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1. Introduction 

Diabetic retinopathy (DR) is one of the most common complications of diabetes affecting 
millions of working adults worldwide, in which the retina, a part of the eye becomes 
progressively damaged, leading to vision loss and blindness. Tremendous efforts have been 
made to identify biochemical mechanisms which led to the recognition of hyperglycemia, 
hypertension and dyslipidemia as major risk factors in DR. Consequently, tight glycemic 
control, blood pressure control and lipid-lowering therapy have all shown proven benefits 
in reducing the incidence and progression of DR. However, despite tight glycemic control, 
blood pressure control and lipid-lowering therapy, the number of DR patients keeps 
growing and therapeutic approaches are limited [Ismail-Beigi F, 2010; Patel A, 2008]. For last 
several decades, laser photocoagulation and vitrectomy remain as the two conventional 
approaches for treating sight-threatening conditions such as macular edema and 
proliferative DR (PDR). 

The increased levels of metabolites in diabetic patients and in various animal models of 
the disease have been shown to induce several unrelated and interrelated biochemical 
pathways implicated in the progression of the DR. Disturbed level of several metabolites 
in addition to hyperglycemia and hormonal factors systemically and within diabetic 
retina change the production pattern of a number of mediators including growth factors, 
neurotrophic factors, cytokines/chemokines, vasoactive agents, inflammatory molecules, 
and adhesion molecules resulting in increased blood flow, increased capillary 
permeability, altered cell turnover (apoptosis) and finally in angiogenesis. In this chapter 
a major emphasis is given on diabetic induced metabolic changes in the retina which 
induces a range of molecules and pathways involved early in the pathophysiology of DR 
which are briefly discussed and those major cascades of events are shown in the schematic 
diagram as depicted in Fig.1. 

2. Hyperglycemia 

2.1 Advanced Glycation end products (AGEs) 

AGE’s are formed via non-enzymatic condensation reaction between reducing glucoses and 
amine residues of proteins, lipids or nucleic acids that undergo a series of complex reaction 
to give irreversible cross linked complex group of compounds termed as AGEs. Some of the 
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best chemically characterized AGEs in human are carboxymethyllysine (CML), 
carboxyethyllysine (CEL), and pentosidine which act a markers for formation and 
accumulation of AGE in hyperglycemia. CML and other AGEs have been localized to retinal 
blood vessels of diabetes patients and were found to correlate with the degree of 
retinopathy suggesting the pathophysiological role of AGE’s in diabetes [Stitt AW, 2001]. 
Increased AGEs formation and accumulation has been found in retinal vessels of diabetic 
animals, in human serum with type 2 diabetes and in vitreous cavity of people with diabetic 
retinopathy [Goh SY, 2008; Goldin A, 2006]. 

Retinal pericytes have been shown to accumulate AGEs during diabetes, implicating pericytes 

loss which can induce blood-retinal barrier dysfunction [Stitt AW, 2000]. In addition, AGE 

induces leukocyte adherence that leads to breakdown of blood-retinal barrier via increased 

leukocyte adhesion to cultured retinal microvascular endothelial cells (ECs) by inducing 

intracellular cell adhesion molecule-1 (ICAM-1) expression [Moore TC, 2003]. Also retinal 

vascular endothelial growth factor (VEGF) has been found to induce ICAM-1 expression, thus 

leading to leukostasis and breakdown of blood-retinal barrier, suggesting AGE-elicited pro-

inflammation, may be modulated by the blockage of VEGF [Joussen AM, 2002; Ishida S, 2003]. 

AGEs increases monocyte chemoattractant protein-1 (MCP-1) and ICAM-1 expression in 

microvascular ECs through intracellular reactive oxygen species (ROS) generation, thereby 

inducing T-cell adhesion to ECs [Yamagishi S, 2007; Inagaki Y, 2003].  

 

Fig. 1. General features for diabetes induced neurovascular damage in diabetic retinopathy 
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AGEs disturb retinal microvascular homeostasis by overproduction of VEGF through the 
interaction with receptor of advanced glycation end products (RAGE) [Yamagishi S, 2002] 
and the AGE-RAGE axis could be involved in the development and progression of DR by 
eliciting pericyte apoptosis and dysfunction [Yamagishi S, 2009]. AGEs induces the 
activation of nuclear factor-B (NF-κB), with simultaneous increase in the ratio of Bcl-2/Bax, 
and activity of caspase-3, a key enzyme in the execution of apoptosis of pericytes 
[Yamagishi S, 2002; Denis U, 2002]. 

Recently, potential therapeutic role of pigment epithelial growth factor (PEDF) as 
angiostatic, neurotrophic, neuroprotective, antioxidative, and anti-inflammatory properties 
are widely being discussed and its potential therapeutic property could be exploited as a 
new option for the treatment of vascular complications in diabetic patients [Yamagishi S, 
2008]. Since PEDF levels are decreased in aqueous or vitreous humor in patients with PDR 
than control, suggesting that loss of PEDF in the eye may contribute to the pathogenesis of 
PDR [Tombran-Tink J, 2003; Yamagishi S, 2008]. PEDF inhibits the AGE-induced ROS 
generation and subsequently prevents apoptotic cell death [Yamagishi S, 2008] and also 
inhibits AGE-induced retinal vascular hyperpermeability in endothelial cells by suppressing 
nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase mediated ROS generation 
and subsequently VEGF expression [Sheikpranbabu S, 2010 (a), 2010 (b)]. The work by 
Yamagishi and his group have shown that injection of AGEs to normal rats increase RAGE 
and ICAM-1 expression that induced retinal leukostasis and hyperpermeability, however 
the process was blocked by simultaneous treatment with PEDF that completely inhibited 
superoxide generation and NF-κB activation in AGE-exposed endothelial cells [Yamagishi S, 
2006, 2007]. There is also a significant correlation between the vitreous AGE and VEGF 
levels and furthermore, both AGEs and VEGF levels (inversely) and PEDF (positively) are 
associated with the total anti-oxidant status in the vitreous fluid [Yokoi M, 2005, 2007]. All 
these observations support the concept that PEDF is a potential anti-oxidative agent and 
anti-inflammatory, that could block the AGE-VEGF axis, thereby may ameliorate the 
progression of PDR [Yamagishi S, 2009]. Many therapeutic drugs are also being used such as 
aminoguanidine, pyridoxamine and LR-90 that inhibit glycation reactions and or conversion of 
early products to AGEs [Abu El-Asrar AM, 2009]. However many such AGE formation 
inhibitors are still early in clinical trials.  

2.2 Protein Kinase C (PKC) 

Protein Kinase (PKCs) is a family of about 13 isoforms that are widely distributed in various 
mammalian tissues. In hyperglycemic state, some of the PKC isoforms are produced 
primarily from enhanced de novo synthesis of diacylglycerol (DAG) from glucose to glycerol 
3-phosphate, which act an upstream activator for various isoforms of PKCs, a family of 
serine/threonine kinases that mediates unique function [Inoguchi T, 1994]. The activities of 
the classic isoforms (PKC-ǂ, -ǃ1/2, and PKC-ǅ) are greatly enhanced by DAG and have been 
linked to vascular dysfunctions and pathogenesis of DR [Geraldes P, 2010]. Hyperglycemia 
primarily activates the ǃ and ǅ isoforms of PKC in cultured vascular cells [Koya D, 1997]. 
Excessive PKC activation underlies microvascular ischaemia, leakage, and angiogenesis in 
DR. Some of the changes due to PKCs activation include: increase in blood flow, basement 
membrane thickening, extracellular matrix expansion, vascular permeability, angiogenesis, 
apoptosis, leukocyte adhesion, and cytokine activation [Aiello LP, 2006; Avignon A, 2006; 
Das Evcimen N, 2007; Geraldes P, 2010]. 
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In the diabetic retina, hyperglycemia not only activates protein kinase C but also mitogen-
activated protein kinase (MAPK) to increase the expression of a unknown targets of PKC 
signaling, like SHP-1 (Src homology-2 domain–containing phosphatase-1), a protein tyrosine 
phosphatase. This signaling cascade leads to platelet-derived growth factor (PDGF) 
receptor-ǃ dephosphorylation and a reduction in downstream signaling from this receptor, 
resulting in pericyte apoptosis.[ Geraldes P, 2009]. 

PKC isoform selective inhibitors are likely new therapeutics, which can delay the onset or 

stop the progression of diabetic vascular disease. The highly selective PKCβ activation and 
its inhibition by ruboxistaurin mesylate have been most extensively studied [Davis MD, 
2009]. Clinical studies have shown that ruboxistaurin prevented loss of visual acuity in 
diabetic patients [Gálvez MI, 2009]. Thus, PKC activation involving several isoforms is likely 
to be responsible for some of the pathologies in diabetic retinopathy. 

2.3 Polyol pathway 

In diabetes, hyperglycemia activates polyol pathway, where a part of excess glucose are 
metabolized to sorbitol which is then converted to fructose [Lorenzi M, 2007]. Aldose 
reductase (AR) is the key and rate limiting enzyme in polyol pathway, and both galactose 
and glucose are substrates to this enzyme and compete with each other while being reduced 
to galactitol and sorbitol, respectively. Under physiological conditions glucose is poorly 
reduced by AR to sorbitol. By contrast, under diabetic condition the intracellular glucose 
levels are elevated, the polyol pathway of glucose metabolism becomes active and sorbitol is 
produced [Lorenzi M, 2007; Gabbay KH, 1973; Barba I, 2010]. AR, reduces glucose to sorbitol 
using NADPH as a cofactor, thereby reducing the NADPH level [B. Lass` egue, 2003] which 
results in less glutathione and increase in oxidative stress, a major factor in retinal damage 
[Chung SS, 2003; Brownlee M, 2002]. Retinas from diabetic patients with retinopathy 
showed high expression of AR protein in nerve fibers, ganglion cells and Müller cells than 
from nondiabetic individuals [Dagher Z, 2004]. Similarly excess accumulation of sorbitol has 
been found in various tissues including retina of diabetic animals and also in human retinas 
from nondiabetic eye donors exposed to high glucose similar to the level in nondiabetic rats 
retina incubated under identical conditions [Lorenzi M, 2007; Chung SS, 2005]. We also 
measured rate of polyols formation in ex vivo rat retinas that gave evidence of increased flux 
through the polyol pathway with increase in the duration of diabetes and with 
hyperglycemia [Ola MS, 2006]. The use of inhibitor of aldose reductase in many animal 
models has prevented the early activation of complement in the wall of retinal vessels, 
apoptosis of vascular pericytes and endothelial cells and the development of acellular 
capillaries [Dagher Z, 2004].  

Accumulated sorbitol within retina may cause osmotic stress and also the byproducts of 
polyol pathway, fructose-3-phosphtae and 3-deoxyglucosone are powerful glycosylating 
agents that enter in the formation of AGEs, which are an important factor for the 
pathogenecity of diabetic retinopathy. Biochemical consequences of polyol pathway 
activation as studied in the retina of experimentally diabetic rats show an increased 
nitrotyrosine [Obrosova IG, 2005], lipid peroxidation products and depletion of antioxidant 
enzymes [Obrosova IG, 2003].Thus, activation of the polyol pathway initiate and multiply 
several mechanisms of cellular damage by activation and interaction of aldose reductase and 
other pathogenetic factors such as formation of AGE, activation of oxidative-nitrosative 
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stress, PKC pathway and poly(ADP-ribose) polymerase that may further lead to initiation of 
inflammation and growth factor imbalances [Obrosova IG, 2011]. The use of fidarestat, an 
inhibitor of aldose reductase counteracts diabetes-associated retinal oxidative-nitrosative 
stress and poly (ADP-ribose) polymerase formation [Obrosova IG, 2005] supporting an 
important role for aldose reductase in diabetes and rationale for the development of aldose 
reductase inhibitors for counteraction of polyol pathway [Drel VR, 2008].  

2.4 Hexosamine pathway 

The hexosamine biosynthesis pathway is another hyperglycemic induced pathway which 
has been implicated in diabetic pathogenesis [Giacco F, 2010]. Increased expression of an 
enzyme called GFAT (glutamine: fructose-6 phosphate amidotransferase) causes the 
diversion of some of glycolytic metabolites such as fructose-6 phosphate to the hexosamine 
pathway producing UDP (uridine diphosphate)-N-acetylglucosamine which is a substrate 
used for the post-translational modification of intracellular factors including transcription 
factors [Nerlich AG, 1998; Brownlee M, 2005]. Du and coworkers have shown the role of 
hyperglycemia in activation of hexosamine pathway that increases the expression of 
plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-ǃ1 (TGF-ǃ1), 
which are deleterious for diabetic blood vessels and may contribute to the pathogenesis of 
diabetic complications [Du XL, 2000]. Hyperglycaemia results in increased glucosamines 
may cause insulin resistance in skeletal muscle and adipocytes and heamoglobin-A1c 
(HbA1c) which significantly correlates with basal GFAT activity in Type 2 diabetes [Yki-
Järvinen H, 1996; Buse MG, 2006]. Few studies suggest that hexosamine biosynthetic 
pathway may cause retinal neurodegeneration via either affecting the neuroprotective effect 
of insulin or through the induction of apoptosis possibly by altered glycosylation of proteins 
[Nakamura M, 2001].  

The ability of benfotiamine, a lipid soluble thiamine, to inhibit simultaneously the 
hexosamine pathway along with AGE formation and PKC pathways might be clinically 
useful in preventing the development and progression of diabetic pathogenesis arising due 
to hyperglycemia induced vascular damage [Hammes HP, 2003]. 

2.5.1 Poly (ADP-ribose) Polymerase (PARP) 

Poly (ADP-ribose) Polymerase (PARP) is a nuclear enzyme residing as an inactive form 
which gets activated after the cell receives the DNA damaging signals. Increased 
intracellular glucose generates increased ROS in the mitochondria, which induces DNA 
strand breaks, thereby activating PARP. Once activated, PARP depletes its substrate, NAD+ 

molecule, by breaking into nicotinic acid and ADP-ribose, slowing the rate of glycolysis and 
mitochondrial function. By inhibiting mitochondrial superoxide or ROS production with 
either MnSOD or UCP-1, prevented both modification of glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) by ADP-ribose and reduction of its activity by hyperglycemia [Du 
X, 2003]. PARP was found to decrease the GAPDH activity, activate the polyol and PKC 
pathways, increases intracellular AGE formation and activates hexosamine pathway flux 
which trigger the production of reactive oxygen and nitrogen species, playing a role in the 
pathogenesis of endothelial dysfunction and diabetic complications. PARP also potentiates 
NF-κB activation resulting in increase of the expression of NF-κB dependent genes such as 
ICAM-1, MCP-1 and TNF-ǂ with increase in leukostasis and producing greater oxidative 
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stress. PARP inhibition suppresses NF-κB activation and expression of adhesion molecule in 
cultured endothelial cells under high glucose [Zheng L, 2004]. More recently, Drel et al., 
demonstrated an increase in PARP activity in streptozotocin induced diabetic rats and 
PARP inhibitors reduced retinal oxidative-nitrosative stress, glial activation, and cell death 
in palmitate exposed pericytes and endothelial cells [Drel VR, 2009]. 

2.5.2 Peroxisome Proliferator Activator Receptor-γ (PPAR- γ) 

PPAR-Ǆ is a member of ligand-activated nuclear receptor superfamily, which plays an 

important role in carbohydrate metabolism, angiogenesis and inflammation [Malchiodi-

Albedi F, 2008; Yanagi Y, 2008]. PPAR-Ǆ is highly expressed in retinal cells, macropahges 

and other cell types that influence inflammation such as microglial cells, a resident 

macrophage present both in brain and retina, indicating that PPAR-Ǆ might modulate 

diabetes induced activation of these cells involved in inflammation and neurodegeneration 

[Bernardo A, 2006]. The recent work by Tawfik and group has shown the down regulation 

of PPAR-Ǆ expression in oxygen induced retinopathy in an experimental model of diabetes 

[Tawfik A, 2009]. In streptozotocin induced diabetic mice deficient in PPAR-Ǆ expression 

had increased leukostasis and leakage compared to wild type control mice, indicating that 

endogeneous PPAR-Ǆ and its activation by specific ligands is critical for inhibiting 

leukostasis and leakage in diabetic mice [Muranaka K, 2006]. PPAR-Ǆ also acts as agonist by 

inhibiting the VEGF-stimulated proliferation, migration and tube formation in PPAR-Ǆ 

expressing retinal endothelial cells [Murata T, 2000]. In diabetic patients, PPAR-Ǆ agonists 

have been shown to reduce several markers of inflammation such as serum levels of c-

reactive protein, interleukin-6 (IL-6), monocyte chemoattractant protein (MCP-1) and matrix 

metallo ptoteinase 9 (MMP-9) [Agarwal R, 2006]. In-vitro studies showed that PPAR-Ǆ 

agonists suppress activated NF-κB and decrease ROS generation in blood mononuclear cells 

[Aljada A, 2001]. Many such studies suggest the use of PPAR-Ǆ agonists in the treatment of 

diabetic retinopathy. 

2.6 Oxidative stress 

The retina is highly metabolic active tissue, making it susceptible to increased oxidative 

stress. Diabetes disturbs the cellular homeostasis in the normal retina by metabolic 

dysregulation of glucose, lipids, amino acids and other metabolites which causes oxidative 

stress, implicating in the in the pathogenesis of diabetic retinopathy. 

Oxidative stress is believed to play a pivotal role in the development of diabetic retinopathy 

by damaging retinal cells [Sato H, 2005]. However, the potential sources of ROS, is still 

unclear although a number of studies showed that high glucose and the diabetic state 

stimulate flux through the glycolytic pathway, increases cytosolic NADH, tissue lactate-to-

pyruvate ratios, and tricarboxylic acid cycle flux thereby producing excess level of ROS 

[Madsen-Bouterse SA, 2008; Ido Y, 1997; Obrosova IG, 2001]. ROS can be produced by 

activation of AGE, aldose reductase, hexosamine and PKC pathways induced by 

hyperglycemia, altered lipoprotein metabolism, excess level of excitatory amino acids and 

altered growth factor or cytokines/chemokines activities [Ola MS, 2006; Kanwar M, 2009]. 

Oxidative stress creates a vicious cycle of damage to macromolecules by amplifying the 

production of more ROS and activates other metabolic pathways that are detrimental to the 
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development of diabetic retinopathy. However, it is still unclear whether oxidative stress 

has a primary role in the pathogenesis of diabetic complication, occurs at an early stage in 

diabetes or it is a consequence of the tissue damage. Other sources of oxidative stress are the 

activation of NADPH oxidase which may increase superoxide, induction of xanthine 

oxidase, decreased tissue concentration of endogenous antioxidants such as glutathione and 

impaired activities of antioxidant defense enzymes such as superoxide dismutase (SOD) and 

catalase [Sonta T, 2004; Al-Shabrawey M, 2008; Madsen-Bouterse SA, 2008].  

To develop novel therapeutic strategies that specifically target ROS is actually desired for 

patients with PDR. The use of PEDF as a therapeutic option which has a anti-oxidative, anti-

angiogenic, neuroprotective and anti-inflammatory properties could be used to block 

pathways that leads the production of ROS [Yamagishi S, 2011]. Vitamin E has a protective 

role against lipid peroxidation, whereas its effects on protein and DNA oxidation are less 

pronounced [Pazdro R, 2010]. 

3. Hyperlipidaemia 

Increased level of plasma lipid has been found to be involved in the pathogenesis of 
microvascular disease [Ansquer JC, 2009]. High content of lipid in diabetic patients increases 
the risk of diabetic retinopathy and particularly diabetic macular edema [van Leiden HA, 
2002]. Still it is unclear how altered lipids level affect the onset and progression of diabetic 
retinopathy, may be through alterations in metabolic processes that alters concentration of 
serum compounds such as ketone bodies, acylcarnitine and oxidized fatty acids [Adibhatla 
RM, 2007]. There is a growing body of evidence suggest that serum lipid/fatty acid 
composition, concentration and tissue distribution contribute to the development and 
severity of this disease [Berry EM, 1997; Kowluru RA, 2007; Nagao K, 2008]. The 
contribution of lipids/fatty acid may be particularly important in the context of type I 
diabetes, where hypoglycemia and hyperglycemia co-exist. 

The major sources of fatty acids/lipids are from the modern diets (Western in particular) that 
have a high fat content [Hu FB, 2001]. Not only these diets have high caloric content, but also 
have high levels of saturated and trans-fatty acids (SFA), rather than the generally beneficial 
cis-monounsaturated or polyunsaturated fatty acids. Thus understanding the details of 
metabolic response of diabetic mice to Western diets may aid in understanding, how dietary 
lipid/fatty acids contribute to the complication of diabetes. The sensitivity of retina to fatty 
acid is well documented and thus understanding how diet affects the levels of these key 
metabolites will provide important new information about their role in DR [Giovanni JP, 
2005; Adibhatla RM, 2007]. Very long chain unsaturated fatty acids such as docosahexaenoic 
acids (DHA) are essential for retinal development and function, and free fatty acids in this 
class have been shown to be protective against age related macular degeneration in a mouse 
model [Connor KM, 2007]. Diet high in SFA and deficient in the precursors of important 
retinal fatty acids may adversely affect retinal function or increase the pathology. In the 
context of type I diabetes, a high fat diet may also increase oxidative stress [Kowluru RA, 2007] 
and contributes to the inflammatory response [Fox TE, 2006] as well as alter metabolism and 
metabolite pools in the retina [Antonetti DA, 2006]. 

ETDR (early treatment of diabetic retinopathy) study demonstrated that elevated serum 

lipid levels are associated with an increased risk of retinal hard exudates, accompanying 
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diabetic macular edema with an increased risk of visual impairment. The presence of hard 

exudates in diabetic retinopathy patients has been shown to be associated with increased 

serum cholesterol levels [Li J, 2009; Rodriguez-Fontal M, 2009]. The therapeutic use of lipid 

lowering drugs such as fibrates and cholesterol lowering drug, statins, may have great 

potential in the treatment of diabetic retinopathy. 

4. Renin Angiotensin System (RAS) 

Hypertension has been identified as a major risk factor of microvascular complications 

leading to small vessel dysfunction, manifesting the state of diabetic retinopathy. In patients 

with diabetic retinopathy, tight control of blood pressure delays the progression of the 

disease and growing evidence suggests that RAS plays an important role in the regulation of 

blood pressure. The RAS is an enzymatic cascade in which angiotensinogen is the precursor 

of the angiotensin peptides. The cascade begins with the conversion of the inactive form of 

renin, prorenin, to active renin [Satofuka S, 2009]. Renin converts angiotensinogen to 

angiotensin-1 (Ang I) which is further cleaved by angiotensin converting enzyme (ACE) to 

angiotensin-II (Ang II). Ang II is the main effector peptide of the RAS, acting primarily on 

two receptors, the angiotensin type I (AT-1) and angiotensin type 2 (AT22). Ang II is known 

to cause systemic and, local blood pressure via its constrictor effect by upregulation of 

angiotensin II type 1 receptor.  

A number of investigators studied components of retinal RAS (Ang I, Ang II, renin, ACE, 
AT-1, AT-2) in the retina and increased levels of prorenin, rennin and angiotensin II have 
been reported in the vitreous of patients with PDR and diabetic macular edema (DME) 
suggesting the involvement of RAS in pathogenesis of diabetic retinopathy [Noma H, 2009; 
Nagai N, 2005]. Ang II is also a growth factor, promoting differentiation, apoptosis and the 
deposition of extracellular matrix [Otani A, 2001; Suzuki Y, 2003]. Ang II potentiates 
deleterious effect of AGEs by inducing RAGE expression in hypertensive eye and can be 
blocked by telmisartan, an inhibitor of ACE, indicating a link between AGE-RAGE and the 
RAS which may be involved in the pathogenesis of diabetic retinopathy. 

Angiotensin induce cell growth, proliferation and the deposition of extracellular matrix 

proteins via stimulation of growth factors such as transforming growth factor (TGF-β), 
platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and 
connective tissue growth factor (CTGF) [Ruperez M, 2003]. There is evidence that the AT-2 
receptor also influences pathological angiogenesis in rats with oxygen induced retinopathy 
and blockade of the AT-2 receptor was shown to reduce retinal angiogenesis and expression 
of VEGF, VEGFR-2 and angiopoietin-2. In diabetic rats both AT-1 and AT-2 receptor 
blockade attenuate the rise in retinal VEGF expression [Zhang X, 2004]. Blockade of the RAS 
at the level of ACE inhibition or angiotensin reduces the rise in retinal VEGF and VEGFR-2 
that occurs in diabetic rats and transgenic rats with OIR and attenuates vascular pathology 
including vascular leakage, proliferation of endothelial cells, angiogenesis [Kim JH, 2009], 
leukostasis [Chen P, 2006] and inflammation [Egami K, 2003]. Recently, Nagai et al. studied 
the involvement of RAS and NF-kB pathway in diabetic induced retinal inflammation by 
upregulation of ICAM-1, MCP-1 and VEGF which are attenuated by AT-1 receptor blocker 
[Nagai N, 2007]. Therefore, RAS plays an important role in the pathogenesis of diabetic 
retinopathy and this has led a major interest in RAS inhibitors to prevent retinopathy. 
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5. Hormones 

Several hormones such as insulin, aldosterone, adrenomesdulin, growth hormone (GH) and 

endothelin have been found to be implicated in diabetic retinopathy [Wilkinson-Berka JL, 

2008]. Insulin stimulates anabolic functions and prevents the breakdown of skeletal muscle 

tissue. In diabetes, the loss of insulin signaling profoundly alters carbohydrate, lipids, amino 

acids and protein metabolism in a range of tissues including retina, altering nutrients pool 

and resulting in metabolic dysregulation that ultimately induces tissue damage. Also, the 

loss of insulin action in diabetic patients causes muscle loss [Serrarbassa PD, 2008]. 

Numerous studies towards understanding whether the role of insulin concise to its effect on 

blood level only or extend its role in maintaining retinal homoeostasis reveals the 

neurotrophic action of insulin [Meyer-Franke A, 1995] pointing to the possibilities that 

exogenous insulin have a role in the treatment of DR via its neurotrophic actions [Reiter CE, 

2006]. Few studies also describe the role of insulin in inflammatory processes [Fort PE, 

2009]. Data and research from the Diabetes Control and Complications Trial (DCCT, 

Diabetes, 1995), as a study by Barber et al. demonsonstrated that administration of 

exogenous insulin reduces the risk and progression of retinopathy [Barber AJ, 1998]. Use of 

several implantable hydrogels with degradable and thermoresponsive properties are widely 

being tested for slow and sustained local release of insulin to the retina [Misra GP, 2009; 

Kang Derwent JJ, 2008]. However further investigations of both efficiency and potency of 

such locally administered insulin needs a more indepth studies and research.  

Growth factors (GH) have been recently found in vitreous fluid of human, in which they 

regulate retinal function and provide markers of ocular dysfunction. The presence of GH in 

the human vitreous suggests that vitreous GH may be involved in the pathogenesis of 

various forms of ocular diseases including PDR [Harvey S, 2009; Malhotra C, 2010]. It has 

been shown that the low GH concentrations in the vitreous of diabetic patients may 

correlate with retinal neurodegeneration making it a marker to follow progression of 

diabetes [Ziaei M, 2009]. Systemic inhibition of GH or insulin like growth factor (IGF-1) or 

both, may have therapeutic potential in preventing some forms of retinopathy [Smith LE, 

1997]. Thus growth hormone may play a major role in the progression of diabetic 

retinopathy in combination with IGF-I and VEGF.  

6. Inflammation and diabetic retinopathy 

Many of the molecular and functional changes that are characteristic of inflammation have 

been detected in retinas from diabetic animals or humans, and in retinal cells under diabetic 

conditions which support the potential role of proinflammatory cytokines, chemokines 

and other inflammatory markers in DR [Adamis AP, 2008]. Joussen et al, have shown that 

CD18-/- and ICAM-1-/- mice have significantly fewer adherent leukocytes which is 

associated with fewer damaged endothelial cells and lesser vascular leakage [Joussen AM, 

2004]. Leukostasis is a condition that is characterized by abnormal intravascular leukocyte 

aggregation and clumping which play a major role in inflammatory process in patient 

with DR [Tamura H, 2005; Tadayoni R, 2003]. Leukostatsis has been shown to be 

increased in retinas of diabetic animals and contributes to the capillary nonperfusion and 

also suggests that increased leukocyte-endothelial cell adhesion and retinal leukostasis as 
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an early event associated with areas of vascular non-perfusion that leads to the 

development of diabetic retinopathy [Chibber R, 2007; Kern TS, 2007; Joussen AM, 2004; 

Ishida S, 2003].  

The role of proinflammatory transcription factors that are responsible for inflammatory 

process includes the production of proinflammatory mediators such as NF-κB, specificity 

protein 1 (Sp1), activator protein 1 (AP-1), PPARs and other members of the nuclear receptor 

superfamily [Rahman I, 2002; Yang SR, 2006 ]. A variety of diabetes induced metabolic 

factors including AGEs, PKC, polyols and oxidative stress may activate NF-κB and thereby 

release proinflammatory cytokines, chemokines and other inflammatory mediator proteins 

[Gao X, 2008 (a)]. 

Proinflammatory cytokines such as Interleukin-1ǃ (IL-1ǃ), Tumor necrosis Factor-ǂ (TNF-ǂ) 

and IL-6 were found to be significantly higher in vitreous of PDR than in control patient and 

their role in retinal pathogenesis leading to PDR have been characterized. Increased levels of 

IL-1ǃ, is detected in vitreous fluid of the patients with PDR [Demircan N, 2006; Sato T, 2009] 

and in the retina from diabetic rats [Vincent JA, 2007] suggesting that IL-1ǃ might have an 

important role in the pathogenesis of diabetic retinopathy. Using the IL-1 receptor 

antagonist (IL-1Ra) which causes a blockade of IL-1 activity reduces tissue inflammation in 

the type 2 diabetic rat [Ehses JA, 2009]. TNF-ǂ is a potent proinflammatory cytokine that is 

involved in various immunologic and pathologic reactions including upregulation of 

proliferation, differentiation and cell death [Gao X, 2007, 2008 (b)]. The data provides the 

evidence of the activation of the local synthesis of TNF-ǂ along with other cytokines such as 

Endothelin-1 (ET-1) and IL-6 in PDR [Adamiec-Mroczek J, 2010]. Furthermore, the role of 

several cell adhesion molecules such as soluble vascular cell adhesion protein-1 (sVCAM) 

and soluble ICAM have been shown to correlate with the vitreous VCAM-1 and TNF-ǂ 

concentration [Adamiec-Mroczek J, 2009; Adamiec-Mroczek J, 2008]. In addition, increased 

level of TNF-ǂ in diabetic plasma has been shown to induce leukocyte cell adhesion [Ben-

Mahmud BM, 2004]. The role TNFǂ is critical for the later complications and progression of 

blood retinal barrier (BRB) breakdown. In diabetes induced TNF-ǂ knockout mice the BRB 

breakdown was completely suppressed showing that TNFǂ is essential for progression BRB 

breakdown and would be a good therapeutic target to prevent BRB breakdown, retinal 

leukostasis, and apoptosis associated with DR [Huang H, 2011]. Increased level of IL-6 is 

detected in vitreous fluid of the patients with PDR and DME [Noma H, 2009; Murugeswari 

P, 2008]. Serum level of IL-6 in patients with both type 1 and type 2 diabetes were also found 

to be increased [Myśliwiec M, 2008; Bertoni AG, 2010]. Levels of soluble IL-6 receptor in the 

vitreous and serum of patients with PDR was found to be significantly higher than control 

[Kawashima M, 2007]. Increased level of IL-6 was found to be related to retinal vascular 

permeability and the severity of DME [Noma H, 2009; Noma H, 2010]. Up-regulation of IL-6 

increase leukocyte-endothelial interaction which contributes to breakdown of BRB in 

diabetes [Adamis AP, 2008]. 

Chemokines such as MCP-1, IP-10, IL-8 and stromal derived factor-1 (SDF-1) have been also 
found to play a potential role in pathogenesis of diabetic retinopathy [Murugeswari P, 2008; 
Yoshimura T, 2009]. MCP-1 which is a strong activator of macrophages and monocytes, 
have been shown to be involved in the pathogenesis of DR where vitreous MCP-1 levels are 
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increased in PDR compared with those in controls [Maier R, 2008; Hernández C, 2005]. The 
angiogenic effect of MCP-1 was completely inhibited by a VEGF inhibitor, suggesting that 
MCP-1 induced angiogenesis is mediated through pathways involving VEGF [Hong KH, 
2004].The increased MCP-1 expression contributes to the development of neovascularization 
and fibrosis in proliferative vitreoretinal disorders [Yoshida S, 2003]. Abu El-Asrar and 
others have found increased levels of IP-10 in the vitreous humor samples from eyes with 
PVR and PDR patients [Abu El-Asrar AM, 2006;Maier R, 2008] and IP-10 expression under 
both in vitro and in vivo conditions has been shown to be induced by VEGF, indicating a 
potent angiogenesis factor in PDR [Maier R, 2008]. VEGF induced augmentation of IP-10 
expression is a major mechanism underlying its proinflammatory function. In age-related 
macular degeneration, IP-10 is also marked as early biomarkers to understand the 
regulation and neovascular response [Mo FM, 2010]. The work by Liu shows that diabetic 
tears exhibited elevated levels of pro-angiogenic cytokines such as IP-10 and MCP-1 than 
anti-angiogenic cytokines [Liu J, 2010]. IL-8 is angiogenic and inflammatory mediator which 
is elevated in vitreous of patients with PDR in comparison to control subjects [Murugeswari 
P, 2008; Petrovic MG, 2007]. It has been shown that IL-8 is produced by endothelial and glial 
cells in the retina with ischemic angiogenesis [Yoshida A, 1998] where it could act as a 
marker of ischaemic inflammatory reaction, and play a role in deteriorating visual acuity by 
DR progression [Petrovič MG, 2010]. 

In humans, vitreous SDF-1 concentration increases as proliferative diabetic retinopathy 

progresses [Butler JM, 2005; Sonmez K, 2008]. Abu El-Asrar and coworkers have shown that 

expression of SDF-1 and its receoptor CXCR4 in PDR epiretinal membranes [Abu El-Asrar 

AM, 2006; Abu El-Asrar AM, 2011]. SDF-1 is upregulated in ischemic tissue establishing an 

SDF-1 gradient favoring recruitment of EPCs from peripheral blood to sites of ischemia, 

thereby accelerating neovascularization. The intravitreal injection of bevacizumab and 

triamcinolone in patient with PDR potentially diminishes the level of SDF-1 that in turn 

eliminate diffuse macular edema, and cause regression of active aberrant neovascularization 

(NV) suggesting the possible role of SDF-1 in the pathogenesis of the adverse visual 

consequences of DR [Arimura N, 2009; Brooks HL Jr, 2004]. 

The role of various growth factors such as epidermal growth factor (EGF), VEGF, basic 

FGF, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-

stimulating factor (GM-CSF) in the retinal pathogenesis have been evaluated. 

Schallenberg and his group have shown that the hematopoietic cytokine, GM-CSF and its 

receptor are expressed within rat and human retina where GM-CSF reduced apoptosis 

and protected injured retinal ganglion cells by activating the ERK1/2 pathway 

[Schallenberg M, 2009].  

7. Neuronal damage in diabetic retinopathy 

7.1 Neurodegeneration 

A pathogenic mechanism of nerve damage in diabetic retinopathy begins shortly after the 
onset of diabetes. Several clinical tools such as multifocal electroretinography (ERG), flash 
ERG, contrast sensitivity, color vision, and short-wavelength automated perimetry, all 
detect neuronal dysfunction at early stages of diabetes [Han Y, 2004; Bearse MA, 2004; 
Fletcher EL, 2007]. Occurrence of many functional changes in the retina can be identified 
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before the development of vascular pathology, suggesting that they result from a direct 
effect of diabetes on the neural retina [Lieth E, 2004]. Diabetic mice develop capillary lesion 
that are characteristic of the early stages of DR and cause pathologic progression resulting 
due to neuronal loss or upregulation of glial fibrillary acidic protein (GFAP) in retinal glial 
cells [Feit-Leichman RA, 2005]. Van Dijk and his group has shown the gradual and selective 
thinning of mean ganglion cell/inner plexiform retinal layer in type 1 diabetic patients [van 
Dijk HW, 2009] which further supports the concept that early DR includes a 
neurodegenerative sign [van Dijk HW, 2010; Peng PH, 2009]. Retinal glial cells that play 
important roles in maintaining the normal function of the retina, after the onset of diabetes 
the normal function of these cells are altered and compromised. They are known to become 
gliotic displaying altered potassium siphoning, GABA uptake, glutamate excitoxicity and 
are also known to express several modulators of angiogenic factors. In addition to metabolic 
stress, there are many growth factors involved in process of neuronal death in DR 
suggesting further investigation into the mechanism of neurodegenaration [Whitmire W, 
2011]. 

7.2 Apoptosis  

Even before the emergence of the concept of programmed cell death (PCD)/apoptosis in 
diabetes, studies have identified a pyknotic bodies in histological sections of the retina of 
people with diabetes [Bloodworth JM Jr, 1962; Wolter JR, 1962]. Diabetes causes chronic loss 
of inner retinal neurons by increasing the frequency of apoptosis as studied in 
streptozotocin-induced diabetic mice [Martin PM, 2004]. Many findings suggest that the 
visual loss associated with DR could be associated not only to an early phase of 
photoreceptor loss but also to later microangiopathy [Park SH, 2003], so both retinal 
neurodegeneration and retinal microangiopathy should be considered as sign and onset of 
DR [Ning X, 2004]. Caspases, the enzymes involved in apoptosis are also elevated in retinas 
of diabetic rats thus making them as markers for apoptosis [Mohr S, 2002]. The role of pro-
inflammatory cytokine (IL-1ǃ) and caspase-1 in diabetes-induced mice have shown that 
caspase-1/IL-1ǃ signaling pathways play an important role in degeneration of retinal 
capillaries [Vincent JA, 2007] and its inhibition might represent a new strategy to inhibit 
capillary degeneration in diabetic retinopathy [Mohr S, 2008]. The increased expression of 
apoptotic mediators, Bcl-2 in the vascular endothelium inhibits the diabetes-induced 
degeneration of retinal capillaries and superoxide generation [Kern TS, 2010; Susnow N, 
2009]. 

Several studies also demonstrate that the expression of Bax (Bcl-2 associate X protein), pro-
apoptotic protein is associated with degenerative diseases and are increased in retinas of 
diabetic rats, confirming the increase in apoptosis within the inner retina as a component of 
DR [Podesta F, 2000]. Involvement of TNF-ǂ and AGE, in retinal pericyte apoptosis through 
activation of the pro-apoptotic transcription factor Forkhead box O1 (FOXO1) establishes the 
possible mechanism of apoptosis in DR [Alikhani M, 2010]. 

7.3 Glutamate excitotoxicity 

Glutamate is the excitatory neurotransmitter in the retina, but it is neurotoxic when 
present in excessive amounts. Crucial role in the disruption of glutamate homeostasis in 
diabetic retina is due to decrease in the ability of Müller cells to remove the excess amount 
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of glutamate from the extracellular space causing excitotoxicity leading to 
neurodegeneration [Li Q, 2002; Diederen RM, 2006]. Extracellular glutamate is transported 
into Müller cells by glutamate transporters (GLAST) and amidated by glutamine 
synthetase (GS) to the non-toxic amino acid, glutamine. Yu XH and coworkers have shown 
a linear correlation between time-dependent reduction in GS expression and the time 
course of diabetic retinopathy, making GS as a possible biomarker for evaluating the 
severity of diabetic retinopathy [Yu XH, 2009]. At postsynaptic neurons, two major classes 
of receptors referred to as amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors and N-methyl-D-aspartate (NMDA) are activated by excess glutamate. The 
major causes for cell death following activation of NMDA receptors are the influx of 
calcium and sodium into cells, the generation of free radicals linked to the formation of 
AGEs and/or advanced lipoxidation endproducts (ALEs) as well as defects in the 
mitochondrial respiratory chain. Thus, glutamate may play an important role in the 
progression of disease and treatment by glutamate inhibitors may decrease neurotoxicity 
[Ola MS, 2011].  

7.4 Role of neurotrophic factors 

Neurotrophic factors play important roles in regulating growth, maintenance and survival 

of neurons [Mattson MP, 2004]. The role of brain derived neurotrophic factors (BDNF) in 

metabolism is supported by studies on BDNF-deficient mice which develop obesity and 

hyperphagia in early adulthood [Kernie SG, 2000] whereas, when it administered to normal 

mice or rats, it has no effect on blood glucose levels, indicating that BDNF exerts its effects 

by enhancing insulin sensitivity [Ono M, 1997] and activates several signaling pathways 

including phosphatidylinositol-3 kinase/Akt [Cotman CW, 2005]. Plasma levels of BDNF 

were decreased in humans with type 2 diabetes accompany impaired glucose metabolism 

[Krabbe KS, 2007] and act like a biomarkers of insulin resistance [Fujinami A, 2008]. 

Recently to understand the mechanism of action of BDNF under normal and hypoxic 

condition in Müller cells, BDNF treated cells increased glutamate uptake and also up 

regulated glutamine synthetase (GS) during hypoxia which may underlie neuroprotective 

effects of BDNF [Min D, 2011]. The therapeutic merit of BDNF was also evaluated by 

injecting it in diabetic mice, which not only ameliorated glucose metabolism [Yamanaka M, 

2008 (a)] but also prevented the development of diabetes in pre-diabetic mice [Yamanaka M, 

2008 (b)]. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain 

derived neurotrophic factor (BDNF) is shown to rescue photoreceptors in retinal explants, 

conveying its neuroprotective effects [Azadi S, 2007]. 

Several studies have shown an elevated level of Nerve Growth Factor (NGF), another potent 

neurotrophic factor, which contributes to neurogenic inflammation [Barhwal K, 2008]. NGF 

level was significantly elevated in the PDR samples as compared to controls, indicating that 

NGF might be a potent angiogenic factor in the pathogenesis of PDR [Chalam KV, 2003]. 

Another neurotrophic includes Basic Fibroblast Growth Factor (bFGF), which is important 

for survival and maturation of both glial cells and neurons and play an important role in 

regeneration after neural injury [Bikfalvi A, 1997; Molteni R, 2001]. Study found an increase 

in bFGF concentration in vitreous samples from patients with PDR [Sivalingam A, 1990] 

revealing that bFGF is a potent angiogenic factor playing an important role in the 
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pathogenesis of neovascularization in DR [Wong CG, 2001]. Studies also suggest that bFGF 

have a therapeutic value for diabetic neuropathy when injected with cross-linked gelatin 

hydrogel in streptozotocin-induced diabetic rats [Nakae M, 2006].  

Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth 

factor-ǃ (TGF-ǃ)-related neurotrophic factor family. GDNF promotes photoreceptor survival 

during retinal degeneration mediated by interaction of the neurotrophic factors via 

receptors in Müller glial cells that in turn release secondary factors that act directly to rescue 

photoreceptors [Harada C, 2003].  

8. Conclusions 

As described in this chapter, extensive research progress has been made in investigating 

the pathophysiology of the disease, however, due to non availability of human retinal 

samples and also due to lack of proper animal model of DR, the exact molecular 

mechanism has not been elucidated, making therapeutic a difficult task. Therefore, 

research using large diabetic animal models which develop clinical signs of retinopathy 

are needed which may provide a correlation of the systemic metabolic profiles and retinal 

pathology with human studies to better understand the exact molecules and pathway(s) 

involved in DR. In addition, neurodegeneration and loss of neuronal functions as early 

signs of DR have been detected which may implicate later in vascular pathology. Precise 

molecular studies are required towards understanding the neurovascular damage in DR. 

These insights would be helpful in better understanding of the biochemical and molecular 

changes especially early in the diabetic retina for effective therapies towards prevention 

and amelioration of DR.  
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