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1. Introduction 

Diabetic retinopathy is a frequent complication of diabetes, and leads to acquired blindness. 
A variety of gene and molecules have been studied to clarify its pathophysiological 
mechanism. The retina is involved in the vision process and contains neuronal cells that are 
the most sensitive to changes in the retinal environment, and the physiological barrier 
structure is important for maintaining optimal retinal homeostasis. The blood-retinal barrier 
(BRB) is composed of two cellular barriers, the tight junction of the retinal capillary 
endothelial cells (inner BRB) and the retinal pigment epithelial cells (outer BRB), restricting 
nonspecific material transport between the circulating blood and the retina. However, the 
specific transport of low molecular weight compounds, that is the supply of nutrients and 
elimination of undesired toxic compounds, is carried out by membrane transporter 
molecules at the BRB, suggesting that they are closely related to diabetic retinopathy. Since 
it is also known that two thirds of the human retina is nourished by the inner BRB (Cunha-
Vaz, 2004; Hosoya & Tomi, 2005), in this chapter, we will describe the relationship between 
diabetic retinopathy and the membrane transporter molecules expressed at the inner BRB. 

2. Structure and function of the inner BRB 

In 1913, Schnaudigel was the first to propose the concept of the BRB. In his experiment, the 
retina showed similarity to the blood-brain barrier (BBB), that is, the retina was not stained 
with dye injected intravenously although peripheral tissues were stained (Schnaudigel, 
1913). The tight junctions of retinal pigment epithelial (RPE) cells form the outer BRB, and 
the choriocapillaries are fenestrated while the inner BRB consists of multiple cells, retinal 
endothelial cells, pericytes and glial cells, and Müller cells are representative retinal glial 
cells. The inner BRB is formed by tight junctions of the retinal endothelial cells that are 
covered by pericytes and glial cells (Figure 1). Since the endothelial barrier is formed by a 
network complex including neurons, Müller cells/astrocytes and endothelial cells which 
control the function of retinal capillaries, the inner BRB can be thought of as a ‘glio-vascular 
unit’ (Kim et al., 2006).  

2.1 Cellular interaction 

The functional properties of the inner BRB are inducible by paracrine interactions with 
pericytes and glial cells. For example, in the endothelial cells, several barrier properties and 
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host-derived angiogenesis are induced by injection of type I astrocytes into the anterior eye 
chamber of rats (Janzer & Raff, 1987; Janzer, 1997), and the barrier properties of bovine-
derived retinal endothelial cells are increased by co-culture with rat brain-derived astrocytes 
(Gardner et al., 1997). These pieces of evidence suggest that retinal glial cells (Müller cells 
and astrocytes) acts in a similar manner to astrocytes in the brain, and imply that the barrier 
function of the inner BRB is modified by several factors secreted from astrocytes. It is known 
that Müller cells produce several factors to enhance the barrier function of blood vessels in 
the retina (Tout et al., 1993). In experiments with TR-MUL cells, conditionally immortalized 

rat Müller cells, TR-MUL cells produce transforming growth factor-beta (TGF-) to increase 
the activity of barrier marker proteins expressed in the TR-iBRB cells, conditionally 
immortalized rat retinal capillary endothelial cells, suggesting that Müller cells contribute to 
the regulation of barrier function (Abukawa et al., 2009). In addition, it has been reported 

that there is involvement of glia cell-derived neurotropic growth factors in the TGF-family, 
interleukin-6, and basic fibroblast growth factor (bFGF), in barrier regulation (Abbott, 2002). 
Pericytes produce angiopoietin-1 to modify the barrier function of endothelial cells (Hori et 
al., 2004). The gap junction-mediated interaction between pericytes, endothelial cells and 
contractile cells is involved in the regulation of blood flow (Bandopadhyay et al., 2001). It is 
also known that pericytes exhibit contraction in the presence of endothelin-1, angiotensin II, 
ATP and hypoxia, and relaxation in the presence of CO2, NO, and adenosine (Matsugi et al,. 
1997a; Matsugi et al., 1997b; Chen & Anderson, 1997). 

 

Fig. 1. Structure of inner Blood-Retinal Barrier (BRB) 

2.2 Molecular aspects of the barrier structure 

At the inner BRB, the retinal endothelial cells form a tightly sealed monolayer, separating 

the abluminal (retina side) and luminal (blood side) domains of the retinal endothelium, and 

prevent paracellular transport of materials across endothelial cells between the retina and 
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circulating blood (Wolburg et al., 2009). In particular, D-mannitol, a representative non-

permeable paracellular marker, exhibits very low blood-to-retina influx permeability while 

D-glucose and amino acids, the substrates of membrane transporter molecules, exhibit over 

a 300-fold higher permeability than that of D-mannitol (Puchowicz et al., 2004; Hosoya & 

Tachikawa, 2009). These pieces of evidence strongly suggest that the inner BRB is a selective 

barrier for the retina. In order to maintain the tightly sealed monolayer, it is important for 

the retinal endothelial cells to be connected via a junctional complex including adherens 

junctions and tight junctions. Tight junctions are formed by signaling, scaffolding and 

transmembrane proteins, and it is known that the junctional adhesion molecules (JAM), 

occuludin and claudin play a role in the tight junctions (Hirase et al., 1997; Furuse et al., 

1998; Bazzoni et al, 2005). The quantitative transcript analysis of rodent retinal endothelial 

cells shows markedly higher expressions of claudin-5, occludin, and JAM-1 than non-retinal 

endothelial cells (Tomi & Hosoya, 2004; Tachikawa et al., 2008). ZO-1, ZO-2 and ZO-3, 

accessory proteins, belong to the zonula occludens family, and are involved in linking the 

actin cytoskeleton and the cytoplasmic tails of the occludin and claudin complex (Anderson 

et al., 1995; Haskins et al., 1998). In addition, the seal between the retinal endothelial cells is 

enhanced by catenins and vascular endothelial cadherin (VE-cadherin) (Bazzoni & Dejana, 

2004). An anti-sense nucleotide study has suggested that occludin plays an important role in 

the functional regulation of the inner BRB since the barrier permeability is increased by a 

reduction in occludin expression (Kevil et al., 1998). In addition, the expression of occludin 

is reduced in experimentally conditioned-diabetes, suggesting a change in retinal barrier 

function in patients with diabetic retinopathy (Antonetti et al., 1998). Other reports have 

suggested that vascular endothelial growth factor (VEGF) and nitric oxide (NO) have an 

effect on the increase in retinal barrier permeability. In the presence of vascular endothelial 

growth factor (VEGF), the cultured endothelial cells exhibit reduced occludin expression 

and increased barrier permeability across the endothelial cell monolayers (Yaccino et al., 

1997), and the NO synthesis or release has been reported to increase the vascular 

permeability (Mark et al., 2004). Thus, it is thought that VEGF and NO are closely involved 

in retinal barrier function in diabetic retinopathy since the retina exhibits enhanced 

production of these factors in hypoxia (Kaur et al., 2006). In addition, hypoxia-ischemia 

leads to the production of reactive oxygen species (ROS) that cause oxidative stress and 

affect neovascularization in the diabetic eyes and retinopathy of prematurity (ROP) 

(Augustin et al., 1993; Saugstad & Rognum, 1988). Therefore, the physiological and 

pathological roles of VEGF, NO and ROS are important in retinal barrier function, and the 

suppression of their production or function will help in the clinical treatment of diabetic 

retinopathy, retinal hypoxia, ischemic central retinal vein occlusion, and other conditions 

(Kaur et al., 2008). 

2.3 Transport system across the barrier 

The paracellular impermeability of hydrophilic molecules is governed by the tight junctions 
in the retinal capillary endothelium. However, it is essential that retinal neural cells, such as 
photoreceptor cells, are able to take up sources of energy and eliminate undesired materials. 
Thus, transcellular transport by retinal capillary endothelial cells is needed for a variety of 
low molecular weight compounds, such as D-glucose, amino acids and their metabolites 
(Niemeyer, 1997; Tachikawa et al., 2007). Regarding the mechanisms of transcellualr 
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transport, there are three transport systems at the inner BRB, namely, passive diffusion, 
receptor-mediated transport and carrier-mediated transport (Figure 2). In particular, carrier-
mediated transport is the most important for the uptake of essential nutrients and 
elimination of discarded metabolites, and this can be subdivided into facilitated transport, 
primary active efflux transport and secondary active influx and efflux transport (Hosoya & 
Tachikawa, 2009). In general, the membrane transporter is the 12 membrane-spanning 
membrane protein widely found in a variety of species ranging from bacteria to humans 
(Kubo et al., 2000; Kubo et al., 2005), and it is protein responsible for carrier-mediated 
transport. ATP-binding cassette (ABC) transporter and Solute carrier (SLC) transporter are 
involved in primary active efflux transport and secondary influx and efflux transport, 
respectively (Figure 3). It has been shown that a variety of influx membrane transporters, 
such as GLUT1 for D-glucose, are expressed in retinal capillary endothelial cells (Table 1), 
and they contribute to the retinal uptake of essential nutrients. It is also important to 
eliminate unwanted metabolites and toxic compounds from the retina. While facilitative and 
secondary active influx transport systems mediated by influx membrane transporters 
contribute to the influx of nutrients at the inner BRB, the elimination involves primary active 
and secondary active efflux transport systems. The efflux transport systems are mediated by 
ABC transporters, such as MDR1 (P-gp), and SLC transporters, such as OAT3 (Table 1). 
Research of membrane transporters uses a variety of analytical methods (Kubo et al., 2007). 
In particular, in the study of the inner BRB, integration plot and retinal uptake index 
analyses are available to study the in vivo blood-to-retina transport (Hosoya & Tomi, 2008), 
and TR-iBRB cells, the model cell line of retinal capillary endothelial cells, are useful for 
studying in vitro transport mechanisms (Hosoya & Tomi, 2005; Hosoya et al., 2001a). 

 

Fig. 2. Transport Systems in the inner BRB 
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Fig. 3. Structure of Membrane Transporter 

3. Hyperglycemia and glucose transporter (GLUT1) 

Hyperglycemia (an increased blood D-glucose concentration) is the most important 
symptom exhibited by diabetic patients, and this has severe effects on the development of 
diabetic retinopathy (Cai & Boulton, 2002). At the inner BRB, the retinal endothelial cells 
express facilitative glucose transporter, GLUT1 that recognizes hexoses and 
dehydroascorbic acid (DHA) as substrates (Vera et al., 1993). GLUT1 mainly mediates the 
influx transport of D-glucose across the inner BRB. GLUT1 exhibits an asymmetrical 
localization at the inner BRB, and the abluminal expression of GLUT1 protein is 2- and 3- 
times higher than that on the luminal membrane (Takata K et al., 1992; Fernandes et al., 
2003), suggesting that GLUT1 suppresses glucose accumulation in the retinal interstinal 
fluid. Regarding the influx permeability rate, the blood-to-retina transport is 544 and 2440 
microL/(min· g retina) for D-glucose and DHA, respectively (Puchowicz et al., 2004; 
Hosoya et al., 2004). DHA is the oxidized form of ascorbic acid (vitamin C), one of the 
representative antioxidants, and rapidly undergoes cellular reduction to ascorbic acid, 
resulting in the higher permeability rate of DHA (Hosoya et al., 2008b). According to the Km 

values of GLUT1 for D-glucose (5 mM) and DHA (93 microM) and the physiological plasma 
concentration of D-glucose (~5 mM) and DHA (~10 microM) (Hosoya et al., 2004; Ennis et 
al., 1982), GLUT1-mediated DHA influx transport across the inner BRB is not inhibited 
completely under normal and healthy conditions. However, under diabetic conditions, the 
elevated plasma concentration of D-glucose (>20 mM, hyperglycemia) causes a reduction in 
GLUT1-mediated DHA transport from the blood to the retina (Minamizono et al., 2006), 
showing that the retina of diabetic patients is subject to increased oxidative stress. 
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4. Hyperosmolality mediated by GLUT1 

For all cells in the body, it is important to maintain a physiologically optimal osmolality. 
Sorbitol, a popular sweetener, works as a common organic osmolyte in cells. In the retinal 
cells, it is known that the cellular polyol pathway is responsible for sorbitol production from 
D-glucose (Vinores et al., 1993). The rate-limiting enzyme involved in sorbitol production is 
aldose reductase encoded by the AR2 gene located on 7q35 which is thought to be a possible 
susceptible region for diabetic retinopathy (Patel et al., 1996). Under diabetic conditions, 
hyperglycemia enhances the intracellular accumulation of sorbitol because of the increased 
GLUT1-mediated facilitative D-glucose transport to the retina and stimulated cellular aldose 
reductase activity (Iannello et al., 1999). The elevated concentration of sorbitol causes 
hyperosmolality which stimulates lactate production and intracellular water and reduces 
the uptake of O2 (Stevens et al., 1993; Lim et al., 2001). Therefore, GLUT1 is closely involved 
in the dysfunction and loss of retinal cells, including the capillary endothelial cells in 
diabetes. Although the change in GLUT1 expression also needs to be considered for a better 
understanding of the pathological and therapeutic aspects of diabetic retinopathy, both up- 
and down-regulation of GLUT1 have been reported in the retina with diabetes (Kumagai et 
al., 1996; Badr et al., 2000), and this remains controversial.  

5. Advanced glycation end products (AGEs) 

Advanced glycation end products (AGEs) are the result of a chemical chain reaction (non-
enzymatic reaction). During normal aging and metabolism, glucose binds to the amino 
groups of proteins, through the Maillard reaction, Schiff base, and Amadori rearrangement, 
to produce Amadori products such as glycolhemoglobin (HbA1c) and glycolalbumin that 
are used to diagnose diabetes. The Amadori products undergo dehydration, hydrolysis and 
cleavage to form alpha-dicarbonyl compounds, such as glyoxal, methylglyoxal and 3-
deoxyglucosone, that have a much greater ability than glucose to accelerate protein 
glycation. After further reactions, such as oxidation and degradation, irreversible AGEs are 
produced finally (Brownlee et al., 1988; Takeuchi & Makita Z, 2001).  

5.1 AGE effects on the inner BRB 

AGEs is the generic term that includes a number of compounds such as pentosidine, 
pyrraline, crossline, and N (epsilon)-(carboxymethyl) lysine. Interestingly, there are reports 
of the expression of receptors for AGEs, such as RAGE, on the cellular surface (Schmidt at 
al. 1992; Neeper et al., 1992). Under diabetic conditions, hyperglycemia promotes the 
production and accumulation of AGEs, and it is suggested that AGEs are closely related to 
the pericytes loss in diabetic retinopathy (Brownlee et al., 1988). As described previously, 
the retinal capillary is composed of endothelial cells, pericytes and glial cells, and it has been 
reported that the pericytes interacts with the endothelial cells to suppress the undesirable 
proliferation and prostacyclin production of endothelial cells and to protect these 
endothelial cells from harmful events (Yamagishi et al., 1993a; Yamagishi et al., 1993b). 
Therefore, the loss of pericytes, observed during the early stage of diabetic retinopathy, can 
be an exacerbating factor leading to the induction of neoangiogenesis via VEGF production, 
thrombus and hypoxia via prostacylin suppression in the retinal capillary endothelial cells. 
According to a recent report, the loss of pericytes is caused by AGEs and their receptors that 
inhibit the proliferation of pericytes and induce their apoptosis (Yamagishi et al., 1995; 
Yamagishi et al., 2002).  

www.intechopen.com



 
Inner Blood-Retinal Barrier Transporters: Relevance to Diabetic Retinopathy 

 

97 

5.2 Taurine homeostasis and TAUT 

It has been reported that the reactivity of AGEs can be blocked by the administration of 
taurine (Nandhini et al., 2004). Taurine is a non-essential amino acid which is thought to 
have a neuroprotective role as an osmolyte and antioxidant in the retina. In the body, 
taurine is synthesized from L-cysteine, and cysteine sulfinic acid decarboxylase is the rate-
limiting enzyme involved in taurine biosynthesis. Interestingly, it is known that the retina is 
rich in taurine although the activity of cysteine sulfinic acid decarboxylase is low (Lin et al., 
1985). This suggests the physiological importance of blood-to-retina taurine transport across 
the inner BRB for the maintenance of retina homeostasis. The taurine transport system is 
mediated by TAUT, which accepts taurine (Km = 22.2 microM) for Na+- and Cl--dependent 
transport (Tomi et al., 2007). The expression of TAUT has been demonstrated in human 
primary retinal endothelial cells and TR-iBRB cells. Regarding the influx permeability rate, 
the blood-to-retinal transport is 259 microL/(min· g retina) for taurine (Tomi et al., 2007), 
and it has been confirmed that the substrates of TAUT have inhibitory effects on retinal 
taurine uptake (Törnquist et al., 1986). In a study with knockout mice, taut-/- mice exhibited 
an 80 to 90% reduction in taurine levels in the retina when compared with wild-type mice, 
showing that TAUT is responsible for the retinal homeostasis of taurine (Warskulat et al., 
2007). Diabetic patients exhibit taurine deficiency, and a recent report shows that a reduced 
level of taurine in the retina causes the loss of cone photoreceptor and retinal ganglion cells, 
suggesting that retinal taurine deficiency is one of the exacerbating factors for diabetic 
retinopathy (Franconi et al., 1995; Jammoul et al., 2010). Reports have been published 
describing that taurine administration reduces the severity of the symptoms of diabetes 
(Barber, 2003; Moloney et al., 2010; Nakamura et al., 1999). 

6. Oxidative stress 

Oxidative stress is one of the exacerbating factors of diabetic retinopathy. Under normal 
conditions, it is important to protect the retina from light-induced oxidative stress, and the 
cellular uptake and synthesis of antioxidants can contribute to prevent the development of 
diabetic retinopathy. Catalase, superoxide dismutase (SOD) and glutathione peroxidase are 
representative cellular enzymatic systems that combat oxidative stress (Roginsky et al., 2001; 
Sozmen et al., 2001; Mates et al., 1999). Under diabetic conditions, down-regulation of SOD 
and glutathione peroxidase have been reported (Agardh et al., 1998; Agardh et al., 2000; 
Kern et al., 1994; Kowluru et al., 1997), and ROS are supposed to be generated by the 
production of AGE signaling via receptors for AGEs, the polyol pathway and enhanced 
metabolism of eicosannoid (Nourooz-Zadeh & Pereira 2000). Recently, TR-iBRB cells have 
been reported to show ROS-induced down-regulation of GLUT1 protein expression at the 
cellular plasma membrane, and proteasome and protein kinase B have been shown to be 
involved in this mechanism, suggesting that ROS disrupt glucose homeostasis in the retina 
(Fernandes et al, 2011). Regarding the enzymatic availability of NADPH, glutathione 
reductase, reducing the oxidized glutathione (GSSG) to glutathione (GSH), competes with 
aldose reductase in the polyol pathway, suggesting inhibitory effects on the retinal enzymes 
(Sato et al., 1999; Bravi et al., 1997). In glutathione synthesis, xCT, the membrane transporter 
expressed in retinal capillary endothelial cells, plays an important role in transporting L-
cystine across the inner BRB from the circulating blood. xCT is the representative molecule for 
the system Xc- and forms a heterodimer with 4F2hc to transport L-cystine and L-glutamate. 
TR-iBRB cells exhibits Na+-independent L-cystine uptake (Km=9.2 microM), which is inhibited 
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by substrates of xCT. xCT is one of the important molecules involved in the biosynthesis of 
GSH which is a potent endogenous antioxidant. The expression and activity of xCT has been 
reported to be up-regulated in response to oxidative conditions (Tomi et al., 2002), and it is 
expected that the expressional and functional alterations of xCT will have an effect on the 
development of the diabetic retinopathy, regulating the retinal GSH level. 

 

Transporter Alias Substrates Transport 
Direction 

References 

SLC2A1 GLUT1 D-Glucose 
DHA 

Influx 
Influx 

Puchowicz et al., 2004 
Hosoya et al., 2004 

SLC5A6 SMVT Biotin Influx Ohkura et al., 2010 
SLC6A6 TAUT Taurine 

GABA 
Influx 
Influx 

Törnquist et al, 1986 
Tomi et al., 2007 

SLC6A8 CRT Creatine Influx Nakashima et al., 2004 
SLC6A9 GlyT Glycine Influx Okamoto et al., 2009 
SLC7A1 CAT1 L-Arginine Influx Tomi et al., 2009 
SLC7A5 LAT1 L-Leucine Influx 

 
Törnquist et al, 1986 
Tomi et al., 2005 

SLC7A11 xCT L-Cystine 
L-Glutamate 

Influx 
Influx 

Tomi et al., 2002 
Hosoya et al., 2001b 

SLC16A1 MCT1 L-Lactate Influx Gerhart et al., 1999 
Alm et al., 1985 
Hosoya et al., 2001c 

SLC19A1 RFC1 MTF Influx Hosoya K et al., 2008a 
SLC22A5 OCTN2 L-Carnitine Influx Tachikawa et al., 2010 
SLC22A8 OAT3 Organic 

anions 
Efflux Kikuchi et al., 2003 

Somervaille et al., 2003 
Hosoya et al., 2009 

SLC29A2 ENT2 Nucleosides Influx Nagase et al., 2006 
Baldwin et al., 2004, 

SLC38A2 ATA2 
SNAT2 

L-Proline 
L-Alanine 

Efflux 
Efflux 

Yoneyama et al., 2010 
LaNoue et al., 2001 
Levkovitch-Verbin et al., 2002 

SLCO1A4 OATP1A4 
oatp2 

Organic 
anions 

Efflux Nakakariya et al., 2008 
Katayama et al., 2006 
Noé et al., 1994 
Gao et al., 2002 
Sugiyama et al., 2001 

ABCB1 MDR1 
P-gp 

Lipophilic 
drugs 

Organic 
cations 

Efflux Hosoya et al., 2001a 
Maines et al., 2005 
Shen et al., 2003 
BenEzra et al., 1990a 
BenEzra et al., 1990b 

ABCC4 MRP4 Organic 
anions 

Efflux Tagami et al., 2009 
Smeets et al., 2004 
Uchida et al., 2007 

ABCG2 BCRP 
MTX 

Organic 
anions 

Efflux Asashima et al., 2006 
Boulton et al., 2001 

DHA dehydroascorbic acid; GABA gamma-aminobutyric acid; MTF methyltetrahydrofolate 

Table 1. Membrane Transporters Identified at the inner BRB 
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7. Conclusion 

In this chapter, we have described membrane transporters, such as GLUT1 for D-glucose 
and DHA, TAUT for taurine, and xCT for L-cystine and L-glutamate, which are mainly 
involved in the uptake of nutrients across the inner BRB under normal physiological 
conditions. However, under diabetic conditions, these membrane transporters have 
accelerating or decelerating roles in retinal capillary endothelial cells, and precise 
quantification of their expressional alteration in diabetes will provide information about the 
detailed pathological features of diabetic retinopathy. To date, although it has been shown 
that a variety of membrane transporters are expressed in retinal capillary endothelial cells 
(Table 1), there is still insufficient information about them to allow us to have a complete 
picture of retinal homeostasis, and further studies are needed. Therefore, there is still the 
possibility that several known membrane transporters play roles in diabetic retinopathy. 
Regarding the drug treatment of diabetic retinopathy, the membrane transporters are 
expected to be used in pharmacokinetic predictions and retina-specific drug delivery 
systems. At the inner BRB, OCTN2 and MCT1 are thought to accept drugs as their 
substrates (Ohashi et al., 1999; Tamai et al., 1999), and novel drug transport systems have 
also been suggested (Hosoya et al., 2010). Therefore, retina-specific delivery is a potential for 
aldose reductase inhibitors, such as sorbinil, ranirestat and epalrestat, that can suppress the 
cell death of the retinal capillary endothelium (Goldfarb et al., 1991; Narayanan et al., 1993). 
Furthermore, over 400 identified gene/protein molecules belong to the membrane 
transporter family, and over 100 molecules are ‘orphan transporters’ and their expression, 
localization, function, substrates and roles need to be fully identified. In addition, it is 
thought that there are also a number of unidentified membrane transporter genes, and new 
research reports on novel membrane transporters can be seen even now (Kawahara et al., 
2009). Therefore, new discoveries and findings will be made as a result of the study of the 
membrane transporters expressed at the inner BRB, and advances in this field will 
contribute to our understanding of the pathological and therapeutic aspects of diabetic 
retinopathy. 
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