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1. Introduction

The motivations of high energy physics collider experiments include the precise measurement
of parameters in the standard model (Passarino & Veltman, 1979; van Oldenborgh &
Vermaseren, 1990) and beyond. In recent years, the precision of high energy experiments at
colliders has increased significantly as a result of developments in electronics. The detection of
any deviations of the experimental data from the theoretical predictions may lead to the study
of new phenomena. In modern physics, everything is composed of elementary particles, and
there are four basic interactions acting on particles: gravitation, and the weak, electromagnetic
and strong interactions. When we consider a scattering process of elementary particles, the
cross section reflects the dynamics which govern the motion of the particles, caused by the
interaction.
All information pertaining to a particle interaction is contained in the amplitude according to
the (Feynman) rules of Quantum Field Theory. Generally, with a given particle interaction,
a large number of configurations (represented by Feynman diagrams) are associated. Each
diagram represents one of the possible configurations of the virtual processes, and it describes
a part of the total amplitude. The square sum of the amplitudes delivers the probability or
cross section of the process (by integration). Based on the Feynman rules, it is the goal to
obtain the amplitude using the steps listed in Figure 1.
Feynman diagrams are constructed in such a way that the initial state particles are connected
to the final state particles by propagators and vertices. Particles meet at vertices according
to a coupling constant g which indicates the strength of the interaction. The amplitude is
expanded as a perturbation series in g, where the leading (lowest) order of approximation
corresponds to the tree level of the Feynman diagrams. The evaluation of tree diagrams is well
known and analytical formulations exist, which have been developed into automatizations of
Figure (1) and are heavily used in high energy physics. For the tree level, packages such as
GRACE, COMPHEP, CALCHEP, FEYNARTS/FEYNCALC/FORMCALC, MADGRAPH, FDC,
and so on, are available.

14

www.intechopen.com



2 Will-be-set-by-IN-TECH

(i) Specify the physics process (external momenta and order of
perturbation);
(ii) draw all Feynman diagrams relevant to the process;
(iii) determine the contributions to the amplitude.

Fig. 1. Scheme for computation of the cross section amplitude

Without the higher perturbative orders, which require the evaluation of loop diagrams,
the theory is inept at modeling the experimental observations precisely. The
computation of loop integrals allows the inclusion of higher order terms for perturbation
calculations of the amplitude in quantum field theory. For the one-loop order
an analytic treatment is established and has been implemented in several automatic
computation systems which are in various stages of testing. Currently available
packages include FEYNARTS/FEYNCALC/LOOPTOOLS (van Oldenborgh & Vermaseren,
2000), GRACE-1LOOP (Fujimoto et al., 2006; Yasui et al., 2007), XLOOPS-GINAC (Bauer,
2002), GOLEM/SAMURAI (Binoth et al., 2009; Heinrich et al., 2010), HELAC-NLO (van
Hameren et al., 2009), and so on. However there is no analytical method for calculating
higher order corrections in a systematic way, especially for higher than two-loop electroweak
corrections including three or four legs (three-point or four-point) and general mass
configurations. Therefore semi-numerical or fully numerical approaches have been an
important topic of study for many research groups.
We have developed a novel, fully numerical method, DCM (Direct Computation Method),
to evaluate loop integrals based on a combination of numerical integration and numerical
extrapolation techniques. Developed originally for cases without infrared (IR) or ultraviolet
(UV) divergences, DCM uses nonlinear extrapolation to regulate singularities caused by
vanishing integrand denominators in the interior of the integration domain. Furthermore,
a regularization of IR divergence caused through boundary singularities has been enabled by
an extension of DCM.
In this paper we describe the DCM regularization techniques. Subsequently, Section 2
reviews formalism and notations pertaining to Feynman diagrams and loop integrals. After
introducing the basic DCM method in Section 3, we discuss IR divergence (and the DCM
regularization to handle it) in Section 4, while giving examples and numerical results.
Section 5 presents concluding remarks and avenues for future work.

2. Feynman diagrams and loop integrals

The general form of an L-loop integral with N propagators is given by

I =
∫ L

∏
j=1

dD lj

iπD/2

N

∏
r=1

1
Dr

(1)

where D is the space-time dimension, and the integration is over the loop momenta lj, j =
1, · · · , D. Here Dr is the denominator of the r-th propagator,

Dr = q2
r − m2

r + iδ, (2)

334 Measurements in Quantum Mechanics

www.intechopen.com



Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 3

where qr and mr, r = 1, 2, · · · , N are the momentum of the propagator and the mass of the r-th
internal particle, respectively, and iδ is an infinitesimal term (with positive δ), which prevents
the integral from diverging if D vanishes inside the integration domain. The latter happens in
the physical region, where the total squared energy s of the colliding particle system exceeds a
threshold so that the reaction can actually take place in the real world. Below this threshold,
in the unphysical region, the integral satisfies the representation (1) with δ = 0.
By the generalized Feynman identity (Nakanishi, 1971),

1
D1D2 · · · DN

= (N − 1)!
N

∏
j=1

(

∫ ∞

0
dxj

)

δ(1 − ∑
N
r=1 xr)

(∑N
r=1 xrDr)N

, (3)

where the {xr} are Feynman parameters. Note that, in view of the δ-function and xr ≥ 0
for each r = 1, · · · , N, we have 0 ≤ xN = 1 − x1 − · · · − xN−1, so that 0 ≤ ∑

N−1
r=1 xr ≤ 1.

Thus, if xN is eliminated in terms of the other coordinates, the integration region reduces to
the N − 1-dimensional unit simplex, { x | ∑

N−1
j=1 xr ≤ 1, xr ≥ 0 for 0 ≤ r < N }. However, in

the following we will leave the δ-function in the integrand, and set the upper bounds of the
integration to 1.
After the loop momentum integrations of Eq. (1), the scalar loop integral I is given in (Binoth
& Heinrich, 2004) as

I = Γ(N − DL/2)(−1)N
∫ 1

0

N

∏
r=1

dxr δ(1 −
N

∑
r=1

xr)
UN−(L+1)D/2

FN−LD/2
. (4)

Eq. (4) is called a Feynman parametric integral. The expressions of U and F can be constructed
according to the topology of the corresponding Feynman diagram. The function

U (x) = ∑
T∈ T1

∏
j∈ C(T)

xj

is a sum of monomials, each a product of variables corresponding to the loop lines (edges)
which are cut in the graph to form the tree T. The tree is called a 1-tree, T ∈ T1 (= the set of
all such 1-trees). The set of lines that was cut constitutes a chord C(T), which corresponds to
a monomial of degree L in the Feynman parameters. For example, each 1-tree of a diagram
consisting of one loop is formed by cutting one line of the loop, thus U (x) = ∑

N
j=1 xj = 1 for

this diagram.
A 2-tree T̂ consists of two disconnected trees which are obtained by cutting an edge of a 1-tree,
T̂ ∈ T2 (= the set of all such 2-trees), and the corresponding chords determine monomials of
degree L + 1 in the Feynman parameters. Then, the function F0 is defined as

F0 = ∑
T̂∈ T2

( ∏
j∈ C(T̂)

xj)(−s(T̄)),

where s(T̄) = (∑j∈ C(T̂) pj)
2 is a Lorentz invariant. The denominator function F (x) is given

by

F (x) = F0(x) + U (x)
N

∑
j=1

xjm
2
j .
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4 Will-be-set-by-IN-TECH

In this paper we consider three types of divergences which may occur in the evaluation of
loop integrals. The first is a divergence which occurs when the denominator vanishes in the
integration region due to the specific configuration of the masses and external momenta. The
other two are the infrared (IR) divergence, which appears when some of the internal particles
are massless, and ultraviolet (UV) divergence, which is due to the contribution incurred from
very large loop momenta.
The functions U and F in (4) are positive semi-definite functions of the Feynman parameters.
The vanishing of U is determined by the topology and is related to the UV subdivergences of
the graph. On the other hand, the vanishing of F depends not only on the topology but also
on the kinematical parameters, and may (or may not) lead to an IR divergence.

3. Direct Computation Method

The imaginary part iδ in the denominator of the propagator, Eq. (2), is introduced in the
formalism as an infinitesimal quantity, to prevent the integral from diverging. In that sense, it
plays a role as a regulator. For a numerical computation we consider I in (4) as a function of
δ, and obtain the integral in the limit as δ tends to zero.
For this limiting process, we construct a sequence of approximations, I(δl), l = 0, 1, · · · , for
a decreasing sequence of δl such as δl = δ0/Ac

l , Ac > 1, and extrapolate to the limit. For the
extrapolation or convergence acceleration of a sequence S(δ) to the limit S as δ → 0, we rely
on the existence of an asymptotic expansion

S(δ) ∼ S + a1 ϕ1(δ) + a2 ϕ2(δ) + · · · = S + ∑
j≥1

ϕj(δ), (5)

where the ϕj functions are arranged in decreasing order of δ, so that limδ→0
ϕj+1(δ)
ϕj(δ)

= 0.

A linear extrapolation method can be used if the ϕj(δ) are known functions of δ. It yields
solutions to linear systems of the form

S(δl) = a0 + a1 ϕ1(δl) + . . . aν ϕν(δl), l = 0, . . . , ν, (6)

of order (ν + 1) × (ν + 1) (in the unknowns a0, . . . aν) for increasing values of ν (Brezinski,
1980; Lyness, 1976). For example, the ϕk(δ) functions may constitute a sequence of integer
powers of δ, which play the role of the coefficients in the linear system (6). The goal is to
combine values of S(δ) for decreasing values of δ, in order to eliminate terms from the error
expansion of S(δl)− a0.
Apart from geometric and harmonic sequences of δ, we have explored the Bulirsch

sequence (Bulirsch, 1964), of the form δ = 1/b with b = 2, 3, 4, 6, 8, 12, 16, . . . (consisting of
powers of 2, alternating with 1.5× the preceding power of 2). The type of sequence selected
influences the stability of the process, as for Romberg type integration, which was found to
be more stable with the geometric sequence than with the harmonic sequence (the Bulirsch
sequence ranging in between) (Lyness, 1976). On the other hand there is a trade-off with the
computational expense of S(δ), which may become prohibitive for fast decreasing δ, especially
in multivariate applications. For the computations we can furthermore use versions of bl

starting at, e.g., b0 = 1, 3 or 1/8.
If the functions of δ in the asymptotic expansion (5) are not known, a nonlinear extrapolation
may be suitable (Ford & Sidi, 1987; Levin & Sidi, 1981; Sidi, 1979; Wynn, 1956). In that case

336 Measurements in Quantum Mechanics
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Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 5

we use the ε-algorithm (Shanks, 1955; Wynn, 1956), which can be applied under more general
conditions than those allowing linear extrapolation, if a geometric sequence is used for δ, for
example with ϕj of the form ϕj(δ) = δαj logk j (δ), where αj > 0 and integer kj ≥ 0. The actual
form of the underlying δ-dependency does not need to be specified for the ε-algorithm. As
a disadvantage, the latter does come with additional cost (compared to linear extrapolation)
in terms of the number of elements S(δl) needed for the elimination of parts of the error
expansion.
This prescription is implemented as DCM and a schematic view of the program flow of
DCM is shown in Fig. 2. For unphysical kinematics, it is sufficient to only carry out the

Determine 

sequence of 

the regulator

Start

Done

Integration

Put the 

regulator=0 

Done

Integration

and get the 

sequence of I

Extrapolate the 

sequence of I

N

Y

Change the 

regulator

Requested 

accuracy?

Physical  

kinematics ?

Y

N

Abnormal 

termination?

N

Done Y

Fig. 2. Program flow of DCM.

multi-dimensional integration with δ = 0. While no extrapolation is required in this case, the
procedure will nevertheless produce a result, although it is less efficient. If an extrapolation
is performed under valid conditions, it is the goal of the implementation in Fig. 2 to produce
sequences which converge faster than the original, until convergence is detected within the
requested accuracy and maximum number of steps. Otherwise an abnormal termination is
flagged.
For the numerical integration, we use the QUADPACK (Piessens et al., 1983) routines
DQAGE or DQAGSE. These are 1D automatic, adaptive integration algorithms, which apply

337Toward Automatic Regularization for Feynman
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6 Will-be-set-by-IN-TECH

Gauss-Kronrod quadrature rules on the subintervals resulting from the adaptive partitioning.
The one-dimensional quadrature algorithms are applied in an iterated scheme for the
multi-dimensional integration (de Doncker & Kaugars, 2010; Li et al., 2004).
It is interesting to note that the numerical integration sequence can often start with a
fairly large δ value, such as δ0 = 1.240 (for a geometric sequence with base 1/1.2), which
allows dealing with a less singular behavior of the integrand, and can greatly simplify the
integrations through the sequence. We are examining how to set the initial value of δ

heuristically, depending on the mass values occurring in the integrand denominator.
So far we have applied DCM effectively for one-loop three-, four-, five- and six-point loop
integrals with masses (de Doncker, 2003; de Doncker et al., 2010; 2011; de Doncker, Shimizu,
Fujimoto & Yuasa, 2004; de Doncker et al., 2006; de Doncker, Shimizu, Fujimoto, Yuasa, Cucos
& Van Voorst, 2004; Yuasa et al., 2007; 2008). We have also applied it successfully to two-loop
two-, three- and four-point loop integrals with masses (see, e.g., de Doncker et al. 2011; 2006;
Yuasa et al. 2011; 2008; 2010). Thus even though the integrands in these cases suffer from
detrimental singular behavior due to the configuration determined by the actual kinematical
parameters, DCM was clearly able to regulate this type of divergence by finite δ.

4. IR divergence and regularization

IR divergence corresponds to the presence of massless internal particles like photons or
gluons. We will consider two prescriptions to regularize IR divergence. The first is the
more natural procedure, classified in a broad sense as mass regularization in (Muta, 2010), by
introducing a small fictitious mass λ for the massless internal particles; and the other is the
dimensional regularization technique which was originally proposed to control UV divergence.
With respect to the mass regularization prescription, our procedure for the integration of
the IR diagram is as given by Fig. 2, applied to configurations where some masses are very
small. Since λ in the denominator is fixed, no extension of DCM is needed and the procedure
is straightforward. In dimensional regularization, the space-time dimension D in Eq.(4) is
replaced by 4 + 2ǫ and it is assumed that ǫ → 0. This results in a Laurent expansion of the
integral as a function of ǫ. It should be noted that two regulators appear, (δ, λ) for mass
regularization, and (δ, ǫ) for dimensional regularization, in order to handle integrals with
divergence due to physical kinematics as well as IR divergence.
It is well-known that IR divergence cancels out in well-defined physical quantities
(e.g., (Kinoshita, 1962; Muta, 2010; Nakanishi, 1971)), but the regularization is required
to replace each IR divergent integral in the formalization of the physical quantity by
a mathematically well-defined quantity. The regularization is removed after achieving the

cancellation of the IR divergence in the physical quantity (Muta, 2010).
Mass regularization plays a role in verifying calculations of the total cross section. As an
example, consider the e+ e− → e+ e− γ process (for only the QED interaction), resulting
in eight tree diagrams and 100 one-loop diagrams, of which 80 diagrams are IR divergent.
By the cut-off kc let us denote an energy threshold of the emitted photon as follows. If the
energy of the photon exceeds kc, it is a hard photon; with energy below kc, it is a soft photon.
The total cross section σ(λ, kc) is a sum of: (1) loop diagram, (2) soft-photon diagram, and (3)

hard-photon diagram contributions. Using (1) and (2), the independence of λ can be checked;
and independence of kc can be verified with (2) and (3).

338 Measurements in Quantum Mechanics
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Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 7

4.1 Regularization by fictitious mass

In the mass regularization based on the procedure of Fig. 2, the dependence on δ may
dominate the behavior of the denominator in Eq. (4) when λ is very small. In (de Doncker
et al., 2005; Yuasa et al., 2007), we investigated the behavior of the results and found that
the DCM method breaks down for extremely small values of λ (less than 10−15 GeV in
double precision arithmetic). The point of deterioration can be moved, to some extent, by
performing the calculations in quadruple precision. For example, results of up to 8-figure
accuracy are obtained using quadruple precision for the IR divergent four-point diagram (γγ

box diagram), with m = 0.510−3 GeV and λ = 10−15 GeV and with the center of mass energy
s = (p1 + p2)

2 = 5002 GeV2 (de Doncker et al., 2005), whereas the corresponding double
precision results are only accurate to about two figures.
Furthermore using the extended precision library HMLIB (Fujimoto et al., 2006), which is
based on the IEEE 754-1985 floating point standard, results are provided in (Yasui et al., 2007;
Yuasa et al., 2007) for the one-loop three-point diagram and λ as small as λ = 10−160 GeV,
and for the one-loop four-point diagram with λ ≥ 10−30 GeV. The validity range of DCM thus
supports the conventional IR regularization technique using extended precision arithmetic for
this process.

4.2 Dimensional regularization

In the scheme of dimensional regularization, a new idea is required since the second regulator
ǫ appears in the exponent of the integrand denominator. Let us denote the value of the integral
for a fixed δl and ǫk by I(δl , ǫk). Then we apply DCM of Fig. 2 to calculate limδ→0+ I(δ, ǫk),
which we will denote by I(0, ǫk). It is our goal to use a sequence of I(0, ǫk), k = 0, 1, · · · to
approximate the coefficients of leading order terms in the Laurent expansion of I(0, ǫ) with
respect to ǫ.
This use of DCM comprises a double extrapolation technique where both δ → 0 and ǫ → 0. A
high-level description is outlined in the algorithm of Fig. 3. Its application is demonstrated
in subsequent examples. The while loop condition in the algorithm enforces a test on
the maximum number of iterations and may implement a check on convergence of the
ǫ-extrapolation.

Double_extrapolation_algorithm {
Set initial ǫ
// ǫ extrapolation loop
while (ǫ extrapolation conditions) {

I(0, ǫ) ← DCM(ǫ)
Obtain leading term coefficients
Set next ǫ
}

}

Fig. 3. Algorithm for IR divergent loop integral

339Toward Automatic Regularization for Feynman
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4.2.1 Example 1

First we present the scalar massless one-shell one-loop four-point diagram (L = 1, N = 4) as
a simple example. The integral is given by

I4 =
∫ 1

0
d4x

δ(1 − ∑
N
j=1 xj)

(−sx1x3 − tx2x4 − iδ)2−ǫ
,

with s = (p1 + p2)
2 and t = (p1 + p3)

2. Using ∑
N
j=1 xj = 1 and x4 ≥ 0, the integral becomes

I4 =
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

1
(−sx1x3 − tx2x4 − iδ)2−ǫ

. (7)

With the sector decomposition technique (Binoth & Heinrich, 2004; Fujimoto & Ueda, 2008),
Eq. (7) yields

I4 = 2
∫ 1

0
d3x(x−1+ǫ

1 x−1+ǫ
2

(1 + x1 + x2 + x1x2x3)
−2ǫ + (1 + x1 + x2(x1 + x3))

−2ǫ

(−s − tx3 − iδ)2−ǫ
(8)

+ x−1+ǫ
1

(1 + x1 + x2 + x1x3)
−2ǫ

(−s − tx2x3 − iδ)2−ǫ
) + (s ↔ t),

via successive sector decompositions, and elimination of the δ-function (symmetrically with
respect to the coordinate variables). The (s ↔ t) part consists of the terms listed in the
integrand with s replaced by t and vice-versa. By expanding the non-singular numerators
around x1 and/or x2 = 0, the IR singularity then manifests itself through a pole at ǫ = 0.
The coefficients of the Laurent expansion

I4 =
C−2

ǫ2 +
C−1

ǫ
+ C0 +O(ǫ) (9)

can be collected as sums of multi-dimensional integrals. However, the asymptotic behavior of
Eq. (9) as a function of ǫ gives a basis for an approximation of the coefficients C0, C−1, C−2 by
extrapolation. For an approximation of C−2 we can use

C̃−2 = I(ǫ) ǫ2 ∼ C−2 + C−1ǫ + C0 ǫ2 + · · · (10)

as ǫ → 0. Thus we proceed by constructing a sequence of C̃−2(ǫl) = I(ǫl) ǫl
2, and use

the ε-algorithm (Shanks, 1955; Wynn, 1956) for numerical extrapolation. For s, t < 0 the
denominators in Eq. (8) do not vanish and the integral exists for ǫ > 0. Results of the
computations according to Eq. (10) for C̃−2 with s = t = −1, for ǫk = 2−k, k ≥ 0, together
with the extrapolated values, are shown in Table 1.
For the evaluation of C−1 we do not require another sequence of integrals to be computed
since we can use the C̃−2 sequence divided by the constant ǫ,

C̃−1 = I(ǫ) ǫ =
C̃−2

ǫ
∼

C−2

ǫ
+ C−1 + C0 ǫ + · · · .

340 Measurements in Quantum Mechanics
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Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 9

k I(ǫk)ǫ
2
k = C̃−2 Extrapolated (C−2)

0 0.2467401100272340E+01

1 0.3915839671912849E+01

2 0.4356784142166274E+01 0.454976991318E+01

3 0.4322263111559589E+01 0.432476950067E+01

4 0.4203435233964723E+01 0.437091943007E+01

5 0.4113097380184850E+01 0.382664876650E+01

6 0.4059492230026028E+01 0.399594399188E+01

7 0.4030494087959442E+01 0.399987052327E+01

8 0.4015435528831175E+01 0.399999594538E+01

9 0.4007765070784543E+01 0.400000011407E+01

10 0.4003894385147564E+01 0.400000000650E+01

11 0.4001950158104918E+01 0.400000000197E+01

Exact: 4.0

Table 1. Extrapolation results, C−2 and C̃−2 of Eq. (10)

Whilst {C̃−1(ǫk)} is a divergent sequence, the ε-algorithm is able to extrapolate to the value
of C−1 (barring roundoff). Furthermore, we have

C̃0 = I(ǫ) =
C̃−2

ǫ2 ∼
C−2

ǫ2 +
C−1

ǫ
+ C0 +O(ǫ).

For this simple example, the analytic formulae are known for C−2, C−1 and C0 (Fujimoto &
Ueda, 2008), e.g.,

C−2 = 4
∫ 1

0
dx

1
(−s − tx − iδ)2 + (s ↔ t).

As shown in Table 1, the result by DCM with ǫ-extrapolation agrees with the analytic result
for s = t = −1.

4.2.2 Example 2

Here we consider the tensor integral of the massless one-loop three-point integral (L = 1 and
N = 3) of rank M ≤ 3 (Kurihara, 2005),

T
(3)
μ···ν = ∑

i

Ci
μ···ν Ji

3(p2
1, p2

2, p2
3; n

(i)
x n

(i)
y ),

where

Ji
3(p2

1, p2
2, p2

3; n
(i)
x , n

(i)
y ) =

1
(4π)2

ǫΓ(−ǫ)

(4πμ2
R)

ǫ

∫ 1

0
dx

∫ 1−x

0
dy

xn
(i)
x yn

(i)
y

D1−ǫ
, (11)

D = (p1x − p2y)2 − ρxy − p2
1x − p2

2y − i0,

ρ = p2
3 − (p1 + p2)

2.
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10 Will-be-set-by-IN-TECH

In the case p2
1 = p2

2 = 0 and p2
3 	= 0 with nx = ny = 0, this is

J3(0, 0, p2
3; 0, 0; ǫ) =

1
(4π)2

ǫΓ(−ǫ)

(4πμ2
R)

ǫ

∫ 1

0
dx

∫ 1−x

0
dy

1

(−p2
3xy − i0)1−ǫ

(12)

=
ǫΓ(−ǫ)

(4π)2

(

− p̃2
3

(4πμ2
R)

)2
1

−p2
3

B(ǫ, ǫ)

2ǫ

where p̃2
3 = p2

3 + iδ and μR is the renormalization energy scale. As ǫ → 0, J3 of Eq. (12)
satisfies the expansion

J3(0, 0, p2
3; 0, 0; ǫ) ∼

C−2

ǫ2 +
C−1

ǫ
+ C0 +O(ǫ), (13)

where C−2, C−1 and C0 are given by

C−2 =
1

(4π)2 p2
3

,

C−1 =
1

(4π)2 p2
3

ln
(

−p2
3

)

,

C0 =
1

(4π)2 p2
3

(

−
π2

12
+

1
2

ln2
(

−p2
3

)

)

.

This result is used subsequently, for the case p2
1 = 0, p2

2 	= 0 and p2
3 	= 0 with nx = ny = 0. The

IR divergent integral

J3(0, p2
2, p2

3; 0, 0; ǫ) =
1

(4π)2 × I3,

I3 =
ǫΓ(−ǫ)

(4πμ2
R)

ǫ

∫ 1

0
dx

∫ 1−x

0
dy

1

(−(p2
3 − p2

2)xy − p2
2y(1 − y)− i0)1−ǫ

(14)

is expressed as

J3(0, p2
2, p2

3; 0, 0; ǫ) = J3(0, 0, p2
3; nxny; ǫ)× Gnx=0(z) (15)

where z =
p2

3−p2
2

p̃2
3

and the function Gnx=0(z) is defined as

Gnx=0(z) = 2F1 (1, 1 − ǫ; 2; z)× ǫ. (16)

Here 2F1 is the Gauss hypergeometric function, which has the Euler integral representation,

F(α, β; γ; z) = 2F1 (α, β; γ; z) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0

t β−1(1 − t) γ−β−1

(1 − t z) α
dt,

where ℜγ > 0, ℜβ > 0.
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For nx = ny = 0, Eq. (13) and Eq. (16) are used to expand Eq. (15) as

J3(0, p2
2, p2

3; 0, 0; ǫ) ∼
C−1

ǫ
+ C0 +O(ǫ) (17)

with

C−1 = −
1

(4π)2 p2
3

ln(1 − z)

z
,

C0 = −
1

(4π)2 p2
3

(

ln(−p2
3)

ln(1 − z)

z
+

ln2(1 − z)

2z

)

.

Next we demonstrate the two approaches outlined above for the numerical evaluation of
J3(0, p2

2, p2
3; 0, 0; ǫ) by a double extrapolation. The first is a direct computation based on

Eq. (14), and the second uses Eq. (15) with a hypergeometric function computation as given
by Eq. (16).
In the former approach we replace i0 by iδ in the denominator of the integrand in Eq. (14),
for an application of the DCM scheme given in Fig. 2. We perform the δ-extrapolation by
the ε-algorithm (Shanks, 1955; Wynn, 1956), with the geometric sequence of δ = δl = 2−8−l ,
l = 0, 1, · · · , which yields a value for the integral I(0, ǫk) for fixed ǫk. This delivers a sequence
of I(0, ǫk), k = 0, 1, · · · .

ν C−1 C0

4 -4.2192812666986e-05 -3.712127933292e-04

5 -4.1395889404493e-05 -3.975112609915e-04

6 -4.1448485840595e-05 -3.949340356225e-04

7 -4.1446205836943e-05 -3.951004758891e-04

8 -4.1446278988175e-05 -3.950927950097e-04

9 -4.1446277437321e-05 -3.950930322905e-04

10 -4.1446277461827e-05 -3.950930269725e-04

11 -4.1446277461600e-05 -3.950930270436e-04

Exact -4.1446277461604e-05 -3.950930270463e-04

Table 2. Extrapolation Eq. (14), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

In order to handle the IR divergence, a linear extrapolation is applied to the I(0, ǫk), k =
0, 1, · · · , using the sequence ǫk = 1

bk
, where {bk} is the Bulirsch type sequence

{3, 4, 6, 8, 12, 16, · · · }. Numerical results of the double extrapolation for the real parts of C−1
and C0 are shown in Table 2 for p2

2 = 40 GeV2 and p2
3 = −100 GeV2. For this computation, the

integrations were performed to a requested relative accuracy of 10−15. As the compiler, the
Intel Fortran XE Composer was used with flag "-r16" for quadruple precision. The results on
row ν in Table 2 correspond to solutions of the ν-th linear system, of order (ν + 1)× (ν + 1),
which can be written in the form of Eq. (6) with

S(ǫk) = ǫk J3 (0, p2
2, p2

3; nx, ny; ǫk), ϕj(ǫk) = ǫ
j
k, f or k = 0, . . . , ν, j ≥ 1.
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The results are listed from ν = 4 on. For example, ν = 4 in the first row gives solutions
obtained with a 5 × 5 linear system, using the values of bk = 3, 4, 6, 8, 12 for k = 0, 1, 2, 3, 4.
In the second approach we replace z by z + iδl in the hypergeometric function argument z of
Eq. (16),

2F1 (1, 1 − ǫk, 2 + nx; z + iδl), k, l = 1, 2, · · · .

Here δ regulates the non-integrable singularity on the real axis when it occurs inside the
integration region, and ǫ regulates the IR divergence.
We let δl = 1

bl
, given by the Bulirsch type sequence bl = 0.5, 0.75, 1.5, 2, 3, 4, · · · . Numerical

results by the second approach are shown in Table 3. The integrals were computed in
quadruple precision, to a relative error tolerance of 10−26. In both approaches, we used
DQAGSE for an iterated multivariate integration.

ν C−1 C0

4 -4.2192812666950192419664334e-05 -3.7121279333017303070237e-04

5 -4.1395889404540049511801909e-05 -3.9751126098970774666184e-04

6 -4.1448485840565542759037853e-05 -3.9493403562445857754728e-04

7 -4.1446205836959577424975383e-05 -3.9510047588769404693383e-04

8 -4.1446278988182334267440660e-05 -3.9509279500930457847498e-04

9 -4.1446277437326639980970560e-05 -3.9509303229022580430491e-04

10 -4.1446277461859729880198253e-05 -3.9509302696654529617250e-04

11 -4.1446277461602157717453434e-05 -3.9509302704716538311163e-04

12 -4.1446277461604182432081146e-05 -3.9509302704627248396080e-04

13 -4.1446277461604171849957952e-05 -3.9509302704627918244479e-04

14 -4.1446277461604171891430927e-05 -3.9509302704627914557531e-04

15 -4.1446277461604171891322514e-05 -3.9509302704627914571332e-04

16 -4.1446277461604171891322881e-05 -3.9509302704627914571267e-04

17 -4.1446277461604171891322692e-05 -3.9509302704627914571315e-04

18 -4.1446277461604171891323096e-05 -3.9509302704627914571171e-04

19 -4.1446277461604171891322859e-05 -3.9509302704627914571292e-04

Exact -4.1446277461604171891322832e-05 -3.9509302704627914571278e-04

Table 3. Extrapolation Eq. (15), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

4.2.3 Example 3

Analogous with the vertex case, the IR divergent integral J4 (p2
1, p2

2, p2
3, p2

4; nx, ny, nz) occurs in
the tensor integral of a massless one-loop box of rank M ≤ 4,

Tμ...ν = ∑
k

Ck
μ...ν Jk

4(p2
1, p2

2, p2
3; n

(k)
x , n

(k)
y , n

(k)
z )
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ν bν TIME (s) C−2 C−1 C0

4 6 4.9 4.00152393095 3.993440295 -12.622213

5 8 6.3 3.99820547574 4.046535578 -12.937467

6 12 8.8 3.99974091849 4.009684952 -12.595063

7 16 7.9 3.99997923446 4.001105577 -12.473283

8 24 9.5 3.99999897678 4.000078977 -12.451823

9 32 9.7 3.99999996350 4.000003986 -12.449519

10 48 15.9 3.99999999912 4.000000139 -12.449350

11 64 22.6 3.99999999980 4.000000032 -12.449343

12 96 22.1 4.00000000043 3.999999893 -12.449330

Exact: 4.0 4.0 -12.449341

Table 4. Linear extrapolation for I4(−1,−1, ǫ) of Eq. (19), coefficients of Eq. (20)

and is expressed using dimensional regularization as

Jk
4 (s, t, p2

1, p2
2, p2

3, p2
4; n

(k)
x , n

(k)
y , n

(k)
z ) =

Γ(2 − ǫ)

(4π)2 (4πμ2
R)

ǫ

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

xn
(k)
x yn

(k)
y zn

(k)
z

D2−ǫ

(18)
where

D = −s x z − t y (1 − x − y − z)− p2
1 x y − p2

2 y z − p2
3 z (1 − x − y − z)− p2

4 x (1 − y − z)− i0.

With all external particles on-shell (p2
1 = p2

2 = p2
3 = p2

4 = 0) and nx = ny = nz = 0 we address
the expansion of

I4(s, t; ε) =
(4π)2 (4πμ2

R)
ε

Γ(2 − ε)
J4 (s, t; 0, 0, 0, 0; 0, 0, 0; ε)

=
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1
(−s x z − t y (1 − x − y − z))2−ε

, (19)

∼
C−2

ε2 +
C−1

ε
+ C0 +O(ε) (20)

Apart from a scaling factor, this simplified version of Eq. (18) corresponds to the integral of
Example 1, where we used an extrapolation with the ε-algorithm. Table 4 lists the results of a
linear extrapolation, using an iterated (triple) integration with DQAGSE to the target relative
accuracy of 10−12 (for the outer integration) in double precision. Approximate timings are
listed for the computation corresponding to the value of ν in the first column, and are spent
mainly in the integration of I4, as the time for the extrapolation is negligible. The integrand is
collected after the sector decomposition of Eq. (7) and integrated over the 3D unit cube.
The sequence ǫk = 1

bk
corresponds to the Bulirsch type sequence 1, 2, 3, 4, 6, 8, 12, . . . , and the

steps are shown starting at ν = 4. The convergence of the coefficients stagnates at b = 96,
i.e., ǫ = 1

96 , where the obtained accuracy is about 11 digits. This is as expected in view of
the accuracy requirement of about 12 digits on the entry sequence for the extrapolation. The
results in Table 4 agree with those of (Fujimoto & Ueda, 2008). We obtain the coefficient C−1
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of 1
ǫ in Eq. (20) with the opposite sign since ǫ < 0 in (Fujimoto & Ueda, 2008), whereas we

have ǫ > 0.

5. Concluding remarks

A large part of this paper is devoted to a fully numerical approach for regulating Feynman
loop integrals, which appear in higher order corrections in perturbative quantum field theory.
The method is based on combinations of multi-dimensional integration and extrapolation
techniques. It is applicable without change to various loop integrals with masses, since DCM
is fully numerical. After the initialization of the sequences, the method can be seen as a
black-box, which does not rely on a specification of the location of the singularity by the user.
At an earlier stage, DCM handled only the divergence appearing in the integration due to the
kinematical parameters. In recent work we extended the procedure to address IR divergence
as well as the singular behavior of the integrand inside the integration region, by a novel
double extrapolation technique. This enables DCM to regularize both divergences, as shown
by numerical results for several examples. More work is needed for improvements and further
analysis of these strategies. This computation is a step toward a more automatic numerical
handling of various types of loop integrals, thereby circumventing the need for a precise
knowledge of the structure and the location of the singularities. Since the scheme of the
dimensional regularization for the UV divergent diagram is similar to that for the IR case,
we are further studying the same techniques for application to the UV cases.
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