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Battle of the Sexes:  
A Quantum Games Theory Approach 

Juan Manuel López R. 
Logic and Computation Group, Engineering Physics 

EAFIT University 
Colombia 

1. Introduction 

Real life situations where there are strategies to be chosen in order to obtain a profit can be 
reproduced by games, so game theory is a way to describe the evolution of possible 
scenarios where players can select a scheme of play. Game theory takes importance in many 
areas, such as people decisions making, where their choices do affect others benefit (Davis, 
1970; Myerson, 1991). It is to remark that the principles of game theory were initiated by 
trying to understand the behavior of economic strategies, however Von Neumann presented 
the concept of modern game theory in 1944 (Von Neumann & Morgenstern, 1947). 
Quantum mechanics is a tool that creates another point of view for the traditional game 
theory due to multiple strategies offered for the players, whom possibilities are numerously 
expanded in contrast of classical ones (Eisert & Wilkens, 2000). There are also games where 
the player who uses quantum strategies, enhances his payoffs or even always wins against a 
player who only uses classical moves (Meyer, 1999). It is to remark that there are plenty of 
applications for quantum game theory such as quantum cryptography and computation, 
economics and biology (Piotrowski & Sladkowski, 2003; Hanauske et al.,2009). 
The Battle of the Sexes game is a largely analyzed problem, based on two players: Alice and 
Bob and their choice about an activity for a Saturday night with each other. It is pretty 
important to remark that both want the best possible payoff in the decision, so the game can 
be developed normally, otherwise it would not be our case. Alice, really loves Opera, but 
wants to be with Bob; Bob likes Football but he wants to have Alice’s company along the 
activity. This game has a lot of applications in real life scenarios such as the spread of some 
type of genes from a reproduction between two organisms (Dawkins, 2006); another 
interesting application is neuroeconomics (Montague & Berns, 2002), where brain studies 
have been done in order to incite neurons to choose either to “work” for a reward or to 
“shirk” (Glimcher, 2003). 

2. Classical analysis 

The global idea of the model used in this section is taken from Richard Dawkins’ Battle of 
the Sexes Model, however the specific method implemented is taken from a worksheet 
made by Frank Wang (Wang, 2010), due to its facility to be developed in a computer algebra 
software such as Maple. 
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2.1 Method ܯ஺ and ܯ஻ are payoff matrixes for Alice and Bob, respectively. Where ܯ஺௜௜ is the payoff 
matrix of a female player using strategy ݅ against a male playing strategy ݆; and ܯ஻௜௝ is the 

payoff matrix for a male playing ݅ against a female who plays ݆. ݔ௜ is the proportion of 
females playing ݅; and ݕ௜ is the proportion of males playing strategy ݅. As here we 
considerate two possible strategies whose proportions satisfy: ݔଵ + ଶݔ = ͳ; and the same 
applies for ݕ௜. In order to reduce the number of variables, we describe ݔଶ and ݕଶ in terms of ݔଵ and ݕଵ, respectively. 

ሻݐଵሺݔ  =  ሻ (1)ݐሺݔ

ሻݐଶሺݔ  = ͳ −  ሻ (2)ݐଵሺݔ

We substitute (1) in (2): 

ሻݐଶሺݔ  = ͳ −  ሻ (3)ݐሺݔ

ሻݐଵሺݕ  =  ሻ (4)ݐሺݕ

ሻݐଶሺݕ  = ͳ −  ሻ (5)ݐଵሺݕ

(4) in (5) to get a simpler equation for y: 

ሻݐଶሺݕ  = ͳ −  ሻ (6)ݐሺݕ

The relevant fitness functions are defined as: ݂ሺݔ, ሻݕ = ሻݐଵሺݕ	ଵଵܣሺ	ሻݐଵሺݔ + ሻݐଵሺݕ	ሻݐଵሺݔ	ଵଵܣ−൫	ሻݐଶሺݕ	ଵଶܣ + ሻݐଶሺݕ	ሻݐଵሺݔ	ଵଶܣ + ሻݐଵሺݕ	ሻݐଶሺݔ	ଶଵܣ +  ,ሻ൯ሻݐଶሺݕ	ሻݐଶሺݔ	ଶଶܣ

(7) ݃ሺݔ, ሻݕ = ሻݐଵሺݔ	ଵଵܤሺ	ሻݐଵሺݕ + ሻݐଵሺݕ	ሻݐଵሺݔ	ଵଵܤ−൫	ሻݐଶሺݔ	ଵଶܤ + ሻݐଶሺݔ	ሻݐଵሺݕ	ଵଶܤ + ሻݐଵሺݔ	ሻݐଶሺݕ	ଶଵܤ +  ;ሻ൯ሻݐଶሺݔ	ሻݐଶሺݕ	ଶଶܤ
The appropriate replicator equations in terms of the previously defined fitness functions are: 

    
, ,

d x t
f x y

dt
  

(8) 

    
, ;

d y t
g x y

dt
  

In order to find the equilibrium values for ݔ and ݕ, we remove time-dependence by solving 
(9) when the derivatives are zero, hence  x t x  and  y t y . Then we solve the resulting 
system of two equations and two variables. In order to make the stability analysis, we search 
for a solution with the form: 

    ,x t x t   

(9) 

    ;y t y t   
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where ݔ and ݕ are the equilibrium values previously found; ߝሺݐሻ  and ߟሺݐሻ  are introduced as 
small perturbations respect to the equilibrium values. Now, we substitute (9) in equations 
(8). We can neglect the squares of ߟ and ߝ and their product because their result is very 
small. So we can define the following simplifications in order to be replaced on the resulting 
replicator equations. ߟሺݐሻ	ߝሺݐሻ = 	Ͳ, 

ሻଶݐሺߝ  = Ͳ, (10) ߟሺݐሻଶ = Ͳ; 
The replicator equations are finally linear, so them can be analytically solved. From these 
solutions we can observe if the equilibrium values are stable.  
An alternative method consists on the Jacobian’s use and the computation of its eigenvalues, 
where the stability depends on the resulting sign of the real part of the eigenvalues. 
However, when the eigenvalues are pure imaginary numbers, the Jacobian method is not 
appropriate for the stability analysis. In this last case, we use the method of the vector field 
for the replicator equations; which is graphically implemented. 

2.2 Standard case 
The previously shown method will be illustrated using three possible examples of the 
traditional battle of the sexes game: 
a. Dawkins example. 
b. Wikipedia’s example1. 
c. Wikipedia’s example 

2.2.1 Dawkins model by Frank Wang 
This first example is taken from a Maple worksheet designed by Frank Wang, based on 
Richard Dawkins’ Battle of the Sexes Model presented on Chapter 9 of the celebrated book 
titled “Selfish Gene”. The classical payoff matrices for this scenario are: ܣ = ቂʹ Ͳͷ −ͷቃ, 

ܤ (11) = ቂʹ ͷͲ ͳͷቃ ; 
According with these payoff matrices, the corresponding fitness functions are: ݂ሺݔ, ሻݕ = ሻݐଵሺݕ	ʹሺ		ሻݐଵሺݔ − ሻݐଵሺݕ	ሻݐଵሺݔ	ʹ − ͷ	ݔଶሺݐሻ	ݕଵሺݐሻ + ͷ	ݔଶሺݐሻ	ݕଶሺݐሻሻ, 

(12) ݃ሺݔ, ሻݕ = ሻݐଵሺݔ	ʹ൫		ሻݐଵሺݕ + ͷ	ݔଶሺݐሻ − ሻݐଵሺݕ	ሻݐଵሺݔ	ʹ − ͷ	ݔଶሺݐሻ	ݕଵሺݐሻ − ͳͷ	ݔଶሺݐሻ	ݕଶሺݐሻ൯; 
which are reduced to:  ݂ሺݔ, ሻݕ = ሻݐሺݕ	ሺͺ	ሻݐሺݔ − ͷሻ	ሺ−ͳ +  ,ሻሻݐሺݔ

(13) ݃ሺݔ, ሻݕ = ൫−ͳ		ሻݐሺݕʹ	− + ሻݐሺݔ	ሺ͸	ሻ൯ݐሺݕ	 − ͷሻ. 

                                                                 
1 Wikipedia – Battle of the Sexes (game theory) 
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With the previous found fitness, the replicator equations take the form: ݀	ݔሺݐሻ݀ݐ = ሻݐሺݕ	ሺͺ	ሻݐሺݔ	 − ͷሻ	൫−ͳ +  ,ሻ൯ݐሺݔ
ݐሻ݀ݐሺݕ	݀ (14) = ൫−ͳ		ሻݐሺݕ	ʹ− + ሻݐሺݔ	ሺ͸	ሻ൯ݐሺݕ	 − ͷሻ. 

In order to find the equilibrium values, we remove time dependence for x and y, making ݔሺݐሻ = ሻݐሺݕ	and ݔ = 	and we obtain: Ͳ ;ݕ = 	 −ͺ	ݕ	ݔ + ͷ	ݔ + ͺ	ݔଶݕ − ͷ	ݔଶ 
(15) Ͳ = ͳʹ	ݕ	ݔ − ͳʹ	ݔ	ݕଶ − ͳͲ	ݕ + ͳͲ	ݕଶ 

Solving these last equations, we get: ሼݔ = Ͳ, ݕ = Ͳሽ, ሼݔ = ͳ, ݕ = Ͳሽ, ሼݔ = Ͳ, ݕ = ͳሽ,  
 ൜ݔ = ͷ͸ , ݕ = ͷͅൠ , ሼݔ = ͳ, ݕ = ͳሽ. (16)

In order to make the stability analysis, we use the non-trivial equilibrium values and the 
following small perturbations around these values: 

ሻݐሺݔ = ͷ͸ +  ሻݐሺߝ

ሻݐሺݕ (17) = ͷͅ +  ሻݐሺߟ

The resulting replicator equations are: ݀݀ݐ ሻݐሺߝ	 = 	 ൬− ͳͲͻ ൰ ሻݐሺߟ	 + ൬ͳ͸͵൰ ሻݐሺߝ	ሻݐሺߟ	 + ͺ		ߟሺݐሻ	ߝሺݐሻଶ, 
ݐ݀݀ (18) ሻݐሺߟ	 = 	 ൬Ͷͷͳ͸൰ ሻݐሺߝ	 − ሻݐሺߝ	ሻݐሺߟ	͵ − ͳʹ	ߝሺݐሻ	ߟሺݐሻଶ; 

and using (10), we obtain the following linear equations: ݀݀ݐ ሻݐሺߝ	 = − ͳͲͻ  ,ሻݐሺߟ	
ݐ݀݀ (19) ሻݐሺߟ	 = Ͷͷͳ͸  ;ሻݐሺߝ	

The solution for the last system of equations is: ൜ߝሺݐሻ = ଵܥ sin ൬ͷͶ √ʹ ൰ݐ + ଶܥ cos ൬ͷͶ √ʹ ൰ݐ , =ሻݐሺߟ ͻͅ √ʹ ሺ−ܥଵ cos ൬ͷͶ √ʹ ൰ݐ + 	 ଶܥ sin ൬ͷͶ √ʹ ൰ሻݐ ൠ 
(20)
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About the stability analysis, we observe that the small perturbations are oscillating functions 
without damping. It is to say that the perturbations never end, and therefore the equilibrium 
values are instable. It is worthwhile to note that in this case the Jacobian has eigenvalues 
that are pure imaginary numbers, so it is necessary to use the vector field method in order to 
see the results. The subsequent vector field plot is: 

 

 

Fig. 1. Vector Field plot of the results. 

We can observe that the trajectories in the phase plane are closed curves around the non-
trivial equilibrium point, considered as a center. We can also make a numerical solution for 
the replicator equations, whose results are graphically shown: 

 

   

Fig. 2. a) Numerical solution for Alice’s, b) Numerical solution for Bob’s, c) Alice’s and Bob’s 
results plotted together with an extended time. 

The three previous graphs are the time series for the player’s proportions. The following 
graph is the phase plane for x and y: 
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Fig. 3. Phase plane of the solutions. 

2.2.2 Wikipedia case 1 
The following example is taken from Wikipedia, where is referred as case 1. In this 
scenario, Alice and Bob receive pays only when both of them meet at the Opera, where 
Alice gets 3 and Bob 2; or at the football match, where Alice gets 2 and Bob 3. Also, both 
Alice and Bob receive no pay when they go to the wrong places either Opera or Football. 
It is to considerate the case where Alice receives a small payoff for going alone to the 
Opera and Bob for attending to the football match, but this will be analyzed in section 
2.2.3. The previous scenario is shown on the following matrices, for Alice and Bob 
respectively:  ܣ = ቂ͵ ͲͲ ʹቃ, 

ܤ (21) = ቂʹ ͲͲ ͵ቃ ; 
Applying matrices at (21) in the method previously shown, the solutions obtained are: 

 ሼݔ	 = 	Ͳ, 	ݕ = 	Ͳሽ, ሼݔ	 = 	ͳ, 	ݕ = 	Ͳሽ, ሼݔ	 = 	Ͳ, 	ݕ = 	ͳሽ, ቄݔ	 = ଷହ , 	ݕ = ଶହቅ , ሼݔ	 = 	ͳ, 	ݕ = 	ͳሽ. (22) 

Following the steps presented in the method, the following linear equations are shown, 
which came from replicators equations: ݀݀ݐ ሻݐሺߝ	 = ͸ͷ  ,ሻݐሺߟ	

ݐ݀݀ (23) ሻݐሺߟ	 = ͸ͷ  ;ሻݐሺߝ	
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Finally we can find the solutions for the previous system (23): 

 ቄߝሺݐሻ = 	 ௧	݁ିలఱ	ଵܥ 	 + ௧	݁లఱ	ଶܥ	 , ሻݐሺߟ = 	 ௧	݁ିలఱ	ଵܥ− +	  ௧ቅ (24)	݁లఱ	ଶܥ

From the previous solution we can deduce that both strategies meets at a specific point. A 
vector field plot is made:  

 

 
 

Fig. 4. Vector field plot. 

Numerical solutions in the phase plane for both strategies are: 

 

   
 

Fig. 5. a), b) Alice's and Bob's trajectories in the phase plane respectively, c) superposed 
graphs with a longer time period. 

Figure 5 shows the evolution in time of the solutions obtained. The following graph is the 
phase plane for x and y: 

www.intechopen.com



 
Some Applications of Quantum Mechanics 392 

 

 
 

Fig. 6. Phase plane for x and y. 

2.2.3 Wikipedia case 2 
It’s presented a possible modification for the previous case. Here, Alice receives a small pay 
for attending the Opera alone; likewise, Bob gets a positive payment for going to the football 
match without Alice. The amount received in both cases will be taken as 1; for the other 
possible situations, the payoffs keep being the same: ܣ = ቂ͵ ͳͲ ʹቃ, 

ܤ (25) = ቂʹ Ͳͳ ͵ቃ ; 
Using replicator’s equation in the method presented, the equilibrium values obtained for the 
system are: 

ሼݔ	 = 	Ͳ, 	ݕ = Ͳሽ, ሼݔ = ͳ, ݕ = Ͳሽ, ሼݔ = Ͳ, ݕ = ͳሽ, ൜ݔ = Ͷ͵ , ݕ = ͳͶൠ , ሼݔ = ͳ, 	ݕ = 	ͳሽ. (26)

Using equations (10) and the non-trivial equilibrium values, the following linear equations 
are found:  ݀݀ݐ ሻݐሺߝ	 = Ͷ͵  ,ሻݐሺߟ	

ݐ݀݀ (27) ሻݐሺߟ	 = Ͷ͵  ;ሻݐሺߝ	
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which led to the solutions for ߝሺݐሻ and ߟሺݐሻ: ൜ߝሺݐሻ = ଵܥ ݁ଷସ ௧ + ଶܥ ݁ିଷସ ௧ , ሻݐሺߟ = ଵܥ ݁ଷସ ௧ − ଶܥ ݁ିଷସ ௧ൠ (28)

In order to understand the stability analysis, a vector field plot of the solutions is made: 

 

 

 
Fig. 7. Vector field plot. 

Player’s proportions on time’s evolution are plotted in the next graphs: 

 

   

 
Fig. 8. a) Alice’s proportion on time, b) Bob’s strategy proportion, c) Alice’s and Bob’s time 
proportions. 
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From the previous three graphs is possible to observe the convergence. It is also presented a 
phase plane graph of the solutions: 

 

 
 

Fig. 9. Phase plane graph of the solution. 

2.3 Burning money case 
Allowing one of the players to “burn” money is really an interesting idea, remarking that 

both Alice and Bob are rational and pretend to have the best possible reward. In this work 

Alice will have the chance of burning money, while Bob plays only with selecting between 

opera or football match. The idea of burning money is presented as a game that helps 

understand weakly dominated strategies, modifying the normal game in order to let the 

players make a rational elimination by knowing that the other player eliminates strategies 

too. This case is presented in by Herbert Gintis (Gintis, 2009). The case proposed on section 

2.2.2 can be taken as an un-burning money case. 

2.3.1 Burning money case 
The difference for this case is the possibility for one player (Alice) to “burn” money; that is 

to say, the player can have a negative payment by destroying some of her stuff, hence 

changing the strategies used by each player. In this case this option will be for Alice, who 

loses 2 points in each possible payment; while Bob keeps having the same payment: ܣ = ቂ ʹ −ʹ−ʹ −ͳቃ, 
ܤ (29) = ቂͳ ͲͲ Ͷቃ ; 
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With the given matrices and the established method, equilibrium values for the system are 
found: 

ሼݔ	 = 	Ͳ, 	ݕ = Ͳሽ, ሼݔ = ͳ, ݕ = Ͳሽ, ሼݔ = Ͳ, ݕ = ͳሽ, ൜ݔ = Ͷͷ , ݕ = ͳͷൠ , ሼݔ = ͳ, 	ݕ = 	ͳሽ. (30)

Simplifying by (10) from the replicator’s equation obtained in the method, we get: ݀݀ݐ ሻݐሺߝ	 = Ͷͷ  ,ሻݐሺߟ	
ݐ݀݀ (31) ሻݐሺߟ	 = Ͷͷ  ;ሻݐሺߝ	

The solutions for this system are: ൜ߝሺݐሻ = ଵܥ ݁ିସହ ௧ + ଶܥ ݁ସହ ௧ , ሻݐሺߟ = ଵܥ− ݁ିସହ ௧ + ଶܥ ݁ସହ ௧ൠ (32)

With the results obtained, it is possible to make a stability analysis and generate a vector 
field plot, which led us observe the specific point where the solution converges: 

 
 

 
 
 

Fig. 10. Vector field plot 

Plotting the proportions obtained over time, we can see that both Alice’s and Bob’s 
converge. 
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Fig. 11. a) Numerical solution for Alice’s, b) Numerical solution for Bob’s, c) Alice’s and 
Bob’s results plotted together with an extended time. 

The three previous graphs are the time series for the player’s proportions. The following 
graph is the phase plane for x and y: 
 

 

Fig. 12. Phase plane graph 

3. Quantum game 

Quantum mechanics has been applied to different games such as Prissioner Dilema (Eisert 
et al., 1999), hawk and dove game (López, 2010) and battle of the sexes game (Frackiewicz, 
2009). Several versions for the battle of the sexes game have been proposed from quantum 
game theory (Neto, 2008; Du et al., 2001; Frackiewicz, 2009), however the conception of this 
work is to present the wider variety of strategies that a classical analysis. The method 
implemented is shown using quantum circuits, where operators can be understood as 
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quantum gates that transform the initial states in order to obtain the payoff matrices for both 
Alice and Bob. Three possible scenarios are presented, however only the first one is used in 
this work:  

 

 
a) 

 

 
b) 

 

 
c) 

 

Fig. 13. Quantum circuit for quantum Battle of the Sexes Game: a) open loop case with non-
entangled initial states, b) closed loop with non-entangled initial states, c) closed loop with 
entangled initial states. 
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3.1 Method 
The method that will be used through this section is a formalization of the quantum circuit 
shown in Figure 13a), which corresponds to the open loop case with non-entangled initial 
states. The quantum gate named J in Figure 13a), has the form: 

ܬ  = ݁೔೨మ 	஼⨂஼ , (33) 

where 

ܥ = ቂ Ͳ ͳ−ͳ Ͳቃ , ܥ	⨂ܥ = ൦Ͳ Ͳ Ͳ ͳͲ Ͳ −ͳ ͲͲ −ͳ Ͳ Ͳͳ Ͳ Ͳ Ͳ൪ , ߁ʹ݅	 ܥ	⨂ܥ =
ێێۏ
ێێێ
ۍێ Ͳ Ͳ Ͳ ͳʹ Ͳ߁	ܫ	 Ͳ − ͳʹ ߁	ܫ	 ͲͲ − ͳʹ ߁	ܫ	 Ͳ Ͳͳʹ ܫ ߁ Ͳ Ͳ Ͳ ۑۑے

ۑۑۑ
(34) .ېۑ

Then, J takes the form: 

ܬ =
ێێۏ
ێێێ
ۍێێ cos ൬ͳʹ ൰߁ Ͳ Ͳ ܫ sin ൬ͳʹ ൰Ͳ߁ cos ൬ͳʹ ൰߁ ܫ− sin ൬ͳʹ ൰߁ ͲͲ ܫ− sin ൬ͳʹ ൰߁ cos ൬ͳʹ ൰߁ Ͳܫ sin ൬ͳʹ ൰߁ Ͳ Ͳ cos ൬ͳʹ ൰߁ ۑۑے

ۑۑۑ
ېۑۑ
 (35)

The possible strategies are represented by the following Kets: 

ۧܨܨ| = ൦ͳͲͲͲ൪ , ܱۧܨ| = ൦ͲͳͲͲ൪ , ۧܨܱ| = ൦ͲͲͳͲ൪ , |ܱܱۧ = ൦ͲͲͲͳ൪ (36)

where, F refers to Football and O to Opera. 
The action of the quantum gate J over the Kets |ۧܨܨ and |ܱܱۧ is: 

ܬ ∙ ۧܨܨ| =
ێێۏ
ۍێێ cos ൬ͳʹ ܫ൰ͲͲ߁ sin ൬ͳʹ ۑۑے൰߁

ېۑۑ , ܬ ∙ |ܱܱۧ =
ێێۏ
ܫۍێێ sin ൬ͳʹ ݏ݋൰ͲͲܿ߁ ൬ͳʹ ൰߁ ۑۑے

(37) ېۑۑ

The quantum gates associated with Alice and Bob are given respectively by: 

஺ܷ = ቂ ܽ ܾ−തܾ തܽቃ    ,  ܷ஻ = ቂ ܿ ݀−݀̅ ܿ̅ቃ (38)

and the tensor product between these, is: 
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஺ܷ⨂ ܷ஻ = ൦ ܽܿ ܽ݀ ܾܿ ܾ݀−ܽ݀̅ ܽܿ̅ −ܾ݀̅ ܾܿ̅−തܾܿ −ܾ݀തതതത തܽܿ തܽ݀തܾ݀̅ −തܾܿ̅ − തܽ݀̅ തܽܿ̅൪ (39)

The action of combined quantum gate (39), over the Kets presented at (37) is: 

ሺܷ஺⨂	ܷ஻ሻ	ሺܬ ∙ ሻۧܨܨ| =
ێێۏ
ێێێ
ۍێێ ܽܿ cos ൬ͳʹ ൰߁ + ܫ ܾ݀ sin ൬ͳʹ ̅݀ܽ−൰߁ cos ൬ͳʹ ൰߁ + ܾ̅ܿ	ܫ 	sin ൬ͳʹ ൰−തܾܿ߁ cos ൬ͳʹ ൰߁ + 	ܫ തܽ݀	 sin ൬ͳʹ ൰തܾ݀̅߁ cos ൬ͳʹ ൰߁ + ܫ തܽܿ̅ sin ൬ͳʹ ൰߁ ۑۑے

ۑۑۑ
ېۑۑ
 (40) 

ሺܷ஺⨂	ܷ஻ሻ	ሺܬ ∙ |ܱܱۧሻ =
ێێۏ
ێێێ
ۍێێ ܫ ܽܿ sin ൬ͳʹ ൰߁ + ܾ݀ cos ൬ͳʹ ̅݀ܽ	ܫ−൰߁ sin ൬ͳʹ ൰߁ + 	ܾܿ̅ 	cos ൬ͳʹ 	ܫ−൰߁ തܾܿ sin ൬ͳʹ ൰߁ +	 തܽ݀	 cos ൬ͳʹ ܫ൰߁ തܾ݀̅ sin ൬ͳʹ ൰߁ + തܽܿ̅ cos ൬ͳʹ ൰߁ ۑۑے

ۑۑۑ
ېۑۑ
 (41)

According with the Figure 13a), the next step is to take the Hermitian transpose of the 

quantum gate J, and the result is the following: 

றܬ =
ێێۏ
ێێێ
ۍێێ cos ൬ͳʹ ത൰߁ Ͳ Ͳ ܫ− sin ൬ͳʹ ത൰Ͳ߁ cos ൬ͳʹ ത൰߁ ܫ sin ൬ͳʹ ത൰߁ ͲͲ ܫ sin ൬ͳʹ ത൰߁ cos ൬ͳʹ ത൰߁ Ͳ−ܫ sin ൬ͳʹ ത൰߁ Ͳ Ͳ cos ൬ͳʹ ത൰߁ ۑۑے

ۑۑۑ
ېۑۑ
 (42)

The last step in the quantum circuit is the action of the quantum gate shown in (42) over the 

Kets given at (40) and (41): 

 

† ((   ) ( ))

1 1 1 1 1 1
cos cos    sin    sin cos    sin

2 2 2 2 2 2

1 1 1 1 1
cos ( cos    sin ) sin cos

2 2 2 2 2

A BJ U U J FF

ac I bd I bd I ac

ad I bc I bc

 

                                    
              
                         
   





     

1   sin
2

1 1 1 1 1 1
sin ( cos    sin ) cos cos    sin

2 2 2 2 2 2

1 1 1 1 1
Isin cos    sin  cos cos

2 2 2 2 2

I ad

I ad I bc bc I ad

ac I bd bd

      
  

                                  
            

                       
         

1   sin
2

I ac

 
 
 
 
 
 
 
 
 
 

              

 (43) 
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றܬ ∙ ሺሺܷ஺⨂	ܷ஻ሻ	ሺܬ ∙ |ܱܱۧሻሻ
=

ێێۏ
ێێێ
ۍێێ cos ൬ͳʹ ത൰߁ ൬ܫ	ܽܿ sin ൬ͳʹ ൰߁ + 	ܾ݀	 cos ൬ͳʹ ൰൰߁ 	 ܫ−	 sin ൬ͳʹ ത൰߁ ൬ܫ	 തܾ݀̅ sin ൬ͳʹ ൰߁ +	 തܽܿ̅ 	cos ൬ͳʹ ൰൰cos߁ ൬ͳʹ ത൰߁ ൬−ܫ	ܽ݀̅ sin ൬ͳʹ ൰߁ + 	ܾܿ̅ 	cos ൬ͳʹ ൰൰߁ + ܫ sin ൬ͳʹ ത൰߁ ൬−ܫ	 തܾܿ sin ൬ͳʹ ൰߁ +	 തܽ݀	 cos ൬ͳʹ ܫ൰൰߁ sin ൬ͳʹ ത൰߁ ൬−ܫ	ܽ݀̅ sin ൬ͳʹ ൰߁ + 	ܾܿ̅ 	cos ൬ͳʹ ൰൰߁ + cos ൬ͳʹ ത൰߁ ൬−ܫ	 തܾܿ sin ൬ͳʹ ൰߁ +	 തܽ݀	 cos ൬ͳʹ −൰൰߁ sin ൬ͳʹ ത൰߁ ൬ܫ	ܽܿ sin ൬ͳʹ ൰߁ + 	ܾ݀	 cos ൬ͳʹ ൰൰߁ 	cos ൬ͳʹ ത൰߁ ൬ܫ	 തܾ݀̅ sin ൬ͳʹ ൰߁ + 	 തܽܿ̅ 	cos ൬ͳʹ ൰൰߁ ۑۑے

ۑۑۑ
ېۑۑ
 (44)

Finally a measurement is made over the final states (43) and (44), from which is possible to 

build the payment operators and the expected payments for Alice and Bob. 

In figures 13b) and 13c), the quantum circuits are depicted as closed loops, where the 

feedback is implemented by special quantum gates that assume the role of “decision 

makers”, it is to say, special quantum gates that transform the expected payments into new 

possible initial states and new quantum gates: UA and UB. 

3.2 Simple cases 
In this section some models presented by J.J. de Farias Neto in his work titled “Quantum 

Battle of the Sexes Revisited”. These cases are a combination of different values for ߛ and 

different initial states, either non-entangled or entangled. In the first case, ߛ = Ͳ and the 

initial state is non-entangled. It will be initially made for |ܱܱۧ: 
 (   ) OO A BE U U OO    (45) 

Replacing values from equation (44), we obtain: 

 OO

bd

bc
E

ad

ac

 
 
 
 
 
 

 (46) 

The resulting payoffs for Alice and Bob are: 

 

2 2 2 2

2 2 2 2

2

2

A

B

P b d a c

P b d a c

 

 

 (47) 

Likewise for |ۧܨܨ, the final state is given by: 

 (   ) FF A BE U U FF    (48) 

Substituting equation (43), we get: 
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ிிۧܧ| = ቎ ܽܿ−ܽ݀̅−തܾܿതܾ݀̅ ቏ (49)

The outcomes in this case are: 

஺ܲ = ʹ|ܾଶ݀ଶ| + |ܽଶܿଶ|  
(50) ஻ܲ = |ܾଶ݀ଶ| + ʹ|ܽଶܿଶ| 

The second model maintains ߛ = Ͳ, but the initial state is now entangled; hence the |ܧ௜ۧ has 
the form: 

௜ۧܧ| = ͳʹ √ʹሺ ۧܨܨ| + |ܱܱۧሻ (51)

Replacing values for |ۧܨܨ and |ܱܱۧ, we obtain the initial state: 

௜ۧܧ| =
ێێۏ
ۍێێ
ͳʹ √ʹͲͲͳʹ ۑۑےʹ√

(52) ېۑۑ

The final state is given by the following equation: 

 หܧ௙ൿ = ሺܷ஺⨂	ܷ஻ሻ 	 ∙  ௜ۧ (53)ܧ|

Substituting, the final state has the form: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ ͳʹ √ʹܽܿ + ͳʹ √ʹܾ݀− ͳʹ √ʹܽ݀̅ + ͳʹ √ʹܾܿ̅− ͳʹ √ʹതܾܿ + ͳʹ √ʹ തܽ݀ͳʹ √ʹതܾ݀̅ + ͳʹ √ʹ തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (54)

Alice and Bob’s payoffs are, respectively 

஺ܲ = ͵ʹ ሺܽܿ + ܾ݀ሻ	൫ തܽܿ̅ + തܾ݀̅൯ 

(55) 

஻ܲ = ͵ʹ ሺܽܿ + ܾ݀ሻ	൫ തܽܿ̅ + തܾ݀̅൯ 

Another case is proposed by J.J. de Farias, where he defines a new initial state: 

௜ۧܧ| = ͳʹ √ʹሺ ۧܨܨ|ܫ + |ܱܱۧሻ (56)
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By replacing values for the initial state previously given, we obtain: 

௜ۧܧ| = ͳʹ √ʹ ൮ܫ ൦ͳͲͲͲ൪ + ൦ͲͲͲͳ൪൲ (57)

In (53), we replace the initial state, obtaining: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ ܫ ͳʹ √ʹܽܿ + ͳʹ ܫ−ܾ݀ʹ√ ͳʹ √ʹܽ݀̅ + ͳʹ ܫ−ܾ̅ܿʹ√ ͳʹ √ʹതܾܿ + ͳʹ √ʹ തܽ݀ܫ ͳʹ √ʹതܾ݀̅ + ͳʹ √ʹ തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (58)

The outcome for Alice and Bob are: 

஺ܲ = − ͵ʹ ሺܫ തܾ݀̅ + തܽܿ̅ሻሺ−ܽܿ +  ሻܾ݀ܫ

(59) 

஻ܲ = − ͵ʹ ሺܫ തܾ݀̅ + തܽܿ̅ሻሺ−ܽܿ +  ሻܾ݀ܫ

The following case is a modification of the previous one. Here, the initial state is modified 
and has the form: 

௜ۧܧ| = ͳʹ √ʹሺ ۧܨܨ| + ሻ (60)ܱܱۧ|ܫ

By replacing the respective Kets, we get:  

௜ۧܧ| = ͳʹ √ʹ ൮൦ͳͲͲͲ൪ + ܫ ൦ͲͲͲͳ൪൲ (61)

The final state of the system is given by: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ ͳʹ √ʹܽܿ + ܫ ͳʹ √ʹܾ݀− ͳʹ √ʹܽ݀̅ + ܫ ͳʹ √ʹܾܿ̅− ͳʹ √ʹതܾܿ + ܫ ͳʹ √ʹ തܽ݀ͳʹ √ʹതܾ݀̅ + ܫ ͳʹ √ʹ തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (62)

Alice and Bob’s rewards are shown ahead: 
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஺ܲ = − ͵ʹ ൫ܫ തܾ݀̅ + തܽܿ̅൯ሺ−ܽܿ +  ሻܾ݀ܫ

(63) 

஻ܲ = − ͵ʹ ሺܫ തܾ݀̅ + തܽܿ̅ሻሺ−ܽܿ +  ሻܾ݀ܫ

3.2.1 Dawkins model 
The same model for the classical analysis is presented, and so are the describing matrices: 

஺ܯ  = ቂʹ Ͳͷ −ͷቃ (64) 

஻ܯ  = ቂʹ ͷͲ ͳͷቃ (65) 

Payments for Alice and Bob are: 

(66) 

 

(67)
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3.2.2 Wikipedia case 1 
Like in section 2.2.2, the possible payments for both Alice and Bob has the form:  

஺ܯ  = ቂ͵ ͲͲ ʹቃ (68) 

஻ܯ  = ቂʹ ͲͲ ͵ቃ (69) 

From the method established, the payoff matrices for Alice and Bob are presented in an 
extended form: 
 

 
 

(70) 

 
 

(71)

 

3.2.3 Wikipedia case 2 
The values proposed in section 2.2.3 of the classical analysis are shown again for both Alice 
and Bob: 

஺ܯ  = ቂ͵ ͳͲ ʹቃ (72) 

஻ܯ  = ቂʹ Ͳͳ ͵ቃ (73) 
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The expected payoff for Alice and Bob are: 

 

(74) 

 

(75)

 

3.3 Burning money case 
This section has the same assumptions made for the classical analysis. The burning money 
case is analyzed in order to find the payment matrices for Alice and Bob. The un-burning 
money case is presented in section 3.2.2, but with different values as reward. 

3.3.1 Burning money 
Here, Alice can have a negative reward due to the assumption of burning money as a 
possible strategy that modifies the outcomes of the game, while Bob plays using only two 
strategies to choose from. This is shown on the following matrices: 

஺ܯ  = ቂ ʹ −ʹ−ʹ −ͳቃ , ஻ܯ = ቂͳ ͲͲ Ͷቃ (76,77) 
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The payoffs for Alice and Bob are: 
 

 

(78) 

 

(79)

 

4. Conclusion 

In this work, we made a classical and quantum analysis of the Battle of the Sexes game. The 
classical analysis was based on the model proposed by Frank Wang, using ordinary 
differential equations and the corresponding stability analysis; while the quantum scheme 
was based on the method introduced by Neto (Neto, 2008) using quantum circuits with 
quantum gates for two qubits. Both quantum and classical analysis were implemented using 
computer algebra software, specifically Maple. 
From the results obtained along this work, it is possible to observe that the quantum version 
has more versatility than the classical one, due to the effect of quantum superposition, the 

www.intechopen.com



 
Battle of the Sexes: A Quantum Games Theory Approach 407 

quantum entanglement and the complexity of the payment operators from which resulted 
expected payments with more engineering possibilities. It is to remark that the burning 
money case could be analyzed using different reasoning methods, which may lead to 
specific solutions such as guaranteeing other player's final choice (Ginitis, 2009). 
As a future investigation trend we propose the application of the Yang-Baxter operators 
(Zhang et al., 2005), which will play the role of the quantum gate J, hence generating 
completely different but more physically implementable quantum operators and expected 
payoffs. 
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