soft error

sensitivity of the registers. Without a doubt, the susceptibility of register R15 (program

www.intechopen.com

Embedded Systems – Theory and Design Methodology

68

counter) to the faults is 100%. It indicates that the R15 is the most vulnerable register to be

protected in the register set. Fig. 2 illustrates the average SoC failure probabilities for the

registers R0 ~ R17, which are derived from the data of the used benchmarks as exhibited in

Table 9. According to Fig. 2, the top three vulnerable registers are R15 (100%), R14 (68.4%),

as well as R13 (31.1%), and the SoC failure probabilities for other registers are all below 30%.

Fig. 2. The average SoC failure probability from the data of the used benchmarks.

5.4 SoC-level vulnerability analysis and risk assessment

According to IEC 61508, if a failure will result in a critical effect on system and lead human’s
life to be in danger, then such a failure is identified as a dangerous failure or hazard. IEC 61508
defines a system’s safety integrity level (SIL) to be the Probability of the occurrence of a
dangerous Failure per Hour (PFH) in the system. For continuous mode of operation (high
demand rate), the four levels of SIL are given in Table 10 [IEC, 1998-2000].

SIL PFH

4 ≥10-9 to <10-8

3 ≥10-8 to <10-7

2 ≥10-7 to <10-6

1 ≥10-6 to <10-5

Table 10. Safety integrity levels.

In this case study, three components, ARM926EJ CPU, AMBA AHB system bus and memory
sub-system, were utilized to demonstrate the proposed risk model to assess the scales of
failure-induced risks in a system. The following data are used to show the vulnerability

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

69

analysis and risk assessment for the selected components {C(1), C(2), C(3)} = {AMBA AHB,
memory sub-system, register file in ARM926EJ}: {ER_C(1), ER_C(2), ER_C(3)} = {10-6 ~ 10-

8/hour }; {SR_FM(1), SR_FM(2), SR_FM(3), SR_FM(4)} = {10, 8, 4, 6}. According to the
expressions presented in Section 3 and the results shown in Section 5.1 to 5.3, the SoC failure
rate, SIL and RPN are obtained and illustrated in Table 11, 12 and 13.

ER_C/hour 1  10-6 0.5  10-6 1  10-7 0.5  10-7 1  10-8

SFR_C(1) 7.32  10-7 3.66  10-7 7.32  10-8 3.66  10-8 7.32  10-9

SFR_C(2) 1.75  10-8 8.73  10-9 1.75  10-9 8.73  10-10 1.75  10-10

SFR_C(3) 2.52  10-7 1.26  10-7 2.52  10-8 1.26  10-8 2.52  10-9

SFR 1.0  10-6 5.0  10-7 1.0  10-7 5.0  10-8 1.0  10-8

SIL 1 2 2 3 3

Table 11. SoC failure rate and SIL.

ER_C/hour 1  10-6 0.5  10-6 1  10-7 0.5  10-7 1  10-8

RPN_C(1) 5.68  10-6 2.84  10-6 5.68  10-7 2.84  10-7 5.68  10-8

RPN_C(2) 1.28  10-7 6.38  10-8 1.28  10-8 6.38  10-9 1.28  10-9

RPN_C(3) 1.5  10-6 7.49  10-7 1.5  10-7 7.49  10-8 1.5  10-8

Table 12. Risk priority number for the target components.

ER_C/hour 1  10-6 0.5  10-6 1  10-7 0.5  10-7 1  10-8

RPN_FM(1) 2.65  10-6 1.32  10-6 2.65  10-7 1.32  10-7 2.65  10-8

RPN_FM(2) 3.28  10-6 1.64  10-6 3.28  10-7 1.64  10-7 3.28  10-8

RPN_FM(3) 9.64  10-7 4.82  10-7 9.64  10-8 4.82  10-8 9.64  10-9

RPN_FM(4) 5.13  10-7 2.56  10-7 5.13  10-8 2.56  10-8 5.13  10-9

Table 13. Risk priority number for the potential failure modes.

We should note that the components’ error rates used in this case study are only for the
demonstration of the proposed robustness/safety validation process, and the more realistic
components’ error rates for the considered components should be determined by process
and circuit technology [Mukherjee et al., 2003]. According to the given components’ error
rates, the data of SFR in Table 11 can be used to assess the safety integrity level of the
system. One thing should be pointed out that a SoC failure may or may not cause the
dangerous effect on the system and human life. Consequently, a SoC failure could be
classified into safe failure or dangerous failure. To simplify the demonstration, we make an
assumption in this assessment that the SoC failures caused by the faults occurring in the
components are always the dangerous failures or hazards. Therefore, the SFR in Table 11 is
used to approximate the PFH, and so the SIL can be derived from Table 10.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

70

With respect to safety design process, if the current design does not meet the SIL
requirement, we need to perform the risk reduction procedure to lower the PFH, and in the
meantime to reach the SIL requirement. The vulnerability analysis and risk assessment can
be exploited to identify the most critical components and failure modes to be protected. In
such approach, the system safety can be improved efficiently and economically.

Based on the results of RPN_C(i) as exhibited in Table 12, for i = 1, 2, 3, it is evident that the
error of AMBA AHB is more critical than the errors of register set and memory sub-system.
So, the results suggest that the AHB system bus is more urgent to be protected than the
register set and memory. Moreover, the data of RPN_FM(k) in Table 13, k from one to four,
infer that SDC is the most crucial failure mode in this illustrated example. Throughout the
above vulnerability and risk analyses, we can identify the critical components and failure
modes, which are the major targets for design enhancement. In this demonstration, the top
priority of the design enhancement is to raise the robustness of the AHB HADDR bus
signals to significantly reduce the rate of SDC and the scale of system risk if the system
reliability/safety is not adequate.

6. Conclusion

Validating the functional safety of system-on-chip (SoC) in compliance with international
standard, such as IEC 61508, is imperative to guarantee the dependability of the systems
before they are being put to use. It is beneficial to assess the SoC robustness in early design
phase in order to significantly reduce the cost and time of re-design. To fulfill such needs, in
this study, we have presented a valuable SoC-level safety validation and risk reduction
process to perform the hazard analysis and risk assessment, and exploited an ARM-based
SoC platform to demonstrate its feasibility and usefulness. The main contributions of this
study are first to develop a useful SVRR process and risk model to assess the scales of
robustness and failure-induced risks in a system; second to raise the level of dependability
validation to the untimed/timed functional TLM, and to construct a SoC-level system safety
verification platform including an automatic fault injection and failure mode classification
tool on the SystemC CoWare Platform Architect design environment to demonstrate the core
idea of SVRR process. So the efficiency of the validation process is dramatically increased;
third to conduct a thorough vulnerability analysis and risk assessment of the register set,
AMBA bus and memory sub-system based on a real ARM-embedded SoC.

The analyses help us measure the robustness of the target components and system safety,
and locate the critical components and failure modes to be guarded. Such results can be
used to examine whether the safety of investigated system meets the safety requirement or
not, and if not, the most critical components and failure modes are protected by some
effective risk reduction approaches to enhance the safety of the investigated system. The
vulnerability analysis gives a guideline for prioritized use of robust components. Therefore,
the resources can be invested in the right place, and the fault-robust design can quickly
achieve the safety goal with less cost, die area, performance and power impact.

7. Acknowledgment

The author acknowledges the support of the National Science Council, R.O.C., under
Contract No. NSC 97-2221-E-216-018 and NSC 98-2221-E-305-010. Thanks are also due to the

www.intechopen.com

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

71

National Chip Implementation Center, R.O.C., for the support of SystemC design tool –
CoWare Platform Architect.

8. References

Austin, T. (1999). DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design,
Proceedings of 32nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 196-207, ISBN 076950437X, Haifa, Israel, Nov. 1999

Baumann, R. (2005). Soft Errors in Advanced Computer Systems. IEEE Design & Test of
Computers, Vol. 22, No. 3, (May-June 2005), pp. (258 – 266), ISSN 0740-7475

Bergaoui, S.; Vanhauwaert, P. & Leveugle, R. (2010) A New Critical Variable Analysis in
Processor-Based Systems. IEEE Transactions on Nuclear Science, Vol. 57, No. 4,
(August 2010), pp. (1992-1999), ISSN 0018-9499

Brown, S. (2000). Overview of IEC 61508 Design of electrical/electronic/programmable
electronic safety-related systems. Computing & Control Engineering Journal, Vol. 11,
No. 1, (February 2000), pp. (6-12), ISSN 0956-3385

International Electrotechnical Commission [IEC], (1998-2000). CEI International Standard
IEC 61508, 1998-2000

Chang, K. & Chen, Y. (2007). System-Level Fault Injection in SystemC Design Platform,
Proceedings of 8th International Symposium on Advanced Intelligent Systems, pp. 354-
359, Sokcho-City, Korea, Sept. 05-08, 2007

Chen, Y.; Wang, Y. & Peng, J. (2008). SoC-Level Fault Injection Methodology in SystemC
Design Platform, Proceedings of 7th International Conference on System Simulation and
Scientific Computing, pp. 680-687, Beijing, China, Oct. 10-12, 2008

Constantinescu, C. (2002). Impact of Deep Submicron Technology on Dependability of VLSI
Circuits, Proceedings of IEEE International Conference on Dependable Systems and
Networks, pp. 205-209, ISBN 0-7695-1597-5, Bethesda, MD, USA, June 23-26, 2002

CoWare, (2006). Platform Creator User’s Guide, IN: CoWare Model Library Product Version
V2006.1.2

Grotker, T.; Liao, S.; martin, G. & Swan, S. (2002). System Design with SystemC, Kluwer
Academic Publishers, ISBN 978-1-4419-5285-1, Boston, Massachusetts, USA

Hosseinabady, M.; Neishaburi, M.; Lotfi-Kamran P. & Navabi, Z. (2007). A UML Based
System Level Failure Rate Assessment Technique for SoC Designs, Proceedings of
25th IEEE VLSI Test Symposium, pp. 243 – 248, ISBN 0-7695-2812-0, Berkeley,
California, USA, May 6-10, 2007

Kanawati, G.; Kanawati, N. & Abraham, J. (1995). FERRARI: A Flexible Software-Based
Fault and Error Injection System. IEEE Transactions on Computers, Vol. 44, No. 2,
(Feb. 1995), pp. (248-260), ISSN 0018-9340

Karnik, T.; Hazucha, P. & Patel, J. (2004). Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes. IEEE Transactions on Dependable and Secure
Computing, Vol. 1, No. 2, (April-June 2004), pp. (128-143), ISSN 1545-5971

Kim, S. & Somani, A. (2002). Soft Error Sensitivity Characterization for Microprocessor
Dependability Enhancement Strategy, Proceedings of IEEE International Conference on
Dependable Systems and Networks, pp. 416-425, ISBN 0-7695-1597-5, Bethesda, MD,
USA, June 23-26, 2002

Leveugle, R.; Pierre, L.; Maistri, P. & Clavel, R. (2009). Soft Error Effect and Register
Criticality Evaluations: Past, Present and Future, Proceedings of IEEE Workshop on

www.intechopen.com

Embedded Systems – Theory and Design Methodology

72

Silicon Errors in Logic - System Effects, pp. 1-6, Stanford University, California, USA,
March 24-25, 2009

Mariani, R.; Boschi, G. & Colucci, F. (2007). Using an innovative SoC-level FMEA
methodology to design in compliance with IEC61508, Proceedings of 2007 Design,
Automation & Test in Europe Conference & Exhibition, pp. 492-497, ISBN
9783981080124, Nice, France, April 16-20, 2007

Mikulak, R.; McDermott, R. & Beauregard, M. (2008). The Basics of FMEA (Second Edition),
CRC Press, ISBN 1563273772, New York, NY, USA

Mitra, S.; Seifert, N.; Zhang, M.; Shi, Q. & Kim, K. (2005). Robust System Design with Built-
in Soft-Error Resilience. IEEE Computer, Vol. 38, No. 2, (Feb. 2005), pp. 43-52, ISSN
0018-9162

Mollah, A. (2005). Application of Failure Mode and Effect Analysis (FMEA) for Process Risk
Assessment. BioProcess International, Vol. 3, No. 10, (November 2005), pp. (12–20)

Mukherjee, S.; Weaver, C.; Emer, J.; Reinhardt, S. & Austin, T. (2003). A Systematic
Methodology to Compute the Architectural Vulnerability Factors for a High
Performance Microprocessor, Proceedings of 36th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 29-40, ISBN 0-7695-2043-X, San Diego,
California, USA, Dec. 03-05, 2003

Open SystemC Initiative (OSCI), (2003). SystemC 2.0.1 Language Reference Manual
(Revision 1.0), IN: Open SystemC Initiative, Available from: <
homes.dsi.unimi.it/~pedersin/AD/SystemC_v201_LRM.pdf>

Rotenberg, E. (1999). AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessor, Proceedings of 29th Annual IEEE International Symposium on Fault-
Tolerant Computing, pp. 84-91, ISBN 076950213X, Madison , WI, USA, 1999

Ruiz, J.; Yuste, P.; Gil, P. & Lemus, L. (2004). On Benchmarking the Dependability of
Automotive Engine Control Applications, Proceedings of IEEE International
Conference on Dependable Systems and Networks, pp. 857 – 866, ISBN 0-7695-2052-9,
Palazzo dei Congressi, Florence, Italy, June 28 – July 01, 2004

Sieh, V. (1993). Fault-Injector using UNIX ptrace Interface, IN: Internal Report No.: 11/93,
IMMD3, Universität Erlangen-Nürnberg, Available from: <
http://www3.informatik.uni-erlangen.de/Publications/Reports/ir_11_93.pdf>

Slegel, T. et al. (1999). IBM’s S/390 G5 Microprocessor Design. IEEE Micro, Vol. 19, No. 2,
(March/April, 1999), pp. (12-23), ISSN 0272-1732

Stamatelatos, M.; Vesely, W.; Dugan, J.; Fragola, J.; Minarick III, J. & Railsback, J. (2002).
Fault Tree Handbook with Aerospace Applications (version 1.1), IN: NASA,
Available from: <www.hq.nasa.gov/office/codeq/doctree/fthb.pdf>

Tony, S.; Mohammad, H.; Mathew, J. & Pradhan, D. (2007). Soft-Error induced System-
Failure Rate Analysis in an SoC, Proceedings of 25th Norchip Conf., pp. 1-4, Aalborg,
DK, Nov. 19-20, 2007

Wang, N.; Quek, J.; Rafacz, T. & Patel, S. (2004). Characterizing the Effects of Transient
Faults on a High-Performance Processor Pipeline, Proceedings of IEEE International
Conference on Dependable Systems and Networks, pp. 61-70, ISBN 0-7695-2052-9,
Palazzo dei Congressi, Florence, Italy, June 28 – July 01, 2004

Zorian, Y.; Vardanian, V.; Aleksanyan, K. & Amirkhanyan, K. (2005). Impact of Soft Error
Challenge on SoC Design, Proceedings of 11th IEEE International On-Line Testing
Symposium, pp. 63 – 68, ISBN 0-7695-2406-0, Saint Raphael, French Riviera, France,
July 06-08, 2005

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yung-Yuan Chen and Tong-Ying Juang (2012). Vulnerability Analysis and Risk Assessment for SoCs Used in

Safety-Critical Embedded Systems, Embedded Systems - Theory and Design Methodology, Dr. Kiyofumi

Tanaka (Ed.), ISBN: 978-953-51-0167-3, InTech, Available from:

http://www.intechopen.com/books/embedded-systems-theory-and-design-methodology/vulnerability-analysis-

and-risk-assessment-for-socs-used-in-safety-critical-embedded-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

