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1. Introduction

The properties of quantum systems at equilibrium are mainly displayed by the very nature of

the particles involved. As for example, distinguishable particles behave in a quite different

manner of indistinguishable bosons, which in turns behave very different from the also

indistinguishable fermions. Among the standard methods of statistical mechanics to handle

with quantum systems at equilibrium is included the way of counting the accessible states to a

given particle (1). Thus, the thermodynamical probability Ω comprising the set of possibilities

for a system of N particles to populate the available states will depend on the type of particle

being considered, as shown in Table 1. The method for calculating Ω consists in supposing

the existence of a number of energy levels, labeled by and index j, each level having energy

ε j and containing a total of nj particles. Besides, it is assumed that each level contains gj

distinct sublevels, all of which having the same energy. The value of gj associated with level

j is called the "degeneracy" of that energy level. Any number of bosons can occupy the same

sublevel, while the Pauli exclusion principle states that only one fermion can occupy any one

of the sublevels. Classical behavior emerges when the density is relatively low, which is more

common at high temperatures; in such cases, both fermions and bosons behave as if they

were classical particles. After identifying what kind of particles we are taking into account,

we use counting methods and combinatorial analysis to calculate the expected number nj

of those particles in level j with energy ε j. This is done by first calculating the number Ωj

of ways of distributing particles among the sublevels gj of an energy level j and taking the

product of the ways that each individual energy level can be populated to find the so called

thermodynamical probability Ω. Once we have Ω, it is a standard task to find the statistical

distribution for nj.

In this chapter, the counting method is extended to handle with equilibrium as well as

nonequilibrium quantum systems, in order to obtain the new thermodynamical probability

emerging from these situations. Also, systems only slightly out of equilibrium are considered,

such that a well defined temperature can be assigned to them, and the new results are pointed,

which take into account eventual experimentally detectable changes in their statistical

properties.

Another method to handle with equilibrium systems is to take advantage of the Boltzmann

factor, which establishes that, given two levels a and b whose energies are Ea and Eb,
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(1) (2) (3)

◦ ◦
◦ ◦

◦ ◦
◦◦

◦◦
◦◦

a)

(1) (2) (3)

◦ ◦
◦ ◦

◦ ◦ (b)

Table 1. Configurations of M = 3 accessible states for a) N = 2 indistinguishable bosons,
Ω = 6 and b) N = 2 indistinguishable fermions, Ω = 3. (1) denotes the first available state,
(2) and (3) denote the second and third available state, respectively.

respectively, the number na of particles in state a with energy Ea is given by

na = pa exp(−βEa), (1)

where pa is a constant indicating the occurrence of probability for state a. The following

condition is thus assumed to be satisfied:

naPMB(Ea→b) = nbPMB(Eb→a), (2)

where PMB(Ea→b) stands for the Maxwell-Boltzmann (MB) distribution accounting for the

transition rate from state a to another state b. This method will be heuristically used later to

obtain a generalized statistics for both equilibrium and nonequilibrium situations concerning

quantum systems.

1.1 Quons, anyons, and generalized statistics

The concept of particles with fractional statistics, called anyons, has been studied with

increasing interest, now finding applications in, for example, quantum Hall effect (2) and

superconductivity (3). Anyons are generally expected to be observed in two space dimensions

for a system whose wave function behavior of multiparticle under the exchange of particles

obeys Ψ(q1, q2, q3, q4, ...) = exp(iπα)Ψ(q1, q2, q3, q4, ...), where {q} represents generalized

coordinates and α is a real number defining the statistics. For bosons and fermions, α = 0 and

1, respectively, and α is any real number for anyons. Since the concept of anyons was proposed

(4; 5), there have been several approaches trying to understand its properties, including

a q-deformed bosonic algebra (6) and certain ad hoc conjectures aiming to generalize the

Bose-Einstein and Fermi-Dirac distributions (7). Without being exhaustive, it is worthwhile to

mention at least a few attempts to achieve a generalized anyonic statistics. As for example, an

interesting generalization of the Pauli exclusion principle can be advanced, without explicit

reference to spatial dimension (8). This is remarkable, since anyons was generally accepted to

exist only in two dimensions. The generalization as proposed in Ref.(8) consists on defining a

statistical interaction gαβ given by

∆dα = −∑
β

gαβ∆Nβ (3)

where dα is the one-particle Hilbert space dimension, and ∆Nβ is an allowed change of the

particle number Nβ at fixed size and boundary conditions. Thus, for bosons it is required
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gαβ = 0, while for fermions the exclusion principle requires gαβ = δαβ. Based on the

thermodynamical limit, further requirements must be imposed, such as the independency

of the number of particles and the rationality of gαβ. According to the author, at a fixed

particle numbers the counting state thus leads to the following size of the Hilbert space of

many particle states:

∏
a

(da + Na − 1)!

Na!(da − 1)!
, (4)

with dB = da and dF = da + Na − 1 for the Fock space dimensions of bosons and Fermi,

respectively.

We find another interesting proposal for generalizing Bose-Einstein and Fermi-Dirac statistics

in (9), where the distribution function for the number of anyons in a given state j is postulated

at once as

Nj =
γ

exp
[

β
(

ǫj − μ
)]

− f (α)
. (5)

The parameter μ characterizes the particle reservoir in the same way that β characterizes

the thermal reservoir, γ = 2s + 1 denotes the multiplicity of states and f (α) generalizes

the statistics, since f (α) = 0, 1,−1 recovers the Boltzmann, Bose-Einstein and Fermi-Dirac

statistics and, for anyons, it is expected that f (α) can assume any real number.

Although the interesting problem of what is exactly the distribution function for anyons in and

out of equilibrium remains opened, the above studies provide some clues to this question. It

is my purpose, in the remainder of this chapter, to show how to deep our understanding of

anyons by looking for some reasons to justify their behavior in a manner that sounds plausible.

2. Generalized thermodynamical probability

It is possible to provide a formula taking into account more general behavior than that

presented by fermions and bosons, as I show in the following, although, regarding to

equilibrium situations, it is not clear at the present if nature allows for such anyons . The

general problem we have to solve is that of obtaining the number Ω of ways that nj balls can

be distributed into gj boxes, each box having capacity to accommodate p balls. This number

is given by (10)

Ωp =
[nj/(p+1)]

∑
k=0

(−1)kCk
gj
× C

nj−k(p+1)

gj+nj−k(p+1)−1
, (6)

where Cm
n = n!

m!(n−m)!
and the brackets [nj/(p + 1)] in the upper limit indicate the integer

taken from nj/(p + 1). As for example, if nj = 2 and p = 1, then [2/3] = 0; if nj = 5 and

p = 2, then [5/2] = 2, and so on. This relation can also be written as

Ωp =
gj!

(gj − 1)!

[nj/(p+1)]

∑
k=0

(−1)k
(gj + nj − 1 − k(p + 1)!

k!(gj − k)![(nj − k(p + 1)]!
. (7)

From Eq.(6) it is easy to verify the number of configurations displayed in Tab.I: for the case

of bosons, nj = p = 2, gj = 3, and the summation is limited to k = 0, thus resulting Ω =

217Quantum Statistics and Coherent Access Hypothesis
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C2
4 = 6; for the case of fermions, p = 1, such that in the summation k = 0, 1,thus resulting

Ω = ∑
1
k=0(−1)kCk

3 × C2−2k
4−2k = 3. Proceeding in a general manner, from Eq.(6) we can recover

the statistics corresponding to the case p = 1, Fermi-Dirac (FD) distribution and p = nj,

Bose-Einstein (BE) distribution. For instance, taking p = nj in Eq.(6), the upper limit [nj/(nj +
1)] implies k = 0, and it is straightforward to obtain the BE statistics:

Ω
j
BE = C0

gj
× C

nj

gj+nj−1 =
(gj + nj − 1)!

nj!(gj − 1)!
, (8)

from which we obtain the thermodynamical probability for all the j levels:

ΩBE = ∏
j

Ω
j
BE = ∏

j

(nj + gj − 1)!

nj!(gj − 1)!
. (9)

Following the standard route (11), since the maxima of ΩBE and ln ΩBE occur at the same

value, we choose to maximize this latter function, which is subject to the constraints ∑j nj = N

and ∑j njǫj = E. Using Lagrange multipliers λ and β to form the function

f (nj) = ln ΩBE + λ(∑
j

nj − N) + β(∑
j

njǫj − E), (10)

and the the Stirling formula ln n! ∼= n ln n − n for the factorials, we take the derivative with

respect to nj, setting the result to zero and solving for nj, to find the Bose–Einstein distribution:

n
j BE =

gj

exp(λ + βEj)− 1
. (11)

From thermodynamics, we know that β = 1/kT, k being the Boltzmann constant, T the

temperature, and that λ is related to the chemical potential by λ = −βμ, thus being zero

for a photon gas. Similarly, when we take p = 1 and use the closed relation

[nj/2]

∑
k=0

(−1)k
(gj + nj − 1 − 2k)!

k!(gj − k)!(nj − 2k)!
=

(gj − 1)!

nj!(gj − nj)!
, (12)

it is straightforward to write

ΩFD = ∏
j

gj!

nj!(gj − nj)!
. (13)

The same standard procedure now leads to

n
j FD =

gj

exp
[

β(Ej − μ)
]

+ 1
, (14)

where the parameter of constraint λ = −βμ was written explicitly. Note that Eq.(6)

generalizes the concept of indistinguishable particles, and it is possibly a valid starting point

to study the statistics of particles whose behavior at equilibrium at temperature T is neither

that of bosons nor that of fermions. However, finding a closed relation like that of Eq.(12), for

Eq.(7) giving a general capacity p, which would allow one to obtaining a general formula for

218 Some Applications of Quantum Mechanics
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the thermodynamical probability Ωp, remains an opened problem. Of course, once we have

such a closed relation, we can apply the standard methods to deduce a generalized occupation

number np. I hope the readers can consider this problem interesting enough to pursue further.

Another way to derive Eq.(11) and Eq.(14) for a gas of photons (μ = 0) is the following. Let Ea

and Eb the energy of state a and b, respectively, for a two state system of distinguishable

particles. As discussed in the introduction of this Chapter, the maxwell-Boltzmann

distribution, Eq.(1), implies that, in equilibrium,

na

nb
=

PMB(Ea)

PMB(Eb)
= exp [−β(Ea − Eb)] , (15)

where nb and na are the number of distinguishable particles in state b and a, respectively.

Now, if we consider indistinguishable particles, as for example bosons, the "Bose-Einstein"

rate indicated by PBE(Ea→b) for one particle to make a transition from one state (a) to another

(b) and vice-versa must obey

PBE(Ea→b) = (1 + nb)PMB(Ea→b), (16)

PBE(Eb→a) = (1 + na)PMB(Eb→a), (17)

with nb, na = 0, 1, 2... We can assign the following meaning to Eq.(16) and Eq.(17): The

transition rate governed by BE statistics, being proportional to the MB distribution, makes

the probability to one bosonic particle goes from state a to state b (from state b to state a ) to

increase with the occupation number of state b (a). As the equilibrium is assumed, we can

write

naPBE(Ea→b) = nbPBE(Eb→a). (18)

From Eqs(16)-(18), we find

na

(1 + na)
exp (−βEa) =

nb

(1 + nb)
exp (−βEb) . (19)

If we now put nb

(1+nb)
exp (−βEb) = F(β) and solve to na we find, after changing the subindex

a to BE,

nBE =
1

F(β) exp (βE)− 1
, (20)

which has the same form as Eq.(11).

Proceeding in the same way, it is straightforward to rederive Eq.(14), for fermions, by this

method. We only need to change Eq.(16) and Eq.(17) by these ones:

PFD(Ea→b) = (1 − nb)PMB(Ea→b), (21)

PFD(Eb→a) = (1 − na)PMB(Eb→a), (22)

with na, nb = 0, 1. We must interpret Eq.(21) and Eq.(22) by saying that the probability for

one fermion to populate the state b (a) is either proportional to the Boltzmann factor if in state

219Quantum Statistics and Coherent Access Hypothesis
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b (a) there is no particle, or zero if in state b (a) there exists another fermion. Now, writing

naPFD(Ea→b) = nbPFD(Eb→a) and using Eqs.(21),(22) we obtain

nFD =
1

F(β) exp (βE) + 1
, (23)

which is the same form as Eq.(14).

A heuristic argument can be developed, based on the proceedings which lead to the BE and FD

statistics above, to deduce a generalized distribution function. Bearing in mind Eq.(7) for the

generalized thermodynamical probability, we must note that it allows for some fraction p/N

of the total number N of particles to populate a given available state. Thus, once the allowed

fraction is attained for a certain level, the probability for any anyon making a transition to that

level must be zero. With this reminds, consider the following generalization of Eqs.(16)-(17)

and Eq.(21)-(22):

PANY(Ea→b) = (γ − f nb)PMB(Ea→b), (24)

PANY(Eb→a) = (γ − f na)PMB(Eb→a), (25)

where na, nb = 0, 1, ..p, and PANY(Eb→a) stands for the rate of transition from state b to

state a governed by the anyonic statistics. Here γ and f are real parameters whose meaning

will be cleared in the following. To interpret both Eqs.(24) and (25), we must say that the

probability for one anyon to make a transition to state b is proportional to the MB factor, and

this probability suddenly becomes zero if the fraction f nb of particles attains the maximum γ

value for a given state b. Eq.(25) can be interpreted in a similar way. If we now require, as it

was done previously for the other transition rates, that in equilibrium we must have

naPANY(Ea→b) = nbPANY(Eb→a), (26)

we can combine Eq.(24)-(26) and use Eq.(15) to obtain, after proceeding in the very same way

as we did previously:

nANY =
γ

g(β) exp (βE) + f
, (27)

Eq.(27) generalizes the FD statistics and becomes the FD distribution when, of course, f = 1,

which means that transitions only occur for states with no particle.

Consider now the case when the transition rates are given by PANY(Ea→b) = (γ +
f nb)PMB(Ea→b), PANY(Eb→a) = (γ + f na)PMB(Eb→a) which generalize Eqs.(16) and (17). It

is straightforward to obtain, now

nANY =
γ

g(β) exp (βE)− f
(28)

Note that the corresponding interpretation of these transition rates must be that the anyons

now, being different from those governed by Eq.(27), have increasing probability to populate

a given state when the fraction f becomes larger. We see, thus, that is possible to derive, on

sound grounds, generalized statistics for anyons at equilibrium.

220 Some Applications of Quantum Mechanics
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3. Nonequilibrium systems and coherent access hypothesis

Nonequilibrium situations require a little bit of complexification, since a given particle can

now act as if it is populating more than one state at once. To convince that this is so it is enough

to remind that any initially pure state can be described, using the completeness relation, as a

superposition of each state physically accessible to the particle. I call this new situation as

coherent access hypothesis (12).

3.1 Coherent access for bosons

As we saw from the preceding Section, Tab.1, to define a microstate in statistical mechanics,

i.e., a given configuration, it is necessary to take into account the (in)distinguishability of the

particles, which gives rise to different configurations. In nonequilibrium situation, to calculate

all the possible configurations I now take into account, beside this characteristic, this another

one: the possibility to the particle simultaneously access more than one state, or, to avoid

eventual difficulties related to interpretations matter inherent to the quantum formalism, the

possibility to the particle to coherently access the available states. This situation is shown in

Tab. 2 for the case of p = gj considering two identical particles having two accessible states

(gj = 2). Note that if the particles were distinguishable, the corresponding configuration

would be different.

(1) (2) (12)

◦ ◦
◦ ◦

◦ ◦
◦◦

◦◦
◦◦

Table 2. A system out of equilibrium composed by two particles having two accessible states.
(1) denotes the first available state, (2) denotes the second available state, and (12) denotes
the coherent access to both states.

Comparing Tab.I and Tab.II, we see that, clearly, the nonequilibrium situation requires a new

strategy for counting microstates. We can represent this new strategy to count, as shown in

Tab.2, by the following sequences. The number between parentheses indicates the state to be

occupied, while the letter following the parenthesis indicates the corresponding occupation

by the particle a, which is identical to all the others: (1)a(2)a(12); (1)a(2)(12)a; (1)(2)a(12)a;

(1)aa(2)(12); (1)(2)aa(12); (1)(2)(12)aa. The first sequence corresponds to one particle

accessing the first available state and the other particle accessing the second available state,

with no coherent access by both particles; the second sequence corresponds to one particle

accessing the first state and the other one accessing coherently the states (1) and (2), and so

on. As the sequence must initiate by a number, and existing three possible number of states,

1, 2, and 12, there will remain 3− 1 numbers plus two letters a (particles) to be set in whatever

order (permutation). Therefore, the number of unrepeated sequences is

Ω∗ =
3 × (3 − 1 + 2)!

2!3!
= 6, (29)

221Quantum Statistics and Coherent Access Hypothesis
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where I have put a superscript (∗) to remind that we are treating with nonequilibrium

situation. Proceeding in a general manner, for gj sublevels with N∗
j particles, the number

Ω∗
j of unrepeated sequences is

Ω∗
j =

Gj(Gj + N∗
j − 1)!

Gj!N
∗
j !

=
(Gj + N∗

j − 1)!

(Gj − 1)!N∗
j !

, (30)

where Gj = ∑
gj

k=1 Ck
gj

is the number of possible sequences formed from gj, and Cm
n = n!/(n −

m)!m!. Taking as example the configuration given by Tab.2, where gj = 1, Nj = 2, Gj =

∑
2
k=1 Ck

2, thus Gj = C1
2 + C2

2 = 3; then

Ω∗
j =

(3 + 2 − 1)!

(3 − 1)!2!
= 6, (31)

which is the number of sequences given in (1)a(2)a(12); (1)a(2)(12)a; (1)(2)a(12)a;

(1)aa(2)(12); (1)(2)aa(12); (1)(2)(12)aa, corresponding to Tab.2. Therefore, the

nonequilibrium thermodynamical probability Ω∗
j for a given macrostate j is

Ω∗
j =

(Gj + N∗
j − 1)!

(Gj − 1)!N∗
j !

. (32)

Also, as Gj = ∑
gj

k=1 Ck
gj

= C1
gj
+ ∑

gj

k=2 Ck
gj

, and C1
gj

= gj, letting Lgj = ∑
gj

k=2 Ck
gj

, then Eq.(32)

can be rewritten and used to compose the thermodynamical probability Ω∗ = ∏
j

Ω∗
j :

Ω∗ = ∏
j

(gj + Lgj + N∗
j − 1)!

(gj + Lgj − 1)!N∗
j !

. (33)

From Eq.(33) we can see that the only changing in the thermodynamical probability is the

appearance of the factor Lgj modifying the degeneracy gj, the number of macrostates Ω∗
j ,

and also the thermodynamical probability and, consequently, the entropy S of the system, as

should be, since S = k ln Ω∗. Remarkably, note the similarity between Eq.(33) and Eq.(4),

provided that we identify dj = gj + Lgj.

We can easily verify that Eq.(32) gives rise to a BE-like statistics, with gj replaced by Gj. That

this is so can be checked proceeding by analogy with the equilibrium situation, as indicated

previously (1): First, we take the ln from both sides of Eq.(32). Second, we use the Stirling

formula for factorials. Third, we differentiate with respect to N∗
j and use ∂ ln Ω∗

j /∂N∗
j = ǫ∗j ,

where ǫ∗j generalizes ε j = βEj, β = 1/kT, finding

N∗
j /Gj =

1

exp(ǫ∗j )− 1
. (34)

Therefore, we see that the Bose-Einstein statistics is corrected, since the equality Gj = gj and

ǫ∗j = ε j will be valid only when the complete equilibrium is reestablished.

222 Some Applications of Quantum Mechanics
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Since we are treating with nonequilibrium systems, a fundamental point to be addressed is,

then, what is the meaning of temperature here, and how temperature enters in these formulas.

To apply these formulas, we can think that the system is bring into contact with a reservoir at

a well defined temperature T. As will be discussed later, the reservoir, even at idealized zero

temperature, will drive the system to a complete mixture of states at the end of the so-called

decoherence time τD (19). As a consequence, in a time scale shorter than that for occurring

the thermalization between the system and the reservoir, the coherence of the system will be

lost, implying its incapacity to access, coherently, every possible state, thus recovering the

usual BE distribution. Although the temperature of the reservoir is well defined for all times,

the temperature for the system is not. However, as I stressed before, we can think of taking

the system only slightly out of equilibrium, such that we can correct its temperature using an

expansion up to few orders in ǫ∗j and requiring that ǫ∗j → ε j = βEj when the equilibrium is

restated.

Thus, by expanding ǫ∗j in power series of ε j, which formally can be written as

ǫ∗j = ǫ∗0 +

(

∂ǫ∗j

∂ε j

)

ε0

ε j +
1

2!

(

∂2ǫ∗j

∂ε2
j

)

ε0

ε2
j +

1

3!

(

∂3ǫ∗j

∂ε3
j

)

ε0

ε3
j ..., (35)

and requiring that ǫ∗j → ε j = βEj when the equilibrium is restated, gives ǫ∗(0) = ǫ∗0 = 0

and

(

∂ǫ∗j
∂ε j

)

ε0j

= 1, such that the first order correction to the Bose-Einstein distribution can be

explicitly written as

N∗
j /Gj =

1

exp
[

βE + α1 (βE)2
]

− 1
, (36)

where I have truncated the power series up to second order and put 1
2!

(

∂2ǫ∗j
∂ε2

j

)

ε j=0

= α1. Note

that, from this approach, the net effect stemming from the nonequilibrium on a given system

is the increasing in the degeneracy, which in turn increases the available states given by Ω.

Also note that for systems only slightly out of the equilibrium, the energy emitted should

be slightly different from that corresponding to the system in equilibrium. I call attention to

the fact that some experiments, see Ref.(16), seem to point for the importance of the BE-like

statistics given by Eq.(36), which modifies the Boltzmann factor.

I now briefly discuss a point deserving further investigation, which regards to Fermi-Dirac

statistics (p = 1) for particles out of equilibrium. Take for example Table III, which shows the

total of Ω = 6 possibilities of occupation for N = 2 fermions having M = 3 available states.

The situation now is more complicated than that for bosons, since, for example, when the first

and second state is being coherently accessed by one fermion, indicated by (12) in Table III,

the other fermions cannot populate states labeled using either number 1 or 2; in this case, as

shown in Tab. III, when one fermion is in (12) state, the other one only can exist in state (3).
It remains a challenge to find the corresponding thermodynamical probability Ω for gj states

and nj fermions, and thus, the mean occupation number for fermions out of equilibrium, as

was done in Eq.(36), for bosons.

223Quantum Statistics and Coherent Access Hypothesis
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(1) (2) (3) (12) (13) (23) (123)

◦ ◦
◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦

Table 3. Configurations of M = 3 accessible states for N = 2 indistinguishable fermions. (1)
denotes the first available state, (2) and (3) denote the second and third available state,
respectively. (12) represents the first and second state being coherently populated, (123)
represents the three available states being coherently populated, and so on.

3.2 Coherent access for fermions

Because the plain difficulty in obtaining Ω for fermions out of equilibrium, as pointed above,

another route for this purpose must be in order. Thus, let us focus our attention on the

partition function, which, by definition, is defined as a sum in all microstates (ms):

Z = ∑
ms

exp(−βE), (37)

where β = 1/kT, and E is the energy of the system, which can also be written using the

number of particles ni in the state of i−th energy ǫ(i) of the system as E = ∑i niǫ(i). In this

case, the total number of particles is simply N = ∑i ni.

For an out of equilibrium system consisting of fermions, I introduce the coherent access

hypothesis to several states, which consists in maintaining the same form as that of Eq.(37),

but replacing ∑i niǫ(i) by ∑ij... nij...ǫ(i, j, ...), which, for fermions, implies i �= j �= ..., and nkl

is either zero or one and must be interpreted as being the fermion coherently accessing the

energy levels ǫ(k) and ǫ(l). For example, as discussed in the beginning of this Section and

represented in Table III, ǫ(k, l) represents the coherent access related to the energy levels k and

l, and ǫ(1, 2) represents, for example, the states (1) and (2) being coherently populated by a

single fermion. On the other hand, if we are taking into account bosons, there is no constraint

on ∑ij... nij...ǫ(i, j, ...), and of course nkl = 0, 1, 2,... is the number of bosons coherently accessing

the energy levels ǫ(k) and ǫ(l).
For what follows, I am assuming that the partition function preserves its form given by

Eq.(37) even at the nonequilibrium situation. To demonstrate this, I make use of this following

postulate, which is valid for equilibrium situation: that two systems, in contact with a third

one, as for example a reservoir at temperature T, act independently of each other while both

the systems exchange energy with the reservoir. Once this postulated is maintained, it is

straightforward to proceed the demonstration (1), and, for sake of completeness, let us briefly

outline the steps leading to this result. To this end, consider a system composed by two

subsystems A and B. The probability for this composed system to be in the energy state E∗
A+B

is PA+B(E∗
A+B), where the superscript (*) is to remind us that the system is out of equilibrium.

If, as usual, the interaction energy can be neglected, thus the energy of the composed system

is E∗
A+B = E∗

A + E∗
B, and

PA+B(E∗
A+B) = PA(E∗

A) + PB(E∗
B) (38)
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is the probability for the composed system to be in a particular state such that the subsystem

A has an energy E∗
A, and, at the same time, the subsystem B has an energy E∗

B. Now, suppose

that these two subsystems is put in contact with a third system, for example, a reservoir at

temperature T. While persisting the nonequilibrium situation (and even after that, indeed),

the two subsystems A and B act independently of each other, with both subsystems eventually

exchanging energy with the reservoir. Besides, the energy exchanged with the reservoir by a

given subsystem does not influence the energy that the other subsystem can exchange with

this same reservoir. This assumption, valid for two systems in equilibrium with a reservoir,

is here assumed to be valid also when the equilibrium was not reached. Therefore, as I am

assuming these events as independent, it can be writen

P(E∗
A+B) = P(E∗

A)P(E∗
B). (39)

Differentiating Eq.(39) with respect to E∗
A and E∗

B and equating this result we obtain

(dP/dE∗ = P′)

P′
A(E∗

A)PB(E∗
B) = PA(E∗

A)P′
B(E∗

B). (40)

Next, separating the variables and equating the result to a constant, we have

P′
A(E∗

A)

PA(E∗
A)

=
P′

B(E∗
B)

PB(E∗
B)

= −β∗ (41)

where β∗ is a constant independent from either E∗
A or E∗

B. Of course, in the equilibrium

situation we must have β∗ → β = 1/kT. From Eq.(41) follows, therefore, our desired result

P(E∗) =
exp(−β∗E∗)

Z∗ , (42)

where the partition function for the nonequilibrium situation is Z∗ = ∑
ms

exp(−β∗E∗) and the

index were dropped given the validity of Eq.(42) for the two subsystems.

Thus, according to Eq.(42), if P(ǫ∗j = β∗E∗
j ) is the probability for a given system out of the

equilibrium is in a particular microstate whose configuration is described by ǫ∗j = β∗E∗
j , then

P(ǫ∗j ) =
exp(−ǫ∗j )

Z∗ . (43)

Now, using Eq.(35) and requiring that ǫ∗j → βEj when the equilibrium is restated, Eq.(43) can

now be written as

P(ǫ∗j ) =
1

Z∗ exp

[

−βEj − α1

(

βEj

)2
− α2

(

βEj

)3
+ α3

(

βEj

)4
...

]

, (44)

where the other constants were renamed for convenience as 1
n!

∂nǫ∗j
∂εn

j
= αn−1. Such a state of

affairs giving origin to an infinite number of free parameters was studied in Refs. (14; 15) in

a different context. I will turn to this point in the next Section. Note that for systems only

slightly out of the equilibrium this last equation can be written as

P(ǫ∗) =
1

Z∗ exp
[

−βE − α1 (βE)2
]

, (45)
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where I have dropped out the index i. As stressed before, some experiments seem to point for

the importance of this last term, which modifies the Boltzmann factor (16). Eq.(45) applies

as well as for bosons and fermions just eventually changing the parameter α1 accounting

for the difference in the occupation number for this two particles. It is to be noted that, in

order to obtain an equation for the nonequilibrium fermions similar to that of Eq.(36), we

must find the nonequilibrium partition function Z∗ considering the fermionic nature of the

particles, with the occupation number in Table Ib being replaced by the occupation number

for out of equilibrium fermions as indicated in Table III. Unfortunately, this is also not an

easy task, demanding additional efforts. Notwithstanding, Eq.(45) shows several applications,

and exploring its experimental consequences would be a promising road to follow. Besides,

following another route yet using Eq.(45), it is possible to find an occupation number for

nonequilibrium fermions similar to Eq.(36), as desired. To this end, consider the following

reasoning: since the equilibrium is slightly disturbed, it is reasonable to assume that Eq.(45),

instead of Eq.(1), must be used to calculate the transition rates. Consider then a two state

system of distinguishable particles. Let Ea and Eb the energy of state a and b, respectively. The

MB-like distribution, Eq.(45), implies that

n∗
a

n∗
b

=
PMB(ǫ

∗
a )

PMB(ǫ
∗
b )

= exp
{

−β(Ea − Eb)− α1

[

(βEa)
2 − (βEb)

2
]}

, (46)

where n∗
b and n∗

a are the number of distinguishable particles in state b and a, respectively.

Eq.(46) thus corrects the usual rate of population of the two states. Now, if the equilibrium

is only slightly disturbed, we can assume that the transition rate from a to b is nearly the

transition rate from b to a, i.e.,

n∗
a PMB(ǫ

∗
a→b) ≈ n∗

b PMB(ǫ
∗
b→a), (47)

where I have indicated the single particle transition rate from state a to b as PMB(ǫ
∗
a→b).

By applying the same reasoning for two identical fermions as it was done previously - see

Eq.(16)-(23), we can write to the rate PFD(ǫ
∗
a→b) for one particle to make a transition from one

state (a) to another (b) and vice-versa as

PFD(ǫ
∗
a→b) = (1 − n∗

b )PMB(ǫ
∗
a→b), (48)

PFD(ǫ
∗
b→a) = (1 − n∗

a )PMB(ǫ
∗
b→a), (49)

where n∗
b and n∗

a is to be reminded as the nonequilibrium number of fermions which are either

zero or one. By the same told, I am assuming that similar to Eq.(47) we can write

n∗
a PFD(ǫ

∗
a→b) ≈ n∗

b PFD(ǫ
∗
b→a). (50)

From Eqs(47)-(50), we find

n∗
a

(1 − n∗
a )

exp
[

−βEa − α1 (βEa)
2
]

≈
n∗

b

(1 − n∗
b )

exp
[

−βEb − α1 (βEb)
2
]

,
. (51)
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If we now put
n∗

b

(1−n∗
b )

exp[−βEb−α1(βEb)
2]

, = F(β) and solve to n∗
a we find, after changing the

subindex a to FD,

n∗
FD ≈

1

F(β) exp
[

βE + α1 (βE)2
]

+ 1
, (52)

which is similar to Eq.(36), for bosons out of equilibrium. In fact, it is straightforward to

rederive Eq.(36) by this method, provided we assume n∗
a PBE(ǫ

∗
a→b) ≈ n∗

b PBE(ǫ
∗
b→a) and use,

now, PFD(ǫ
∗
a→b) = (1 + n∗

b )PMB(ǫ
∗
a→b) and PFD(ǫ

∗
b→a) = (1 + n∗

a )PMB(ǫ
∗
b→a), instead of

Eqs.(48)-(49).

For a simple, yet illuminating application of Eq.(45), consider N two-level systems at

equilibrium at temperature T1 with energies E1 = ǫ and E2 = −ǫ. Then, when this system

is bring to a slightly different temperature T2, we expect that Eq.(45) describes the route to

thermalization. In view of Eq.(45) we can write

Z∗ =
1

∑
n=−1

exp
[

−βEn − α1 (βEn)
2
]

(53)

= 2 exp[−α1 (βǫ)2] cosh (βǫ) , (54)

such that the N-particle partition function is Z∗ = Z∗N :

Z∗ = 2N exp[−Nα1 (βǫ)2] coshN (βǫ) , (55)

from which all the relevant experimental quantities can be deduced. As for example, the

internal energy is

U∗ = −
∂ lnZ∗

∂β

= −Nǫ tanh(βǫ) + 2Nα1βǫ2, (56)

and the specific heat

C =
∂U∗

∂T

= Nk(βǫ)2 cosh−2(βǫ)− 2Nkα1 (βǫ)2 , (57)

where it is to remind that α1 (βǫ)2 ≪ 1, the correction 2Nkα1 (βǫ)2 being very small.

4. Connection with entropic forms

As discussed in Section II, since the thermodynamical probability Ω was modified to Ω∗

to take into account the coherent access, a natural question emerging is what is the best

entropic form related to Ω∗. I note that, depending on the choice, we will face with different

implications. Once there is a plenty of entropic forms at our disposal, let us take as examples

two of them: the Boltzmann-Gibbs (SBG) and the Tsallis (Sq) entropies. As is well known,

while the first entropy is extensive, i.e. SBG(A + B) = SBG(A) + SBG(B), the second one in

general is not, i.e., Sq(A + B) �= Sq(A) + Sq(B) if q �= 1.
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Let us begin by the Boltzmann-Gibbs entropy, assuming for now that the only effect of the

nonequilibrium is to increase the degeneracy of the system, as seen in Section II. We shall see

that is possible to relate Eq.(44), and thus Eq.(45), either with an extensive or nonextensive

entropic form (15). To see how this can be accomplished, I again proceed in analogy with

what was done previously, taking advantage of Lagrange multipliers. Thus, given the

density operator ρ of the system and the Boltzmann constant k, we want to maximize the

Boltzmann-Gibbs entropy

SBG = −ktrρ ln ρ, (58)

where tr stands for the trace operation, subjected to the constraints given by the moments

〈

(∆E)n〉 = trρHn, (59)

where n = 0, 1, 2, 3, ... Note that for n = 0 the constraint is just the normalization condition

trρ = 1, while for n = 1 the constraint becomes the mean energy
〈

(∆E)n〉 =trρH, which are,

in general, the two constraints used in the maximization procedures of the entropy. We thus

multiply each constraint by the undetermined Lagrange multiplier βn, adding the result to

Eq.(58). After varying ρ, we will obtain

tr

(

1 +
∞

∑
n=0

βn Hn + ln ρ

)

δρ = 0. (60)

Since all the variations are independent and δρ is arbitrary, the extended (non-Maxwellian)

distribution ln ρ = −1 −
∞

∑
n=0

βn Hn follows, or, equivalently,

ρ = Z−1 exp(−
∞

∑
n=1

βn Hn), (61)

where the partition function is Z =trexp(−
∞

∑
n=1

βn Hn). In the energy representation where

H |E〉 = E |E〉, Eq.(61) reads

P(E) = Z−1 exp(−
∞

∑
n=1

βnEn)

= Z−1 exp
(

−β1E + β2E2 + β3E3 + β4E4...
)

(62)

where Z = ∑E exp(−
∞

∑
n=1

βnEn) and I have used P(E) =trρ |E〉 〈E|. The Lagrange multipliers

βk are formally obtained from βk = − ∂ ln Z
∂Ek , considering Ek = Yk as independent variables.

The equality between Eq.(62) and Eq.(44) is guaranteed, provided that β1 = β; βn = αn−1βn.

Therefore, according to the present view, nonequilibrium systems remains extensive, although

requiring a posteriori knowledge of the variance (second central moment), the coefficient of

skewness (third central moment), the kurtosis (fourth central moment), and so on, thus giving

rise to a virtually infinite number of free parameters. However, instead of using infinite

parameters, we could just use a single one by redefining a new ensemble fully determined by

this single parameter. An aesthetically appealing way to do so is to expand Eq.(44) in terms of
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the Tsallis entropic index (13). To do this, consider the following expanded form of Eq.(44):

P(ǫ∗j ) =
1

Z∗ exp

[

−βEj −
(1 − q)

2

(

βEj

)2
−

(1 − q)2

3

(

βEj

)3
+ ...

]

, (63)

where in general αn = (q−1)n−1

n . This is equivalent to the statement that the old ensemble

which depended of β, {αn} and Ej becomes now a function of only β, q and Ej. Eq.(63) can be

rewritten as

P(ǫ∗j ) =
1

Z∗ exp

{

1

1 − q

[

(1 − q) βEj −
(1 − q)2

2

(

βEj

)2
−

(1 − q)3

3

(

βEj

)3
− ...

]}

, (64)

where it is easily recognized the expanded form of the logarithm function ln(1 − x) = −x −
x2

2 − x3

3 − x4

4 − ... , x = (1 − q)βEj, such that Eq.(64) becomes

P(ǫ∗j ) =
1

Z∗

[

1 − (1 − q) βEj

]
1

(1−q)
, (65)

which is the q-distribution stemming from the extremization of Tsallis entropy,

Sq = k

1 − ∑
j

p
q
j

q − 1
, (66)

when considering a family of constraints determined by the q-expectation value of the energy

〈E〉q =

∑
j

p
q
j Ej

∑
j

p
q
j

, (67)

besides the norm constraint ∑
j

pj = 1. Therefore, a complete formal agreement between

Tsallis and Boltzmann-Gibbs entropies is possible. This formal equivalence gives rise to an

important issue related to a possible pseudononextensivity of the entropy used to describe

a given system, since this agreement suggest that nonextensivity can be removed by adding

new constraints.

5. Coherent access and decoherence time

In Section II I mentioned that equilibrium destroys the possibility of the system to coherently

access all the available states, thus preventing us to experimentally observe results diverging

from BE and FD distributions - see Eqs.(36),(52) and (57). In this Section it is briefly

discussed possible experiments to be done in order to measure deviation from the equilibrium

distributions.

To understand how the coherent access capacity of the system is lost even before the reservoir

to compel the system to the equilibrium, it will be instructive to analyze in some detail the

decoherence time concept. As I mentioned before, there is a relevant time scale, much less
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than that necessary to the system to acquire the thermal equilibrium, given by the decoherence

time, which has been extensively studied (17–20). For sake of the clarity, I will briefly

present the decoherence induced by the environment interpretation (19). In the so-called

Caldeira-Leggett model (21), as proposed initially by Feynman and Vernon (22), a massive

quantum system of interest and its environment are represented by a single Hamiltonian.

The massive system is represented by a single quantum oscillator, while the environment is

modeled as a thermal bath consisting of a set of N oscillators, the coupling occurring via

position coordinates. The master equation for the density operator derived by Caldeira and

Leggett from this model, in the position representation ρ(x, x′, t) and in the high temperature

limit, is
·
ρ = −

i

h̄
[H, ρ]− γ (x − x′)

(

∂ρ

∂x
−

∂ρ

∂x′

)

−
2mγkBT

h̄2
(x − x′)2 ρ (68)

where H is the Hamiltonian for the particle, γ is the relaxation rate, m is the mass of the

system, kB is the Boltzmann constant, T is the temperature of the heat bath and ∆x =
x − x′ is the typical separation from two peaks of the density matrix ρ(x, x′, t) in the

phase state representation of a quantum superposition; x and x′ standing for the diagonal

and off-diagonal position of the peak, respectively. In the above equation, the first term

corresponds to the unitary von Neumann evolution, while the second term is responsible

for dissipation. The third term, having a classical counterpart related to Brownian motion, is

the most important for our purposes, since it is responsible for eliminating the off-diagonal

terms, thus destroying the quantum coherence, or in other words, the coherent access capacity

of the system. For example, for a coherent superposition of two Gaussians, its evolution,

according to Eq.(68), will initially present four peaks, two on the diagonal (x = x′) and two

off the diagonal (x �= x′). While dissipation is governed in a time scale given by the second

term, decoherence is governed by the last term which, being proportional to the square of

the difference between diagonal and off diagonal terms, it will be dominant for large ∆x,

eliminating the off-diagonal terms at the rate
·
ρ ∼= −τDρ, which implies ρ ∼ exp(−t/τD),

where τD is the decoherence time

τD ≡
h̄2

2mγkBT (∆x)2
. (69)

Therefore, this model provides an indicative to the time scale for the coherent access to work

and thus for the emergence of the Bose-Einstein and Fermi-Dirac statistics. Besides, it sheds

light on the problem of nonexisting superpositions of macroscopic objects: as shown in Ref.

(19), according to Eq.(69) it is enough for 1g of matter at room temperature T = 300 K

and separation of 1cm to the decoherence be destroyed in τD ∼ 10−21s, even considering

relaxations times of the order of the age of the Universe. However, as I are arguing,

superposition is the core of the coherent access hypothesis. I shall, therefore, concentrate

the attention on systems composed of relatively few particles. For instance, Bose-Einstein

condensates (BEC) for N atoms at very low temperature indeed is a good candidate to observe

deviations from Bose-Einstein statistics in accordance with Eq.(36). To be specific, considering,

for example, a relaxation rate γ ∼ 1s−1taken from the average time of condensates of N

atoms of rubidium-87 at 10−7K (23), then assuming ∆x ∼ 1μm, which is much greater than

the atom size, the decoherence time will be scaled as τD ∼ N−1s. For typical N, around

102 − 106, we see that the decoherence time is high enough to be experimentally measured,
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thus allowing the system to coherently populate the accessible states. Therefore, we can expect

that BEC slightly out of equilibrium would emit radiation whose statistics, differing from that

of Bose-Einstein, should agree with the predictions given by Eq.(36).

6. Conclusions

Generalized statistics as well as nonequilibrium thermodynamics, being an open subject

under current investigation, provides us with several techniques to study the statistical

properties of systems. In this Chapter I study possible ways to introduce generalized statistics

in both equilibrium and nonequilibrium situations. Also, I developed a new approach to

study a nonequilibrium system. This new approach consists in extending the counting

methods taken from combinatorial analyses to include the possibility for a system out of

equilibrium to act as if it is accessing more that one state at once, a hypothesis I named by

coherent access. As a consequence of the coherent access hypothesis, the process of counting

how the particles access the available states of a physical system is modified. According

to this hypothesis, the statistics resulting from the spectrum of emission of systems out of

equilibrium is different from the Bose-Einstein statistics, being this difference in principle

experimentally detectable. I then pointed out that coherent access is inhibited at the time scale

of the decoherence time, and I explored situations found in Bose-Einstein condensates (BEC)

which can be suited to demonstrate the validity of the coherent access hypothesis. Finally,

I note that, although BEC systems were mentioned, the above reasoning must be valid for

whichever systems having a sufficiently high decoherence time for preserving the coherent

access.
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