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1. Introduction 

There is a large interest in organizational knowledge in the context of transition to 
knowledge economy, where knowledge is viewed as the main source of sustainable 
competitive advantage. Although knowledge management (KM) is primarily concerned 
with how people and organizations use their knowledge assets, one way to do this 
efficiently is to employ technology to facilitate the KM processes (Alavi, 1999). Consistent 
with the growing interest in organizational knowledge and KM, many ICT researchers have 
been promoting a class of information systems, referred to as Knowledge Management 
Systems (KMSs). The objective of a KMS is to support knowledge capturing, categorizing, 
storing, searching, distributing and application within organizations. Technical advances in 
computers’ processing and storage capacity, together with linking these computers into 
networks of distributed nodes, have greatly increased the organizations’ capability to 
deliver goods and services. Along with these capabilities we need quality, accuracy, 
responsiveness and capacity. Particular topics of interest on KMSs include among others: 
Organizational knowledge management approaches, Information management challenges, 
Service Oriented Architecture (SOA), software environments, Semantic web services 
environments, Information modeling and the representation of semantics, Intelligent 
software tools and services, Information management systems in practice.  
Semantics is the study of meaning. Semantic Technologies (STs) are distributed software 
technologies that make the meaning more explicit, principally so that it can be understood 
by computers. New Semantic Technologies (NSTs) will dramatically influence enterprise’s 
architecture and the engineering of new systems and infrastructure capabilities, so that they 
act as disruptive technologies (so innovative that they have the potential to completely change 
the way we do business) on capturing and sharing next generation knowledge among 
workers and organizations in the new economy. NSTs are tools that represent meanings, 
associations, theories, and know-how about the application of things, separately from data 
and program codes. These systems must be designed as distributed systems, with the ability 
to combine different knowledge-based techniques (with the purpose of acquiring and 
processing information and knowledge), based on approximate reasoning methods (Müller, 
1996; Lin, 2008). NSTs will better emulate the human decision-making process, also 
characterized by imprecise and time-varying knowledge (Knight & Passino, 1987; Barachini, 
1990; Dubois et al., 1991; Qian, 1992; Nebel & Bäckström, 1994). Time restrictions are not 
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excessive in common distributed applications. Critical time reasoning problems may occur 
in case of faulty operations and overloading. The reasoning depth developed for such 
systems is still poor (Iqbal et al., 2007; Durán &Aguilo, 2008; Marco & Marley, 2009).  
The aim of this paper is to present a Knowledge Management System based on Fuzzy Logic 
(KMSFL), a real-time expert system to meet the challenges of the dynamic environment. The 
main feature of our integrated shell KMSFL is that it models and integrates the temporal 
relationships between the dynamic of the evolution of a technological process with some 
fuzzy inferential methods, using a knowledge model for control, embedded within the 
expert system’s operational knowledge base. As important contributions of this work, we 
have integrated some elements of control theory, fuzzy and temporal logics and discrete 
event systems to increase the decision making capacity (Bylander, 1994; Kim & Lee, 2003; 
Davis, 2006). We also focused particularly on time, in its many facets (real-time, algorithmic 
complexity and reasoning over time), by using a time meta-equation. The closed-loop of our 
KMSFL starts from an initial state and allows planning a number of states to achieve a 
desired final state. At the end of its operation, the control expert system provides the human 
decider the possible actions, under specific conditions of the problem. All bibliographic 
sources are important, because each of the mentioned authors has used a series of concepts that we 
have integrated in KMSFL.  

2. Related work 

There is a need for incorporating aspects of time and imprecision into real-time KMSs, 
considering appropriate semantic foundations (Bobrowitz, 1993; Chen & Parng, 1996; Lau et 
al. 2008). In reality, it is a common practice for organizations to use one or more of the 
following (technical) systems and concepts to support their KM efforts (Binney, 2001; 
Wenger, 2001; Mazilescu, 2009b): Knowledge Maps, Taxonomies, Enterprise search engine, 
e-collaboration tools, Information repositories, Expert Systems, Data Mining / Knowledge 
Discovery systems, Case-based Reasoning / Question-Answering tools (for Helpdesk 
and/or Contact Centers), E-Learning and/or Learning Management Systems (LMS), 
Enterprise Information Portal, Intellectual Capital (IC) measurement tools. Expert systems 
are examples of relevant knowledge-based methodologies (as Knowledge Capture Systems) 
that have much to contribute to KMSs, because they manipulate knowledge in order to 
implement various tasks (Tsui, 2002; Wang & Lin, 2007; Schwartz, 2006; Omar, 2008). KMSs 
based on Agent Technology try to provide computers the ability to perform various 
intelligent tasks, for which their human users resort to their own knowledge and to 
collective intelligence. Currently, KMSs is a highly economically important field due to their 
ability of approaching new sets of problems, different from those tackled by the classical 
systems, such as: perception, decision making, planning, diagnosis, natural language 
comprehension, enterprise KM, learning, web service interfaces, etc. Conventional expert 
system shells are too slow for real-time environments, and their inference process is 
boundless. We need a reactive and interruptible system that can assimilate data and 
asynchronous events, and present the operator with a reasoned opinion in a timely manner. 
Only speed is not enough (Stankovic & Ramamritham, 1995; Lassaigne & Rougemont, 1996). 
While practitioners and researchers continue their efforts in designing and building complex 
intelligent systems, they became conscious of the fact that uncertainty is present not only in 
human knowledge. Allowing a certain degree of uncertainty in describing complex systems 
is perhaps the most significant way to simplify them (Zadeh, 1983; Dubois & Prade, 1992; 
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Luger & Stubblefield, 1993). Different types of uncertainty can be rigorously characterized 
and investigated in the context of fuzzy sets theory (Zadeh, 1978; Marco & Marley, 2009). 
Thus, the ability to operate in an uncertain or partially known environment is one of the 
basic performances of any real-time intelligent system (Passino & Antsaklis, 1989). Real-time 
calculation is an area of intense research, since the correctness of a system’s functioning in a 
dynamic and distributed environment depends not only on its operating logic, but also on 
the temporal aspects involved. Such systems include various solutions of systems, subject to 
various complex time restrictions, with different granularity levels of the time. Temporal 
knowledge is an essential element for many applications (planning, process control, 
dynamic situations control). An intelligent system must have reasoning capabilities that take 
into account a series of events that may occur in the process: interruptions, limitations on 
processing time, synchronous and asynchronous nature of the new information occurrence. 
Considering time, we must highlight two complementary aspects: temporal information 
management and formalization of the temporal reasoning over time and in real-time 
(Lunardhi & Passino, 1995). Some approaches are based on numerical models and other on 
symbolic representations of time. Reasoning under real-time restrictions has specific 
characteristics. Real-time operations often involve a temporal reasoning, but conversely this 
is not always true. The control involves a close relation between the process and the control 
system, which must react to the occurring events. The act of intelligent control is interposed 
between the process and the various physical entities incorporated in the process’ 
superstructure. In this context, the control system has certain Artificial Intelligence (AI) 
features, if, in the presence of minimal guidance information from a human expert, it can 
perform complex actions in response to the events coming from outside. In this case, 
intelligence includes the ability to accept abstract task specifications in a general form of 
goals/restrictions and to produce reasonable actions, which are consistent with the 
specifications (Mazilescu, 2009a). In any real-time system like KMSFL, there is a 
fundamental compromise between action and reasoning. We must notice that, logically, the 
human decider is firmly included in the intelligent control system, which works with certain 
specific knowledge. The inferential system’s logical results can address differently the 
human operator, the different execution elements or the interfaces with other systems and 
users. Designing and testing the inferential subsystem for KMSFL, require the existence of 
certain scientific methods for knowledge acquisition, which, unfortunately, is a 
heterogeneous, difficult and time consuming process. For this reason, the synthesis of the 
knowledge management model incorporating human experience was iterative, during a 
considerably long time, being necessary the indirect development of some methods and 
environments for testing and simulating some crisp and fuzzy control models, permanently 
adjusting the inferential subsystem’s parameters. For the KMSFL synthesis we adapted and 
aggregated some AI techniques (possibility theory, symbolic logics, expert systems, etc.) 
with certain models for technological process control (planning, discrete event systems, 
qualitative analysis, etc.), closer to human decider’s natural way of understanding and 
operating. This objective was achieved starting from the essential predictability feature that 
the designed KMSFL must have. 
In this respect, we effectively used the notion of microscopic predictability (adopting the 

Rete compiling technique for the fuzzy processing) and of macroscopic predictability 

(through KMSFL specification, design and implementation, as a discrete event system). We 

also introduced logical events. We analyzed and extended the knowledge compilation 

technique, in order to improve the filtering stage, for the case of fuzzy knowledge (Ghallab, 
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1988). Furthermore, were used the fuzzy rules along with the fuzzy variables and constants, 

in the form of possibility distributions, as a basic representation mode for elementary fuzzy 

knowledge. Choosing between probabilities or possibility distributions and fuzzy sets is not 

easy, since for finite spaces, the probabilities may have a greater flexibility, in terms of 

representativeness, but an increased computational complexity. For these reasons, for the 

KMSFL we have chosen as imprecision measures the possibility measure  and the 

necessity measure N (Dubois & Prade, 1992). For the fuzzy variables linking, it was 

necessary to solve the composition of the fuzzy substitutions, which depends on the 

compatibility of the fuzzy sets involved in the antecedent of the rules. The necessity 

measure and the GMP scheme are not independent and the choice of the thresholds for the 

possibility and necessity measures must be consistent with the chosen inference scheme. 

This choice is particularly important at all imprecision processing levels within the KMSFL 

for fuzzy filtering, fuzzy unification, fuzzy conflicts solving, and determination of similar 

states (Mazilescu, 2011). 
We conducted a qualitative analysis of KMSFL using the concepts introduced by (Passino & 
Antsaklis, 1994). For this, we justified the control system design, in terms of its closed-loop 
performances, using the traditional concepts of Lyapunov stability of the dynamic systems, 
applied particularly for KMSLF. Integrating the features of the fuzzy rules base compilation, 
designing an appropriate inference engine corresponding to the time meta-equation and the 
corresponding logical justifications are the basic elements in designing the KMSFL. A 
particularly important issue in designing a control expert system is how the operational 
knowledge can be acquired and loaded in the knowledge base. In this case, we integrated a 
model of the process, as a part of the knowledge base. KMSFL was designed so that to 
coordinate the use of process outputs and reference inputs, to decide how should be 
synthesized the inferential process’ results. In relation to the integration of the expert system 
within the control expert system’s structure, its results can be used by the human decider in 
decision-making, or can be applied directly on the process.  
It was necessary to highlight the knowledge representation in accordance with this system’s 
formalism, to present the basic features of the compiled structure of fuzzy knowledge, the 
KMSFL parameters, and also to define other logical and computational features of the 
system. KMSFL-specific knowledge is represented in 1st order logic, aiming the knowledge 
factorization. We described the design of the fuzzy knowledge compiler, which includes 
two major parts: static discrimination structure (unification tree, fuzzy unification tree) and 
variable linking network (algorithms for generating the variable linking network for 
different rule topologies, fuzzy unification and propagation of the parameters during 
inferential process) and the system’s inference engine algorithm. To highlight the KMSFL 
applicability, is presented an extended case study (both for the crisp and the fuzzy case). 
The flexible manufacturing system is composed of many subsystems connected so that they 
can transmit different amounts of material by means of bond wires, directed according to a 
given structure schema. For the crisp case, we used the same control model also tested with 
the G2 generator (Mazilescu, 2009b). This case allowed us to synthesize the fuzzy control 
model, because of the serious limitations underlined in the tests. KMSFL was implemented 
in C++. Simulation results have demonstrated the developed system’s ability to deal 
properly with the allocation problem. In addition, we tested a series of parametric 
dependencies for fuzzy inferential process embedded in the KMSFL engine. 

The solution of a control intelligent system as a multi-agent system, presented in Section 3, 
has the quality of emphasizing the place of our fuzzy expert system within a distributed 
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control structure, as well as the integration of other heterogeneous agents. Section 4 defines 
KMSFL, designed and implemented by the author as a logical system with discrete logical 
events resulting from the inferential process. In this section we introduced the time meta-
equation (in which each term has its variable part properly defined– according to 
relationship 1) and the specific model for the KMSFL as a control expert system (according 
to relationship 2). A very important problem is the way in which operational knowledge on 
the process control can be acquired and loaded into the knowledge base. For this, we built a 
model of the process, as a part of the knowledge base. The KMSFL was designed to 
coordinate the use of process outputs and reference input(s) and to choose the inferential 
process’ results that will be synthesized. In relation to expert system’s integration into the 
control structure, KMSFL results can be used by the human decider in decision-making, or 
can be applied directly on the process. Section 5 describes the knowledge representation in 
accordance with this system’s formalism, the basic features of the structure of compiled 
fuzzy knowledge, and KMSFL system parameters. We have developed and implemented a 
fuzzy knowledge compiler, similar to the classic Rete compiler, which includes two major 
parts: static discrimination structure (unification tree, unification fuzzy tree) and the 
variables linking network (algorithms for generating the variables linking network for 
different topologies of rules, fuzzy unification and spreading of parameters during 
inferential process). To highlight the applicability of KMSFL, we present in Section 6 an 
extended case study relative to a balancing problem for a flexible manufacturing system 
(both for classical and fuzzy case), formulated as follows: the flexible manufacturing system 
consists of a set of components (machines, subsystems, etc.) connected so that they can 
transfer different amounts (parts) of material through bond wires, directed according to a 
given structure scheme. Such a system can be represented through a graph (M, A), where 
M={1, ..., N} is the set of identical components in its structure and AM×M. Assume that (M, 
A) is strongly connected, i.e. for () iM there is a path from i to () jM and moreover, if (i, 
j)A, ij). Each component has a quantity of material that can be processed. We assume that 
any quantity of component i, denoted by xi0, for xi *N  or xi *R (for the fuzzy case), can 
be partially transferred to component j. The control expert system for this problem area 
must be able to transfer the whole amounts of material (discrete case) or fractions of the 
quantity xi (continuous case) from component i to another component j, if there exists (i, 
j)A. For the crisp case, we used the same control model also tested with G2 generator. This 
case allowed us to synthesize the fuzzy control model, due to the serious limitations 
outlined in its previously conducted crisp tests. Finally, section 7, concludes and introduces 
the future research work in order to synthesize KMSs more integrated into the NSTs. 

3. KMSFL in a distributed control structure 

KMSFL, as a control agent, is an expert system that integrates imprecise knowledge. The 
reasoning specific to this agent is performed by the inference engine based on fuzzy logic. 
This agent’s architecture follows the general characteristics of any agent like in (Jennings & 
Wittig, 1992). However, there are several new elements which we emphasize in fig. 1. 
It is noted that planning and coordination module (PCio) comprises three levels: the level of 
evaluation of the global situation, the meta-planning level and the level of coordination of 
cooperation. Its main functions are dedicated to monitoring the activity of other agents, 
choosing the communication protocol, analyzing whether to respond to other agents and 
detecting global conflicts. The major difference between the monitoring function of PCio and 
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the monitor is that the monitor supervises the activity of its own system based on fuzzy 
knowledge. The monitor is the only link between the system based on imprecise knowledge 
and the ISICMAio interface, and implicitly between the system based on imprecise 
knowledge and the whole multi-agent control system. Its basic role is of remote control of its 
own system based on fuzzy logic, meaning that the monitor will communicate through 
messages, because it is not a part of the AI system based on imprecise knowledge. Decisions 
concerning the control of the intelligent control system based on fuzzy knowledge are made 
at the level of Monitorio, whose main functions are: retrieving information from various 
sources, granting access to MSio, evaluating the local situation, updating the local 
information, describing high-level goals, planning the decisions and actions. In order to 
eliminate the possible conflicts between these functions and the ones of the AI system based 
on imprecise knowledge, Monitorio invokes the low-level behaviors stored in MSio. 
 

 

Fig. 1. KMSFL in a multi-agent structure 

Fuzzy logic is a generalization of bivalent logic, replacing the discreet nature of the latter 
with one of continuous nature. While in bivalent logic, in order to demonstrate the validity 
of formulas, are used methods that use up all the possibilities of evaluation according to the 
interpretation function, in fuzzy logic this is no longer possible. A special feature of human 
reasoning is the effective use of natural language, even in the logical reasoning. According 
to this observation, we may conclude that the mathematical model of how a man thinks 
during a control process and at a certain level of decision synthesis may be based on fuzzy 
logic combined with modal temporal attributes (Mazilescu, 2010). Approximate reasoning 
theory, as a methodology for exploiting imprecise knowledge relative to the control expert 
system’s state (denoted xCESXCES and represented in the form of possibility distributions), 
allows, by means of logical inferences, to obtain rigorous characterizations of the values of 
linguistic variables within the structure of state xCES, according to the control goal 
(Mazilescu, 2009a). The set XCES can be defined as a Cartesian product Xb×Xint×X, where 
xb= ]x,x,x[ b

k

b
2

b
1 1

 tXb. For example, the component b
1x indicates, through its values, the 
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potential command events for the process, b
ix U(i), i=2, ..., k1, where U(i) are the universes of 

discourse attached to linguistic variables x(i) (chosen to characterize the state xESXb×Xint), 
Xint is the set of internal states of the inference engine and X is the set of states of the process. 
Thus, we can model KMSFL and the corresponding reasoning as a possibilistic expert 
system, that allows us to characterize a state xCESXCES based on imprecise information 
relative to the state xCES, i.e. with a subset EXCES, for which xCESE. We assume that there 
may be components of state xCES, defined as predicates that have firm truth values. 
Moreover, in this case is met the condition of membership of truth values to the interval 
[0,1] and thus we can work only with interval [0,1]. The control expert system manages 
knowledge specific to a state of the closed-loop system xCESXCES, characterized at time k by 

CES
kx = (xk, ES

kx ). The class of possibilistic expert systems can encompass also temporal 
reasoning. In this case, the rules base consists no longer of relationships, but of multi-
dimensional possibility distributions to which are attached temporal descriptors, modeled 
in turn by means of possibility distributions, in order to attach the fuzzy statements to 
temporal features. Attaching the fuzzy temporal descriptors is specific to AI techniques, 
while in terms of control, this corresponds to fuzzifying the moments of time in the theory 
of discrete event systems. 

4. Defining KMSFL as a discrete system based on logical events 

Temporal aspects are important in areas such as planning, qualitative simulation, cognitive 

modeling, and natural language semantics. There are two basic approaches to the 

integration of temporal aspects in terms of AI logical systems: i) first-order logic can be 

directly used to formulate statements that contain symbols for time positions; ii) first-order 

logic can be extended with modal operators. Introducing the temporal aspects aims at 

designing the means for solving the meta-equation: 

 time = complexity  real_time  temporal_reasoning       (1) 

which was proposed and used for integrating time in an application of AI, dedicated to 

technological process control. This meta-equation will be particularly applied for the 

inference engine developed, which is able to exploit knowledge specific to control 

applications. Operator  is an aggregation symbolic meta-operator, which can be 

instantiated in different classes of specific operators. Relation 1 can be viewed as a meta-

equation as it contains several variable elements, such as: i) the first term has as variable the 

time component defined in the algorithms’ analysis, and the compiled knowledge structure 

specific to KMSFL system tries to improve exactly this value; ii) the second term includes the 

time variable in the form of the length of the control expert system’s inferential chain, which 

depends on how the events occur; iii) the last term was included to highlight the possibility 

of adding temporal attributes, which was not clearly necessary for KMSFL system, at least 

not for the case study solved. We define all elements describing KMSFL as a Control Expert 

System (CES). Defining the model for KMSFL as a closed-loop system is important, if we 

consider some of its features (Passino & Antsaklis, 1994). At this level, we emphasize a series 

of features of the control expert system, the elements of qualitative analysis of the control 

expert system, as well as a crisp version of a simplified example, to demonstrate the 

theoretical aspects. 

Definition The control expert system (CES) is a formal system, defined as: 
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 CES =(XCES, ECES, CES
ef , CES

e , gCES, CES
ox , CES

vE )                           (2) 

where: XCES=X×XES is the set of states xCES of the control expert system 
ECES=Eu CES

dE Eo, with CES
dE =Ed ES

rE UI. Sets Eu, Ed, ES
rE and UI are the input events of 

the control expert system and Eo the output events of the process; 
gCES: XCESP(Eu CES

dE )-{} is the activation function of the CES; 
CES
ef : XCESXCES, eP(Eu CES

dE )-{} is the set of state transition functions; 
CES
e : XCESEo, eP(Eu CES

dE )-{} is the output function; CES
ox XCES is the initial state; 

CES
vE ECES, where ECES is the set of all trajectories (finite or not) of events in closed loop, 

which can be generated by the control expert system, based on gCES and CES
ef , and CES

vE is the 
set of all trajectories of allowed events in closed loop (a subset of trajectories of events that 
may result, knowing the trajectories of events of the process and of the expert system, 
connected together). Thus, Ev and CES

vE are viewed as some restrictions in the structure of 
CES
vE . Based on the trajectories of allowed events, we can highlight additional restrictions 

which are possible sequences of events within the closed loop system. The output events of 
fuzzy expert system are considered, in this case, logical events. These issues are particularly 
important for the future possibility of a qualitative analysis of the closed-loop system 
(admissibility, cyclical behavior and stability). Conventional knowledge-based systems can 
ignore the dynamic behavior of the control expert system caused by user inputs and process 
outputs. Many expert systems’ evaluation is done either through difficult simulations, or by 
comparing its behavior with the one of human experts. The fuzzy control expert system is 
like a planner, because it can predict a number of states in the evolution of the process. An 
expert system (fig. 2) should be designed to remove unwanted behaviors of closed-loop 
system. Initial state CES

ox is necessary both from theoretical and practical considerations. 
From the theoretical point of view, it is the beginning of a formal system, in which 
derivation relations will be the inferential processes, and from the practical point of view, it 
is necessary to define the initial state of the control expert system in order to reduce possible 
unwanted combinations of states that could unduly complicate the model. If the initial state 
of the closed loop system is known, the state transitions can be restricted to the acceptable 
states of the system. Once specified the initial state CES

ox =(x0,
ES
ox ) for the state CES

kx =(xk, ES
kx ) 

at time k, we get, based on the definition of activation function gCES( CES
kx ), the following 

form: 

 gCES( CES
kx )=[gES ( ES

kx ) ES
rE UI]ES( ES

kx )g(xk)HC][g(xk)Ed],  (3) 

where:  

i. gES( ES
kx ) ES

rE UI=(P( ES
1E R)\{}) ES

rE UI is the set of input and internal events of 
the expert system, allowed for the state ES

kx ;  
ii. ES( ES

kx )g(xk)HC= ES
0E P(EuEd)HC is the set of command input events of the 

process, allowed for the state ES
kx ;  

iii. g(xk)Ed=(P(EuEd)\{})Ed is the set of input disturbance events of the process, 
allowed in the current state xk of the process.  

The input events allowed in the process for the control expert system in closed-loop are the 
events allowed both by the current state of the process xk or by the states ES

kx , and the events 
caused by input disturbances of the process, allowed in the state xk. The expert system must 
control only the activation of the events of type EuHC. It is built in such a way that its 
transition from a current state in a future state is achieved in response to any output event of 
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the process. Notice that the control expert system’s dynamic must be properly defined, even 
for the particular case in which the expert system also comprises imprecise knowledge, and 
its reasoning must reflect the temporal characteristics, specific to process (according to 
relationship 3). Assume that ekgCES( CES

kx ) is an allowed event of the control expert system 
in closed loop, currently in the state CES

kx =(xk, ES
kx ). Under these conditions, if the events 

ES
rk

e gES( ES
kx ) ES

rE UI, eukES( ES
kx )g(xk)HC and edkg(xk)Ed, then ek can be defined 

in various ways. These depend on the type of input command events of the process, or on 
the type of disturbance events, which may occur simultaneously. There is thus a finite 
number of ways i0N*, so that for () i{1, ..., i0}, 

i
ke  can be properly defined. 

Corresponding to each type of event i
ke , i=1,...,io, then:  

CES

ei
k

f ( CES
kx )= CES

1kx  , where CES
1kx  =(xk+1, 

ES
1kx  ). 

 

 

Fig. 2. The basic architecture for KMSFL 

5. The characteristics of KMSFL as a fuzzy expert system 

Knowledge representation and exploitation within an expert system are rather conflicting 
characteristics, whereas the increase in knowledge representation power reduces system’s 
efficiency and increases the difficulty of developing it. Many AI problems are difficult to 
solve from the computational point of view. An observation which may help to reduce this 
complexity is that often these problems have the following property: inputs can be divided 
into two parts, of which, a part is relatively constant long time, compared with the second 
part. In such situations, seems right to make some changes in the constant part, in order to 
reduce the time of obtaining the solution for the AI problem, if the second part varies, but is 
known at certain moments of time. Transformations made in advance are called pre-
processing or knowledge compilation. Using variables in an expert system allows 
knowledge factorization. First order predicates language facilitates expressing complex 
knowledge rigorously, imposing appropriate reasoning techniques. Definition of certain 
propagation and inference procedures for real-time expert systems, involves the 
development of powerful reasoning mechanisms, as well as adapting the control algorithms 
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to the state spaces, which are often very large. KMSFL is conceptually based on all the 
properties summarized above and consists of the compiled fuzzy rules base (control model) 
and the inference engine. In order to highlight the characteristics of this system, the 
following elements must be described: i) The formalism, specifying the types of knowledge 
supported by the system. Are presented, in order, the fuzzy knowledge syntax and the basic 
features of the compiled linguistic models, system’s parameters, the elementary fuzzy 
filtering, the compatibility of possibility distributions for GMP inference scheme; ii) Compiler 
properties, which include the static structural discrimination component of the fuzzy state 
xCES, the fuzzy unification tree as the basic element of the structure of compiled fuzzy 
knowledge (aimed at checking the consistency of fuzzy substitutions), the algorithm that 
generates the variables linking network. 
Network’s terminal nodes correspond bijectively to the fuzzy rules; iii) Inference engine 
algorithm based on fuzzy logic, which includes techniques for reasoning in the presence of 
compiled imprecise knowledge. 
As a first step in the practical implementation of an expert system, knowledge 

representation aims to describe the problem domain as a model that includes relational 

entities and symbols, according to an appropriate formalism. The types of knowledge 

accepted by KMSFL are: i) variables (symbols always preceded by ‘?’, such as ?x, ?y, and 

which will occur only in rules); ii) atomic constants (numbers or strings); iii) possibility 

distributions or fuzzy constants (symbols always preceded by the character ‘*’ and used to 

represent imprecision); iv) logical operators. Possibility distribution can take any form. This 

complexity can cause a number of difficulties for the application of possibility theory. In 

practice, when the variable is numeric, it appears that a trapezoidal possibility distribution 

on continuous referential is well suited. It can be represented through four parameters (g, d, 

, ). The trapezoidal form of possibility distributions is preserved in most of the inference 

and calculation operations. All the fuzzy constants used in knowledge representation and 

modeling, for the synthesis of fuzzy reasoning algorithms, are represented by trapezoidal 

possibility distributions, such as gd, , 0, called T-numbers. Fuzzy constants can occur 

both in facts and rules, and are always associated to fuzzy sets (T-numbers) through constfaz 

function. Within KMSFL, we can equate the fuzzy set to a fuzzy constant. Undefined fuzzy 

constants are not allowed. 

A fuzzy constant has always a value corresponding to a continuous, trapezoidal and 

normalized fuzzy set. Using possibility distributions provides an unified framework for 

representing imprecision and uncertainty. Parameter  is used to measure fuzzy sets’ 

uncertainty (01). If a fuzzy set is uncertain, parameter  must be defined in constfaz 

function through a list (uncertain ). We admit that a completely uncertain fuzzy set (=1) 

has no effect on system’s behavior. In contrast to facts, a motive is a structured list in which 

variables may occur. This indicates the presence of variables, atomic constants and of fuzzy 

constants within motive’s structure. In addition, the motives may occur in both the 

conditional part and in rules’ conclusion. Uncertainty is allowed in the conditional part and 

in the consequent of GMP inference scheme, only if a particular linguistic model requires it. 

In order to increase the knowledge representation capacity, are introduced predicates that 

appear as motives in the left side of the rules. We emphasize the presence, within the 

knowledge model, of predicates F(a), which are flags that emulate human reasoning 

sequences, in order to achieve the control expert system’s goal. The knowledge 

representation formalism for KMSFL is: 
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Antecedent   :: = condition* 
Condition     :: = motive | motive motive_index | predicate 
motive_index  :: =<atomic constant> 
motive   :: = expression in which are allowed the three types of data; 
predicate :: = (predicate_sym predicate_arg predicate_arg) 
predicate_arg :: = predicate | atomic constant | fuzzy constant | variable 

predicate_sym :: = {=*, *<, >*, *, *N} 
consequent :: = conclusion* 
conclusion :: = motive | motive motive_index | predicate | procedure 

Predicates =*, *< and >* have binary values, while *, *N are fuzzy predicates. If fuzzy 
linguistic models are introduced in a expert system, it becomes more complex due to 
considering the fuzzy processing at all system’s levels, such as: fuzzy filtering, imprecise 
sets compatibility, fuzzy unification, calculation of the inferred conclusion together with the 
calculation of spreading for the parameters that manage imprecision, selection of strategies 
in which are naturally embedded also elements of factual knowledge imprecision. The fuzzy 
pattern-matching aims to determine the instantiations set of the causes. It is stronger than 
the classic one due to its capacity of processing the fuzzy knowledge. It is a matter of 
evaluating the degree of this pattern-matching between a fuzzy cause and a fuzzy fact (the 
fact filters more or less the cause). In order to put a fact in relation with a cause, we can 
build up a recursive algorithm, comparing the two associated trees step by step. It follows 
beyond doubt that the knowledge pattern-matching is the basic operation. Generally 
speaking, it is a matter of pattern-matching between a model P and a data D, to which we 

attach µP respectively D (µP(u) is the degree of the compatibility between the value u and 

the meaning of P, while D(u) is the degree of possibility that the value u represents the 
value of the attribute which describes an object modeled through the data D). The degree of 

compatibility has the membership function P|D defined through the extension principle. 
Though it translates relevant information related to the degree of the pattern matching 
between P and D, it is difficult to use µP|D. We prefer two scalar measures in order  

to evaluate the compatibility: (P,D) and N(P,D). Let us consider the most simple case  

((*f, *m*c),*c'), where *m is the cause of the rule, *m*c, *f is the fact, each of them being 
expressed by fuzzy sets. In order to deduce the conclusion *c', it is to be known if the fact is 
compatible with the rule condition. We can try to calculate GMP for the inferred conclusion 
*c'. The theory of possibilities provides two measures, which are very useful to evaluate the 
compatibility of the fuzzy sets:  

(*m,*f)=supumin(µ*m(u), µ*f(u)), N(*m,*f)=1-(¬*m, *f)=infumax(1-µ*m(u), µ*f(u)) 

Generally, it is much complicated to calculate N than . A simple calculating method is 
based on the separation of the complementary of *m. Analyzing the form of ¬*m, we find 
that this can be divided into two fuzzy sets Ls and Ld. The fuzzy set  

Ls=(-,gm-m,-,m) is always on the left of *m, while Ld=(dn+m,,m,) is always on the 

right of *m, and Ls Ld=. It follows that ¬*m=max(Ls, Ld). We get:  

N(*m,*f)=1-(¬*m,*f)=1-(max(Ls,Ld),*f)=1-max((Ls,*f),(Ld,*f)). 

Having  and N, defined and calculated this way, we distinguish several classes of 

decreasing compatibility. Even if the measures  and N correctly estimate the degree of 
compatibility between the fuzzy constants, these measures cannot be used directly to infer 
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the conclusions in the case of an inference engine based on GMP. If the measures  and N 
satisfy some thresholds, then the pattern matching is successful. To calculate GMP we need 

the parameters  and K, in the following form:  

=(*m,*f)=max(µ*f(gm-m),µ*f(dm-m)), K=(*m,*f)=min(µ*m(gf),µ*m(df)) 

At the end of the fuzzy condition/fact pattern-matching stage for the cause C and the fact F, 
if the degrees of the pattern matching satisfy the chosen thresholds and if there is a 

consistent substitution , then the pattern matching is successful. The substitution  is a 
particular case when the variables in the causes can be associated to some fuzzy constants 

present in the facts. If the instance C, obtained through the application of the fuzzy 

substitution  to the condition C, is not totally equal with F, i.e. the expression F=C is not 

always true, then  is fuzzy. We can take into account the problem of finding the proper 

thresholds for measures  and N in order to determine the facts that do not filter the causes 
at all. The choice is not made randomly, as between the two parameters of GMP it must be a 
tight link. Because of all these remarks and in order to correctly solve the problem, there are 

the links between , N, , K. 
Fuzzy variables linking. The fuzzy condition/fact pattern matching is the first stage in the 
running of the inference engine, which takes into account the imprecision. After this stage, it 
results a lot of instantiations of the causes. Each motive’s instantiation will be associated to a 

fuzzy substitution and to the four parameters , N, , K. The second stage is represented by 
the linking of the variables and it aims to determine the consistent instantiations at the level 
of rules’ full conditions.  
Fuzzy unification. The purpose of the fuzzy unification is to verify the consistency of the 
fuzzy substitutions, where the variables can be associated with fuzzy sets. Let's consider a 

rule (*D *H ?x) (B ?x)(act(C *E ?x)). In the antecedent of the rule there are two causes C1= 
(*D *H ?x) and C2=(B ?x). We suppose the facts to be specified: F1=(*d1 *h1 *w) and F2=(B *r). 
For certain chosen fuzzy sets, the fuzzy constant *d1 filters *D and *h1 filters *H. The only 

result for the pattern-matching between C2 and the fact F2 is the fuzzy substitution =(* /?x) 
and the pattern-matching parameters. If all the parameters satisfy the designed thresholds, 
then the facts unify totally with the causes. After the fuzzy condition/fact pattern-matching, 

we obtained two fuzzy substitutions: ={*w/?x} and  = {*r/?x}, where *w and *r are fuzzy 
sets. The fuzzy unification contains, on the one hand, the evaluation of the consistency 
degree of the fuzzy substitutions on a certain norm and, on the other hand, the fuzzy 
substitutions composition.  
Let us consider a rule R with k conditions, under the form COND(R)=(C1,...,Ck). After the 
fuzzy condition/fact pattern-matching, if each condition Ci, filters a fact Fi, then there are a 

fuzzy substitution I, so that Fi=iCi, and the four parameters i, Ni, i, Ki. Let us consider a 
variable ?v within the rule; assume that it appears n times in the conditional part of the rule. 
?vi is used for the representation of ith of the variable ?v. In this case, all the occurrences of 
the variable ?v within the global condition of the rule can be represented through the 
following list: {?v1, ?v2,...,?vn}. Each ?vi will be certainly associated with a term ti, which can 
be an atomic or a fuzzy constant, denoted: {t1/?v1, t2/?v2,..., tn/?vn}. All the various variables 
present within a rule are independent. Each variable can occur in a rule several times. Each 
occurrence of the variable is independent of the other occurrences. Nearly all expert systems 
preserve this hypothesis. The fuzzy unification consists of: i) The consistency verification of 

the element in list {t1/?v1, t2/?v2,...tn/?vn}{tp/?vp}, as against a certain norm; ii) The 
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composition of the fuzzy substitutions. In order to eliminate any confusion, ?vp is used to 
represent the variable ?v after the fuzzy unification. Finally, the fuzzy unification can be 
represented through the following expression: {t1/?v1, t2/?v2,...tn/?vn} {tp/?vp}, where tp is 
going to be calculated. Let us consider a simple case. If ti is a fuzzy set, i.e. ti=*t(i), (i=1,2), 
then the symbolic or numerical comparison is no longer sufficient to evaluate the 
consistency between *t(1) and *t(2). When ?v1 and ?v2 are independent, the cartesian product 
*t(1)×*t(2) is defined by: 

*t(1)×*t(2)={((x1, x2), µ*t(1)×*t(2)(x1,x2)/x1X1, x2X2, X1, X2R}, µ*t(1)×*t(2)(x1,x2) 
=min(µ*t(1)(x1)*t(2)(x2)) 

The compatibility between *t(1) and *t(2) can only be clarified through a reasonable 
explanation of the criterion relative to which compatibility is judged. In the classic situation, 
the criterion is given by the equality relation. It is quite natural to introduce appropriate 
criteria for fuzzy unification in both stages: to check the consistency and to make up the 
fuzzy substitutions. These criteria should be more general; the equality relation can be 
defined through a binary fuzzy relation R. Defining the fuzzy set *t(1) and the relation R, we 

obtain µR*t(1)(x2), defined by:  

µR*t(1)(x2)=supu min(µR(x1,x2),µ*t(1)(x1)) 

Since we know both the relation R and the Cartesian product (t(1)×*t(2), we can use 

measures  and N to estimate the consistency of fuzzy sets *t(1) and *t(2) relative to R. Thus 
we have:  

(R,*t(1)×*t(2)) = supx1,x2min(µR(x1,x2),µ*t(1)(x1),µ*t(2)(x2)),  

N(R, *t(1)×*t(2)) =infx1,x2max(µR(x1, x2), 1-µ*t(1)(x1),1-µ*t(2)(x2)) 

It is interesting to note that the fuzzy binary relation R, can be interpreted in various ways. 
The equality relation may be regarded as a particular case of relation R. A last important 
problem is the parameters spreading. At the end of the elementary fuzzy pattern-matching 
stage, if the pattern-matching degree satisfies the chosen threshold and if there is a 

consistent substitution , then the pattern-matching process is successful. The fuzzy 
condition–fact pattern-matching process is the first stage, part of the overall cycle of the 
inference engine, able to take into consideration the imprecision. Each instance of a fuzzy 

motive is associated with a fuzzy substitution  and with the parameters , N, , K. 
Following all these remarks and in order to correctly solve the problem, there are the links 

between , N, , K. As already shown, GMP verifies the following proposition: 

Proposition i) K = 0   = 1; K > 0  < 1; ii) The conclusion *c' inferred through GMP is 

uncertain: (*c'=1)   = 1; iii) N (*m, *f) > 0  
The second stage in the pattern-matching process, on a global scale of the fuzzy rules, is the 
fuzzy linking of variables. This conducts the fuzzy unification, whose main purpose is to 
verify the consistency of fuzzy substitutes, for which we have already presented a series of 
theoretical results. Using the tests present in the linking nodes, we can build a dynamic tree 
that allows adding or suppressing facts. Within each test node of this tree, the values of the 
variables are tested. If two facts go on the same path, then it is possible that the two facts are 
consistent. We may use this tree in order to avoid combination challenges. This tree is called 
linking tree and it is associated to the linking nodes. It has some difficulties for the 
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discrimination of the fuzzy sets within its linking nodes, since certain parts (leaves) of the 
tree may contain multiple fuzzy facts.  
That is why the efficiency of this solution decreases, being similar to the use of the 
unification tree, in order to discriminate the fuzzy motives. The main inefficiency factor is 
related to the disorder of the fuzzy facts in the tree leaves.  
In order to improve this situation, we may use the characteristics of the fuzzy sets in order 
to sort out the facts. This approach was used to adapt the unification tree for the processing 
of fuzzy motives. The major difference that appears between the two situations is the fact 
that the unification tree is a static tree, i.e. the discriminator motives do not change, whereas 
the linking tree is dynamic, the discriminator facts being updated during the functioning 
period of the inference engine.  

The fuzzy variables linking process consists of the fuzzy unification and the spreading of , 

N, , K parameters, evaluated on a global scale of the antecedent of the rule. We will further 
insist on the parameters spreading process, obtained at the end of the filtering stage, in the 

consequent of the rules. The  possibility and N necessity degrees represent the extent to 
which a rule is satisfied in the current state within the facts base. During the selection stage, 
the system selects the rule that satisfies best these conditions in order to activate it, and the 

parameters  and K serve to applying the GMP inference scheme. In the conclusion part of a 
rule there may be multiple motives (some may be added, others may be deleted, once the 
rule has been activated).  

6. Case study 

For the synthesis of fuzzy knowledge control model for the flexible production system, we 
considered the loads as fuzzy T-numbers, expressed linguistically as "around" or 
"approximately", and we introduced intermediate variables in the knowledge model’s 
structure, such as: global balance degree bd (for the whole flexible manufacturing system) 
with the fuzzy values satisfactory and unsatisfactory, partial balance degrees pbdi, i = 1, ..., 5 
(per groups of subsystems), corresponding to certain situations unresolved in the crisp 
model, and fuzzy variables d56, d42, d13, d21, d43 and d35, whose values can be the fuzzy T-
numbers small, large or zero. The currently used partial balance degrees have as imprecise 
characteristics the linguistic values good and unsatisfactory (unsatisfactory value, in this case, 
is similar, in fuzzy number, to the one associated with the linguistic value unsatisfactory of 
the global balance degree). It was also useful to introduce knowledge in the form of 
imprecise facts of type (X1 X2 X3 X4 ?vq), (X1 X2 X4 ?vq), (X3 X4 X5 X6 ?vq), (X1 X3 X4 X5 X6 
?vq), (X2 X4 X5 X6 ?vq), ensuring that the balancing is continuously accomplished, partially 
and gradually, and a number of meta-rules in which these facts are present. They will be 
activated chained, as (R13, R14) (R13, R15) (R16, R17) (R16, R24) (R18, R19) (R18, R25) (R20, 
R21) (R22, R23)) and support the synthesis of fuzzy decision. We may notice that, for this 
control model, we followed the stages for the synthesis of a linguistic model, in terms of 
knowledge acquisition process, and the knowledge and meta-knowledge are represented 
according to KMSFL formalism.  
Exploiting this model requires calculating the fuzzy unification and the partial conclusion 
inferred through the GMP scheme, the call of procedures in rules’ consequent and of a 
control module, dynamically updating the priorities of the rules according to the current 
imprecision of all knowledge involved at some point in the decision synthesis, chaining the 
fuzzy meta-rules and demonstrating the global asymptotically stable behavior of the closed-
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loop system. Intermediate fuzzy variables pbd1, pbd2, pbd3, pbd4 and pbd5 are degrees of 
partial balance between groups of subsystems (1, 2, 3, 4), (1, 2, 4), (3, 4, 5, 6), (1, 3, 4, 5, 6) and 
(2, 4, 5, 6). These variables were used to eliminate the unbalance situations obtained in the 
crisp case, these being the control meta-knowledge of the expert in the field. They depend 
essentially on the structure of flexible manufacturing system and are actually imprecise 
knowledge used in decision synthesis. For each inference cycle it must calculate all the 
corresponding fuzzy values and generate the updated facts, thus, the current state of the 
control system.  
The fuzzy control model has the following properties: i) variable pbd1 appears in rules 14 
and 15, and its value is recalculated after the pattern-matching between its current fuzzy 
value and the motive (pbd1 *b) by applying the GMP inference scheme. The same 
calculation method is applied to other partial balance degrees; ii) for meta-rules 14, 16, 18, 
20 and 22 fuzzy unification is applied differently, requiring the calculation of the resulting 
fuzzy value for the variable ?vq from the consequent; iii) variable ?vq, together with 
variables pbd1, pbd2, pbd3, pbd4 and pbd5, allow chaining the fuzzy rules while the 
control model is used by the KMSFL inference engine; iv) within the structure of meta-
rules 13-25 are present fuzzy variables d56, d35, d13, d21, d43, d42, representing the fuzzy 
instant differences between machine loads, referenced by the corresponding indexes, in 
the appropriate order. The values of these variables are fuzzy numbers tp *ma(2 pbdj 1 1), 
j=1 ... 5 and tp *mi(0 1 0 1). Fuzzy value *b is generated similarly. To clarify how the fuzzy 
model for flexible production system is initialized and exploited, follow the 
Algorithm_KMSFL, in which are also presented some functional aspects of the control 
expert system.  
This algorithm associated with the inference subsystem within the KMSFL was developed in 
close relation with fuzzy knowledge representation formalism. In addition, we tested the 
knowledge model using the generator G2 (only for the crisp case) to highlight some of the 
advantages and limitations of the knowledge management model and of the inference 
engine. However, fuzzy processing is specific to the expert system developed, this being the 
major objective of this work. 

Algorithm_KMSFL 

1. Enter the initial fuzzy loads 
0i

x ;  
2. Calculate the expected average value 

0c  = 
6

1i


0i
x

 
/6, the fuzzy distances  

0i
d =

0i
x - 

oc and the initial balance degree bd0 = 
6,...,1

max
i

{
0i

d }; 
3. Generate sets *s (the characteristics of fuzzy sets *s are checked in tests, in relation to the 

initial loads), *n = tp(3 bd0 2 2) (d and  are checked in tests in relation to the initial 
loads) and the facts (bd *n) and (bd *s);  

4. Initialize xb=(xb1,xb2) where xb1=0 and dim(xb1)=12, xb2 contains the initial facts 
attached to all linguistic variables involved in the control model, such as:  
((X1 ?x), (X2 ?y), (X3 ?z), (X4 ?v), (X5 ?w), (X6 ?), (X1 X2 X3 X4 ?vq), (X1 X2 X4 ?vq), 
(X3 X4 X5 X6 ?vq), (X1 X3 X4 X5 X6 ?vq), (X2 X4 X5 X6 ?vq), (X1 X2 X4 ?vq), (X12b 1), 
(bd *n), (CFS *zero), (pbd1 *b), (d56 *ma), (d35 *ma), (pbd2 *b), (d13 *ma), (pbd3 *b), (d21 
*ma), (pbd4 *b), (d42 *ma), (pbd5 *b), (d43 *ma), to evaluate the effect of all fuzzy 
variables that appear in structure of this state component of KMSFL. As initial fact 
attached to the reason (bd *n), is launched the fact (bd *v0), where *v0 is generated as 
a fuzzy set around the value of bd0, of the form (constfaz *v0(tp bd0-1 bd0+1 2 2)). Is 
also initialized xint = 0. 
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5. In the consequent of rules R1-R10, along with the deduction of fact (xib i), 
corresponding to a procedure call, is attached the calculation of the balance degree bd 
with its new fuzzy value, i.e. is generated the new fact (bd *vk), k  1. Value *vk can 
filter or not *n or *s, and properly the fuzzy values of partial balance degrees and the 
fuzzy distances between the physically interconnected subsystems; 

6. If the inference engine stops on a different event than on the one corresponding to the 
activation and execution of rule 11, then are recalculated the fuzzy 
differences

0kiki
cxd  , along with determining the subsystem (i = 1, ... 6) and the 

corresponding rule j (j = 1 ,..., 25) to be activated, to satisfy the balancing goal at the 
current time, by using meta-rules (R13-R25) or by launching the control module. 

For each inference cycle must calculate all the corresponding fuzzy values, and generate the 
updated facts and thus the current state of the control system.  

Implementation results for KMSFL 

Test A. This test aims to prove the functioning of the KMSFL prototype for a first set of 
knowledge. Fuzzy values involved in testing the control model by using the corresponding 
inference engine are: (constfaz *s(tp 0 1 0 1)), (constfaz *n(tp 2  1 1)), (constfaz *ma(tp 2  1 1)), 
(constfaz *mi(tp 0 1 0 1)), (constfaz *b(tp 0 1 0 1)), =1, = 0, x1 = x2=x3=(199.5 200.5 1 1), 
x4=x5=x6=(-0.5 0.5 1 1), “around x0”=(x0-0.5 x0+0.5 x0-1.5 x0+1.5)=“x0”, xb1=0. We get the 
following results: the first complete execution of the inference engine implies a number of 118 
inferences and the values of subsystems’ loads and of the global balance degree are: 
x1=“101.33”=(100.83 101.83 0.5 0.5), x2=“102.60”=(101.56 102.56 0.5 0.5), x3=“101.33”=(100.83 
101.83 0.5 0.5), x4=“102.04”=(101.54 102.54 0.5 0.5), x5=“100.61”=(100.11 101.11 0.5 0.5), 
x6=“92.627”=(92.127 93.127 0.5 0.5), bd=(6.87 7.87 0.5 0.5). In this case, the balance degree 
bd="7.3731" is an unsatisfactory value, which means that the balancing problem is not 
completely solved (fig. 3, fig.4). For inferences 42, 43, 54, 55, 58, 59, 70, 71, 82, 83, 86, 87, 95, 96, 
100, 101, 103, 104, 105, 106 are activated meta-rules 16, 17, 13, 14, 13, 15, 16, 17, 13, 14.13, 15, 16, 
17, 16, 17, 13, 14, 13, 15 respectively, the rest of the inferences activating the basic rules R1-R10. 
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Fig. 3. The evolution of balance degree bd 

 

 

Fig. 4. The loads evolution for test A 
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After resetting the inference engine with the values previously obtained, we get a total of 18 
inferences, whose result is presented in Table 1 (SC=Set of Conflicts, ER=Executed rule): 
 

No. x1 x2 x3 x4 x5 x6 xb1 xb1 SCk ER Event bd 

0 101.33 102.01 101.33 102.00 100.61 92.627 0 00000000000 7 7 e43 7.3575 

1 101.33 102.01 101.67 101.67 100.61 92.627 7 00000010000 4 4 e35 7.3575 

2 101.33 102.01 101.14 101.67 101.14 92.627 4 00010010000 8 8 e56 7.3575 

3 101.33 102.01 101.14 101.67 96.883 96.883 8 00000011000 4 4 e35 3.1018 

4 101.33 102.01 99.011 101.67 99.011 96.883 4 00010010000 2 2 e13 3.1018 

5 100.17 102.01 100.17 101.67 99.011 96.883 2 01010010000 3 3 e21 3.1018 

6 101.09 101.09 100.17 101.67 99.011 96.883 3 00100010000 13 13  3.1018 

7 101.09 101.09 100.17 101.67 99.011 96.883 3 00100010000 13,14 14 [e56] 3.1018 

8 101.09 101.09 100.17 101.67 97.947 97.947 8 00000011000 13 13  2.0378 

9 101.09 101.09 100.17 101.67 97.947 97.947 8 00000011000 13,15 15 [e35] 2.0378 

10 101.09 101.09 99.058 101.67 99.058 97.947 4 00010010000 2 2 e13 2.0378 

11 100.07 101.09 100.07 101.67 99.058 97.947 2 01010010000 3 3 e21 2.0378 

12 100.58 100.58 100.07 101.67 99.058 97.947 3 00100010000 6 6 e42 2.0378 

13 100.58 101.12 100.07 101.12 99.058 97.947 6 00000100000 7 7 e43 2.0378 

14 100.58 101.12 100.60 100.60 99.058 97.947 7 00000010000 4 4 e35 2.0378 

15 100.58 101.12 99.829 100.60 99.829 97.947 4 00010010000 13 13  2.0378 

16 100.58 101.12 99.829 100.60 99.829 97.947 4 00010010000 13,14 14 [e56] 2.0378 

17 100.58 101.12 99.829 100.60 98.888 98.888 8 00000011000  0 ee00 1.1394 

Table 1. Inference process results for test A (case a2) 

 

 

Fig. 5. The fuzzy final balance degree 

We notice that, at the end of inference engine execution, in accordance with the reset, the 
balance degree is bd="1.1394", which corresponds to linguistic value satisfactory (fig. 5) 

because (*s, "bd")=1 and N(*s, "bd")=0246>0. The balance degree is satisfactory but the 
fuzzy differences between the final values of subsystems’ loads and the expected average 
value are not similar (i.e. they are not all around zero). This is proved by the inference 
engine stop after the execution of meta-rule 14 (after which it cannot infer anything) and not 
of rule 11, as is conceived the control model. This is due to improper choice of the fuzzy set 
for the linguistic value unsatisfactory. 

Test B. The purpose of this test is to highlight that, for other initial subsystems’ loads, the 
control model achieves its intended objective, in terms of balance degree (which must be 
satisfactory at the end of the execution), and that the final loads are similar to the expected 
average value, given by x =(constfaz x* (tp 32.83 33.83 1 1)), according to the similarity 
criteria adopted within the KMSFL. In this case 

1x ="200", 
2x =...=

6x ="0", xb1=0, and the 
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other fuzzy values of the knowledge model are initialized and are similar to those in the test A. 
After the first execution, the inference engine performs 67 inferences and the values of fuzzy 
loads are: 

1x =“33.419”, 
2x =“34.289”, 

3x =“33.419”, 
4x =“34.961”, 

5x =“32.55”, 

6x =“31.361”. The last rule activated is meta-rule 13, and the balance degree at this stage is 
bd="1.9725". It is noted that the balance degree is satisfactory ((*s, "0.967") = 1 and  
N(*s, "0.967")=0.266>0), the fuzzy differences between the final loads and the expected average 
value are approximately zero, but the loads of the subsystems analyzed in pairs, according to 
the reasons within antecedent of rule 11, are not all similar to each other, because the execution 
does not end with rule 11. The observation above is based on the following calculations: for 

x =(32.83 33.83 1 1), 
1x =(32.919 33.919 1 1), 

2x =(33.789 34.789 1 1), 
3x =(32.87 33.87 1 1), 

4x =(33.69 34.69 1 1), 
5x =

6x =(31.865 32.865 1 1) we get respectively the following pairs: 
(

1x , x ) = 1, N(
1x , x )=0.455, (

2x , x )=1, N(
2x , x )=0.02, (

3x , x )=1, N(
3x , x ) 

=0.48, (
4x , x )=1, N(

4x , x )=0.07, (
5x , x )=1, N(

5x , x )=0.01 that satisfy the condition 
of similarity between any of the final states of the loads and the expected average value.  
Test C. This test emphasizes the dynamic circularity. All subsystems are loaded with fuzzy 
values different from "0", and the characteristics of the associated fuzzy numbers are closer to 
the case of natural perception, i.e. have been increased the cores and the imprecision areas of 
fuzzy values, as follows: *s = *b = *mi = (-1 1 2 2), *n =* ma = (3  3 3), "around x0" = (x0-1 x0+1 
x0-3 x0+3),  = 1,  = 0,  

1x  = (1222 1224 2 2) = "1223", 
2x  = (309 311 2 2) = "310", 

3x  = (444 
446 2 2) = "445", 

5x = (37 39 2 2) = "38", 
6x = (741 743 2 2) = "742", xb1 = 0. We may notice the 

intensive use of meta-rules in the second part of the execution and the correct ending of the 
balancing problem, in terms of final state. The expected average fuzzy value is x = "610.8(3)". 
After the first execution of the inference engine of KMSFL, starting from inference 39, the 
system goes in a cyclical operation (dynamic circularity), since all inferences starting from 
inference 40 do not change the KMSFL state so that to achieve the intended objective correctly. 
This is justified by the value of bd = "3.7213", with (*n, "3.7213") = 1 and N = (*n, "3.7213") = 
0.54426. In this example is not activated the control module from rule 12 consequent, whose 
purpose is to eliminate the cycles from inference engine operation. To solve this problem, 
which is not allowed in the operation of an expert system, in the next we will highlight the 
behavior of inference engine when activating the control module. Solving the above listed 
deficiencies is founded on resetting the inference engine operation, based on user inputs UI, in 
order to achieve the goal. Reset is done by positioning the vector xb1 = 0, the subsystems’ loads 
and the other fuzzy values being equal to the last values previously used. 
 

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5

 
Fig. 6. Balance degree evolution for case C 

After the reset, are used the meta-rules from the structure of knowledge management model 
to achieve the goal state. We get the following final fuzzy values of subsystems’ loads:

1x = 
(609.87 611.87 2 2), 

2x = (611.76 613.76 2 2), 
3x = (609.34 611.34 2 2), 

4x = (611.71 613.71 2 
2), 

5x = 
6x = (608.16 610.16 2 2). The final balance degree is satisfactory because ((-1 1 2 2), 
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(0.9311 2.9311 2 2)) = 1 and N((-1 1 2 2), (0.9311 2.9311 2 2)) = 0.017225 > 0. The evolution of 
the balance degree is shown in fig. 6. Final loads above are similar to each other because: 
(

1x ,
2x ) = 1, N(

1x ,
2x ) = 0.275 > 0, (

1x ,
2x ) = 0.945, K(

1x ,
2x ) = 0.055, (

1x , 
3x )=1, 

N(
1x ,

3x ) = 0.367 > 0, (
1x ,

3x ) = 0.265, K(
1x , 

3x ) = 0.75, (
1x , 

4x ) = 1, N(
1x ,

4x ) = 
0.04>0,  (

1x , 
4x )= 0.92, K(

1x , 
4x ) = 0.145, (

1x , 
5x ) = (

1x , 
6x ) = 1, N(

1x ,
5x ) = 

N(
1x ,

6x ) = 0.725 > 0, (
1x ,

5x ) =  (
1x ,

6x ) = 0.855, K(
1x ,

5x ) = K(
1x ,

6x ) = 0.145.  
It is noted that all criteria regarding the correct stop off the inference engine are met, thus 
obtaining the solution, whose value must be calculated through unification according to rule 
11 antecedent. Thus, is revealed the inference engine behavior in order to avoid dynamic 
circularity presented in this example. The KMSFL can effectively predict a number of states 
that characterize the process, for a finite time horizon, as a result of its own inferences and of 
its knowledge management model. 

7. Conclusions and future work 

Designing and testing KMSFL system requires the existence of some scientific methods for 
knowledge acquisition, which unfortunately is a heterogeneous and time-consuming 
process. The synthesis of the control model for the case study presented, encompassing 
human control experience, was iterative, being necessary to indirectly develop some 
methods and testing and simulating environments for some crisp and fuzzy control models, 
permanently adjusting the inferential subsystem.  
The importance of this paper consists of demonstrating the possibility of employing an expert 
KMS in problems of process control and planning, using imprecise knowledge. It was 
necessary to continuously adapt known models (e.g. theory of possibilities, discrete event 
systems) to synthesize a control structure based on fuzzy knowledge. We also tried to 
conceptually develop a multi-agent real control structure, which is a solution to meet a series 
of demands on the complexity of the control process. Such systems, especially those based on 
communication between agents by sharing memory, bring up features well suited for real-time 
applications, such as: integration of heterogeneous agents, interaction between activities of 
acquisition, reasoning and action on the external environment, fusion of data coming from 
sensors of different nature and operation, flexibility and efficiency in the integration of new 
data needed for reasoning, by simply writing them in the common memory. Real-time 
applications require the cooperation of elaborate reasoning processes. The essential point in 
integrating the cognitive/reactive aspects is the modeling of the relations between the process 
evolution and certain inferential methods, to allow the closed-loop system to achieve a range 
of required performances. Temporal aspects are an important dimension of any KMS 
embedded in NSTs. There is a distinction between real-time reasoning and reasoning over 
time, the latter being a feature of the knowledge-based systems. For this reason, it was 
absolutely necessary to explain the significance of time in the design and implementation of 
KMSFL, emphasizing its implications in the specific case of the developed application.  
Following the tests presented and the knowledge representation and exploitation structures 
within KMSFL, we may outline the following conclusions: 
i. the formalism chosen for knowledge representation is strong enough to support the 

representation of some types of knowledge underlying the synthesis of control 
decisions. It has the advantage of factorizing the knowledge, which substantially 
reduced the size of fuzzy rules base. Also, this knowledge representation method is 
more appropriate to express some types of knowledge similar to those commonly used 
in the decision synthesis through natural language;  
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ii. the knowledge fuzzy model for the problem presented was developed incrementally, as 
was embedded in the model sufficient domain knowledge, resulting from the 
limitations observed in the crisp case. Is it possible to constantly adapt the fuzzy model 
through simulations;  

iii. the inferential subsystem based on fuzzy logic solves the control situations correctly, 
both from the computational point of view and in terms of the semantics of the 
conclusions inferred through the chosen inference scheme;  

iv. modeling the process and the expert system as systems with logical events allowed the 
qualitative analysis of KMSFL;  

v. the control module integrated into the inferential subsystem automatically adapts the 
problem-solving process, being equivalent to closed-loop system input, denoted UI 
(user input). In this way, through the control meta-rule 12, we can simulate practically 
the activation of the relation between output Hypotheses/Conclusions and user inputs. 
This component is not activated in every case (initial loads). This justifies a major 
feature of the designed control expert system: its ability to correctly solve the problem, 
under the conditions specified for each case; vi) The case when ckN+ is not a particular 
case for 

ck
 R+ due to certain restrictions on the events trajectories and to system’s 

lack of flexibility in achieving the balance, thus leading to partial balance. For the 
discrete case, there is a tolerated unbalance value, denoted  and for which |xi-xj| , 
which defines the invariant set. For the fuzzy case, is achieved a good balancing 
solution, regardless of the initial subsystems’ loads. In this case the system is broadly 
asymptotically stable relative to event trajectories. 

We also summarize possible further development, which inherently can be obtained starting 
from KMSFL: identifying stronger planning characteristics, the logical specification of the 
real-time expert systems so that to describe how the statements change their truth values, 
depending on time or in order to meet some strong real-time restrictions, knowledge 
acquisition (as a difficult and insufficiently formalized problem), as well as the correct 
choice of the inference operators that lead to consistent results with regard to the well-
defined knowledge semantics, integrating a control expert system like the one developed 
(agent) into a multi-agent system structure, identifying real problems in different 
application areas that can be solved using the expert system developed.  
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