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1School of Science, Hubei Province Key Laboratory of Intelligent Robot,  

Wuhan Institute of Technology, Wuhan 
2Department of Computer Science and Application, ZhengZhou Institute of  

Aeronautical Industry Management, Zhengzhou 
China 

1. Introduction 

Image segmentation is the process of separating or grouping an image into different parts . 

These parts normally correspond to something that human beings can easily separate and 

view as individual objects. Computers have no means of intelligently for recognizing 

objects, and a large number of different methods have been developed in order to segment 

images, ranging from the simple thresholding method to advanced graph-cut methods. The 

segmentation process is based on various features found in the image. Those features might 

be histograms information, information about the pixels that indicate edges or boundaries or 

texture information and so on. 

Approaches of Image processing and analysis based on partial differential equation, such 

as deformable models or snakes (Terzopoulos et al., 1987; Kass, et al., 1987), balloon 

models (Cohen, L. D., 1991; Cohen, L. D. & Cohen, I., 1993), geometric models (Caselles et 

al., 1993), discrete dynamic contour models (Lobergt & Viegever, 1995), geodetic active 

contours (Caselles et al., 1995) and topology adaptive deformable model (McInerney & 

Terzopoulos, 1999), whose physical background is principle of minimum action or force 

equilibrium in classical mechanics, are being extensively applied to image segmentation, 

image smooth, image inpainting, extraction of boundary and so on. Xu and Prince 

analyzed the reason why snake methods have poor convergence to boundaries with large 

curvatures and replaced the gradient field with the gradient vector field (GVF), which has 

a larger capture region and slowly changes away from the boundaries (Xu & Prince, 1998). 

Consequently, the dependence on initial positions is decreased but the field can attract the 

moving contour to the right position. Parametric deformable models have high 

computational efficiency and can easily incorporate a priori knowledge. However, these 

models cannot naturally handle topological changes and are sensitive to initial conditions. 

Geometric deformable models are based on the level set method (Osher & Sethian, 1988), 

which was initially proposed to handle topological changes during the curve evolution. 

Geometric deformable models have the advantage of naturally handling the topological 
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changes and are widely studied for medical segmentation (Malladi & Sethian, 1996). 

Another popular geometric model is proposed by Chan and Vese (Chan & Vese, 1999; 

2002). Chan–Vese’s model is a simplified version of the Mumford–Shah energy model. 

The algorithm extracts the desired object through simultaneously minimizing the 

intensity variations inside and outside the contour. In 1997, Cohen and Kimmel described 

a method for integrating object boundaries by searching the path of a minimal active 

deformable model’s energy between two points (Cohen, L. D. & Kimmel, 1997). But they 

are easy to fall into the local minimum, sensitive to noise, do not have topology adaptive, 

poor convergence to concave boundaries. Lou and Ding used point tracking by estimating 

the maximum probability of a particle in quantum mechanics moving from one point to 

another, and did not impose any smoothness constraints to ensure the extraction of the 

details of a concave contour (Lou & Ding, 2007a). To overcome the main drawbacks of 

global minimal for active contour models that the contour was only extracted partially for 

low SNR images, maximal probability method of boundary extraction based on particle 

motion was proposed (Lou et al, 2007b). Schrödinger transform of image was first given 

by Lou, Zhan, Fu and Ding, and the probability P(b,a) that a particle moved from a point a 

to another point was computed according to I-Type Schrödinger transform of image (Lou 

et al, 2008). In the chapter, a new tool for image, Schrödinger Transform of image, is 

investigated.  
The reminder of the chapter was organized as follows. First, we gave physical explanation 
of boundary extraction from the point view of classical mechanics and quantum mechanics 
in Section 2. Next, we defined Schrödinger transform of image, discussed its properties and 
computation in Section 3. Then we investigated scale parameter and potential function of 
Schrödinger transform in Section 4. And then, we constructed high and low pass filter and 
carried through automatic contour extraction for multiple objects using I-type Schrödinger 
transform of image, segmented image using deformation of II-type Schrödinger transform 
of image in Section 5. Finally, we gave our conclusion in Section 6. 

2. Physical explanation of boundary extraction 

Boundary extraction is belong to field of image progressing while classical mechanics and 
quntumn mechanics are pure physical concept. However, we can find their common ground 
from the point of view of particle motion. Boundary of object can be thought of as trajectory 
of moving particle while the law of motion of particle were investigated in classical 
mechanics and quntumn mechanics using two determinancy and nondeterminancy method. 

2.1 Physical explanation of boundary extraction from the point of view of classical 
mechanics 
Deformable models are the elastic curves defined within an image domain that can move 
under the influence of internal forces arising from curve smoothness and external forces 
computed from the image data. The internal and external forces are so defined that the 
deformable contour has a minimum energy at the true object boundary. The following 
mapping can represent the deformable contour model: 

 
2( ) : [0, 1]

        ( ( ), ( ))

s R

s x s y s

x


, (1) 
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where [0, 1]s  is the parameterization variable of the object boundary and 0 and 1 
correspond to the start and end points of the boundary. The deformable contour is a curve 

( ) ( ( ), ( ))s x s y sx  that moves in the spatial domain of the image to minimize the energy:  

 
1 2 2

1 20

1
( | ( )| | ( )| ) ( ( ))

2
extE w s w s E s ds    x x x  (2) 

where 1 2,w w are the weighting parameters controlling the contour’s tension and rigidity 

respectively. ( )sx  and ( )sx  are the first and second order derivatives of ( )sx  with respect 

to s . The external energy extE  is a function of the image data depending on the goal of 

application. For object boundary extraction, it is defined as the image gradient. Suppose 

( )sx  has a local minimum of E  at s , the following Euler-Lagrange Equation has to be 

satisfied: 

 1 2( ) ( ) 0extw s w s E   x x  (3) 

To solve Eq. (3), the boundary conditions of ( )sx  should be given. If the boundary is closed, 

a periodic boundary condition (0) (1)x x  can be attached. Each term in Eq. (3) is considered 

as a force applied on the curve. The internal force 1 2( ) ( )w s w s x x  resists stretching and 

bending while the external potential force extE  pulls the contour towards the boundary. 

Thus, the object boundary is obtained either when the force equilibrium of Eq. (3) or a 

minimum of the energy in Eq. (2) is reached.  

2.2 Physical explanation of boundary extraction from the point of view of quantum 
mechanics 

The deformable contour ( ) ( ( ), ( ))s x s y sx  can further be considered as the path of a moving 
particle in the image if the parameterization variable s  is replaced by the time variable t . By 
referring the work of Feynman and Hibbs (Feynman & Hibbs, 1965), we explain boundary 
extraction from the point of view of quantum mechanics as follows: 
Suppose a particle moves from the position a  at the time at  to the position b  at the time bt , 
e.g., ( ), ( )a ba t b t x x . According to the theory of quantum mechanics, the 
amplitude, ( , )K b a , called kernel or propagator, contains the total contribution of all paths 
between a  and b , which is different from Eq. (2) where only a specific path from a  to 
b with the minimum energy is concerned. In order to distinguish these two types of 
contours, we refer to the contour determined by ( , )K b a  as the quantum contour, denoted as 

( )Q t , while the traditional deformable contour determined by minimizing the energy 
between a  and b  as the classical contour, denoted by ( )X t . Obviously, the classical contour 

( )X t  is considered as a specific case of the quantum contour ( )Q t  when a single path is 
concerned. In physics, the energy functional of a path, E , is defined by: 

 ( ( ), ( ), )
b

a

t

t
E L t t t dt  x x  (4) 

where L  is the Lagrangian function of system. For a moving particle with the mass m , and 

potential ( , )V tx , the Lagrangian function is determined by: 

 2( ( )) ( , )
2

m
L t V t x x  (5) 
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Comparing Eq. (4) to Eq. (2), we find that the Lagrangian functional of a path in Eq. (4) is 
similar to the energy functional of a contour curve in Eq. (2). Thus, we refer to deformable 
model as the motion of a particle described by classical mechanics. 
In quantum mechanics, the total contribution of all paths between a  to b  is calculated by 

 
( , )

( , ) ( ( ))
R a b

K b a t  x  (6) 

where ( , )R a b  is the set of all paths between a  and b . ( ( )) x t  is the contribution of a path 
( )tx  with a phase proportional to its energy ( ( ))E tx , i.e., 

 (2 / ) ( ( ))( ( )) j h E tt C e    xx  (7) 

where h  is the Planck's Constant and C  is a constant.  
According to the theory of quantum mechanics, the probability1 of a particle moving from 
the position a  at time at  to the position b  at bt , denoted by ( , )P b a , is equal to the square 
amplitude of ( , )K b a , i.e., 

 2( , ) | ( , )|P b a K b a  (8) 

For a system with a simple Lagrangian function, ( , )K b a  can be calculated directly from the 
path integral ((Feynman & Hibbs, 1965)) while for a system with a complex Lagrangian 
function, it is difficult and time-consuming to estimate the value of ( , )P b a from ( , )K b a . In 
order to avoid such difficulty, we estimate the probability of a particle moving from point a 
to point b directly from specific particle models, e.g., a free particle or a particle moving 
through a Gaussian slit, where their motions can be used to describe the boundary of an 
object of interest with a known probability density of appearing at a point.  
There is a stronger motivation of adapting the quantum mechanics than the similarity 
between equations (2) and (4). Snakes, Deformable models, level set methods, etc, are all 
based on classical mechanics in a form of partial differential equation. Although classical 
physics is adequate to explain virtually all phenomena one will ever directly experience in 
one's life, certain phenomena cannot be explained by classical physics. In many respects, 
quantum mechanics presents the physics that underlies physical reality at its most basic 
level. Quantum theory can be thought of as the generalization of classical mechanics and 
many non-classical phenomena that do not have a classical analog are known in the 
quantum physics world. The relationship between classical and quantum mechanics is of 
central importance to the philosophy of physics. Classical mechanics extends the elementary 
Newtonian concepts to the Lagrangian and Hamiltonian formulations, to the least action 
principle, to the angle-action variables, etc, in ways that are the essential framework of 
quantum mechanics. However, there are significant distinctions between the two theories 
that arise not because of quantization, but rather from the nonessential tendency to describe 
macroscopic systems by instantaneous values for position, speed and acceleration, and 
microscopic systems by time-averaged position probability densities. Probability is a bridge 
between classical mechanics and quantum mechanics. The detail discussion of this 
relationship is out of this chapter’s scope, which can be founded by hundreds of literatures 
in quantum mechanics field. 

                                                 
1 Here the probability refers to a relative probability. 
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3. Schrödinger transform of image 

For a complex system, however, it is difficult to calculate the value of ( , )P b a . In 1995, 
Williams and Jacobs derived the probability that a particle with a random walk passes 
through a given position and orientation on a path joining two boundary fragments, which 
is obtained by the product of two vector-field convolutions (Williams & Jacobs, 1995).  
Although some specific particle motions have been considered, a general analytic expression 
of the probability for complex system is still open. In order to calculate the value of ( , )P b a , a 
numerical approximation of ( , )P b a  is needed. In this section, we will try to compute the 
probability ( , )P b a  by using Schrödinger transform of image.  

3.1 Definition of Schrödinger transform of image 
The active contour model or Snake model had their profound physical background. If the 

parameter s  in the deformable contour curve ( ) ( ( ), ( ))s x s y sx could be understood as time 

t , object contour curve ( )tx could be considered as the path of the particle in plane motion. 

Suppose a particle moves from the position a at the time at  to the position at the time 

bt ,e.g., ( )aa x t , ( )bb x t . According to the theory of quantum mechanics, the probability 
of a particle moving from the position a to b at bt , denoted by ( , )P b a , is dependent on the 
kernel ( , )K b a , which is the sum of all paths contribution between ax  and bx , i.e., 

 
( , )

( , ) ( ( ))
R a b

K b a x t  , (9) 

where ( , )R a b  is the set of all paths between ax  and bx . ( ( ))t x  is the contribution of a 

path ( )tx  with a phase proportional to its energy ( ( ))E tx , i.e., 

 (2 / ) ( ( ))( ( )) i h E tt Ce   xx ， (10) 

where h is the Planck’s Constant, C is a constant, and 
2

( ) ( , )
2

b

a

t

t

m
E t V t dt

   
  x x  is the 

energy functional of path. The probability from point ax  at time at to point bx  at time bt is 

the square of absolute value of kernel ( , )K b a  from ax  to bx , that is, 

2( , ) | ( , )|p a b K b a . 

We must solve the problem of computing the kernel ( , )K b a  to introduce law of particle 

motion in quantum mechanics into image processing and analysis. For a system with a 
simple Lagrangian function, ( , )K b a  can be calculated directly from the path integral (see 0) 

while for a system with a complex Lagrangian function, it is difficult and time-consuming to 
estimate the value of ( , )P b a from ( , )K b a . Replacing the kernel ( , )K b a  with the wave 

function ( , )u tx in the position x  at the time t , then ( , )u tx satisfied the following 

Schrödinger equation: 

 
2 2 2

2 2
( , ) ( , )

2

u h u u
hi V t u t

t m x y

   
         

x x ,  (11) 
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where 27/ 2 1.054 10h h crg s     , i is imaginary unit. So, the relation between the 

probability ( , )P b a and image gradient ( )G x  can be given in Fig. 1. 

 
 

( )G x  ( , )K b a( )V x ( , )P b a
Schrödinger Equation | • |

2
h(•)  

 

Fig. 1. the relation between the probability ( , )P b a and image gradient ( )G x  

We could rewrite Eq.(11) as the initial-value problem: 

 
0

( )

( )
t

t

i u a u v u

u 

   
 

x

x
 (12) 

Continuous Schrödinger transform of image ( ) x  based on ( )v x   is defined as the solution 

of Eq.(12). And the transform is called I-type Schrödinger  transform when ( ) 0v x , 

otherwise the transform is called II-type Schrödinger transform.  
By applying Fourier transform to equation (12) and making use of the properties of Fourier 
transform, we have 

 
2

0

ˆ ˆ ˆ ˆ( )

ˆ ˆ( )
t

t

i u a u v u

u 

    




y y

y
, (13) 

where the mark '  ’ denotes convolution of two functions, ‘ ^ ’ denotes Fourier transform of 
function. When ( ) 0v x , both ( , )u tx and ˆ( , )u ty  have the following analytic solutions  

(see 0):  

 
2

ˆ ˆ( )
ait

u e  y
y  (14) 

 
2

24
1

ˆ( , ) ( ) ,   , 0
4

i

atu t e d R t
ait





  

x y
x y y x , (15) 

When ( ) 0v x ， ( , )u tx and ˆ( , )u ty also have analytic solutions (L. C. Evans, 1998), but they 

are too complex to be used to compute their numerical solutions. We give the following 
definition of discrete Schrödinger transform of image because of Eq.(12) and Eq.(13): 
Supposed both ( ) x  and ( )v x  are m n  images, then two-dimensional discrete Schrödinger 

transform of image ( ) x  based on ( )v x is expressed with the following differential equation 

which its Fourier transform satisfies: 

 

2

0

ˆ ˆ( )

ˆ ˆ

t

t

i u V a u

u 

   




y
 

  , (16) 
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where ˆ
tu


 is mn -dimensional column vector formed by concatenating all the rows of 

m n matrix ˆ
tu . mn mn  matrix y  was diagonal matrix whose diagonal elements express 

distance. mn mn  matrix V  is a block cyclic matrix, i.e., 

 

0 1 1

1 0 2

1 2 0

m

m m

V V V

V V V
V

V V V



 

 
 
   
  
 




   


, (17) 

where iV  is a cyclic matrix, 

 

  

  

  

( ,0) ( , 1) ( ,1)

( ,1) ( ,0) ( ,2)

( , 1) ( , 2) ( ,0)

i

v i v i n v i

v i v i v i
V

v i n v i n v i

 
 
 

  
 
   




   



, (18) 

Discrete Schrödinger transform of image ( ) x  based on ( )v x  is denoted by ( )v  while I-

type discrete Schrödinger  transform of image ( ) x is denoted by  ( ) . 
Obviously, the solution of Eq.(16) is  

 
2

( )ˆ ˆ( ) ( ) ( )
it V a

V u e    y
y y . (19) 

If the matrix 2| |V a y can be diagonalized, that is, 
2 1V a P DP y , then 

 1 21ˆ ˆ( ) ( , , , ) ( )mnitditd itdu P Diag e e e P y y , (20) 

where 1 2( , , , )mnD Diag d d d   was diagonal matrix. Eq.(19) degenerates into Eq.(14) when 

( ) 0v x . 

3.2 Computation of Schrödinger transform 

The transfer function of Schrödinger transform of image is 
2

( )it V a
e
  y

. For a given 

m n image and constant at , I-type Schrödinger transform of image ( , )x y   can be 

computed as the following steps: 

1. Suppose the low frequency component be in the center of image, we construct a  

m n distance matrix ( )uvD d ，where 

2 2( / 2) ( / 2)std u m v n     

2. Compute the transfer function of I-type Schrödinger transform, ( )uvH h  

uvatid
uvh e  

3. Compute the Fourier transform of ( , )x y , ˆ( , )u v  
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4. Compute the Fourier transform of ( ) , ˆ ( ) , according to the following formula:  

ˆ ˆ( ) ( , )uvaitde u v   

5. The I-type Schrödinger transform of image ( , )x y  is the modulus of the inverse Fourier 

transform of ˆ ( ) . 

It is difficult to directly compute  II-type Schrödinger transform of image using Eq.(19). We 
can compute II-type Schrödinger transform using a two step method since the matrix V is 
Block Circulant Matrix and the matrix 2| |y  is diagonal matrix in Eq.(19).  
The block circulant matrix V  is similar to a diagonal matrix, that is, 

 1
VV WD W   (21) 

Here, m nW W W  , mW  is a m m matrix with 2 /( , ) ijk m
mW j k e  , 1 1 1

m nW W W    , 

2 /1 1
( , ) ijk m

mW j k e
m

  , and VD  is a mn mn  diagonal matrix.  

We know that the exponential function satisfies x y yxe e e   for any real numbers (scalars) 

x and y . The same goes for commuting matrices: if the matrices X and Y commute 

(meaning that XY YX ), then X Y X Ye e e  . It is usually necessary for A  and B  to 

commute for the law to still hold. However, in mathematics, the Lie product formula, 

named for Sophus Lie, holds for all matrices A  and B , even ones which do not commute. 

That is, for arbitrary real or complex matrices A  and B , 

  / /lim
N

A B A N B N

N
e e e


  (22) 

The formula has applications, for example, in the path integral formulation of quantum 
mechanics. It allows one to separate the Schrödinger evolution operator into alternating 
increments of kinetic and potential operators. Hence, we rewrite (19) as 

 
2 2

( ) //ˆ ˆ ˆ( ) ( ) ( )
N

it V a iat NitV N
v e e e        

 
y y

y y  (23) 

For a given N , denote,  

 
2

//ˆ ˆ( ) ( )
k

iat NitV N
k e e    

 
y

y y  (24) 

So, 

 
2

//
1

ˆ ˆ( ) ( )
iat NitV N

k ke e 
 y

y y  (25) 

Where 0
ˆ ˆ( ) ( ) y y .  

Replacing V by Eq.(21) in Eq.(25), we get that 

 / 1
1

ˆˆ ( ) ( )VitD N
k kWe W  

y   (26) 
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That is, 

 /1 1
1

ˆˆ ( ) ( )VitD N
k kW We W  

y   (27) 

Note that, 1
ˆ( )k   are Fourier transforms of I-type of image 1( )k  x  and 1W   is inverse 

Fourier transform. Hence,  

 /
1( ) ( )( )VitD N

k ke 
x x  (28) 

Here, 1,2, ,k N  , VD  is the inverse Fourier transform of V  while V  is the Fourier 
transform of ( )v x , that is, VD  is a mn mn  diagonal matrix with the diagonal elements 

( )v x . So, we obtain the following  two step method  of computing II-type Schrödinger 
transform:  

Step 1: Using the formual 
2

//
1 1

ˆ ˆ( ) ( )
iat NitV N

k ke e 
  y

y , compute I-type Schrödinger 

transform of image ( , )x y  in the frequency domain of image (see step (1) to step (4) of 

computing I-type Schrödinger transform of image );  

Step 2: Compute II-type Schrödinger transform of image ( , )x y  in the spatial domain 

of image according to Eq.(28), that is,  

 /
1( )( ) ( ) ( )( )VitD N

v N Ne  
 x x x   (29) 

Eq.(29) means that discrete Schrödinger transform of image ( ) x  based on ( )v x  is the 
approximative superposition of  the following two equations  

 

2

0

ˆ ˆ

ˆ ˆ

I I
t

I
t

i u a u

u 

  




y
 

  , (30) 

and 

 
0

ˆ ˆ

ˆ ˆ

t

I
t

i u Vu

u u

  




 

  , (31) 

Obviously, for continous Schrödinger transform of image ( ) x  based on ( )v x , the 
conclusion mentioned above is not true proposition, that is, eq.(12) can not decompose the 
following two initial-value problem: 

 
0

0

( )

I I
t

I
t

i u a u

u 

    


 x
 (32) 

and 

 
0

( )

( )

t

I
t

i u v u

u u

 




x

x
 (33) 

Hence, there are essential differences betwwen continous Schrödinger transform continous 
and discrete Schrödinger transform.  
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3.3 Properties and meaning of Schrödinger transform 
There are a variety of properties associated with the Schrödinger transform of image. The 
following are some of the most relevant for I-type Schrödinger transform of image. Energy 
conservation property also exists for the Schrödinger transform of image like the Fourier 
transform. 

Proposition 1. (Energy Conservation Theorem)Let ( , )u tx  be Schrödinger transform of image 
( ) x ，then 

2 2
( , ) ( )u t dx dx

 

 
 x x  

The proposition can be proved according to equation (14) and energy conservation 
properties of 2D Fourier Transform of image. The energy conservation properties of 
Schrödinger transform show that energy will diffuse from high energy to low energy while 
total energy is invariable(Fig. 2). 
 
 

   
           (a)                     (b)             (c) 
 

   
         (d)                  (e) 
 

(a)original image, (b), (c), (d) and (e) are Schrödinger transforms with parameters 0.00001, 0.00005, 
0.0005 and 0.001, respectively. 

Fig. 2. Schrödinger transforms of a circular disc image with different parameters at  

Proposition 2. Let filter transfer function be  2| |1
( ) 1

2
aitH e  yy , where 1

2

y

y

 
  
 

y , 

2 2 2
1 2y y y , If

2
My (There exists highest frequency for digital image), then 

2
( )H y is a 

decrease function of 
2

y  when 
2

at
M


 , that is, ( )H y  is low pass filter. 
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Proposition 3. Let filter transfer function be 
2| |( ) 1 aitH e  yy , where 1

2

y

y

 
  
 

y , 

2 2 2
1 2y y y , If 

2
My  (There exists highest frequency for digital image), then 

2
( )H y  is a 

increase function of 
2

y  when 
2

at
M


 , that is, ( )H y  is high pass filter. 

High and low pass filter can be obtained using Schrödinger transform of image according to 
the above two propositions. And Schrödinger transform of image can be applied to image 
processing and analysis, such as, boundary extraction, edge enhancement, etc. 
The energy conservation properties of Schrödinger transform show that energy will diffuse 
from high energy to  low energy while total energy is invariable(Fig. 2).The following 
experiments (see Fig. 3 and Fig. 4) show the meaning and function of Schrödinger 
transformation of image, that is, Schrödinger transformation of image can be seen as the 
result of primitive image shrinking inside and spreading outward at the center of object, like 
as interference wave. The bigger at  is, the more obvious the interference is. On the other 

hand, contour curves of object in the transformed image are similar to contour curves of 
object in the original image, and they are too  similar to draw them manually. Hence, I-type 
Schrödinger transform of image is isotropic. 
 
 

   
 

   
            (a)                    (b)            (c) 
 

Fig. 3. I-type Schrödinger transform of image. (a) The original image, (b), (c) are Schrödinger 
transforms. The constant at is 0.0005, 0.001, respectively. 
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              (a)                  (b)                      (c) 
 

    
          (d)              (e) 
 

(a)original image, (b), (c), (d) and (e) are Schrödinger transforms with parameters 0.00001, 0.00005, 
0.0005 and 0.001, respectively. 

Fig. 4. Schrödinger transforms of a irregular closed image with different parameters at  

4. Scale parameter and potential function of Schrödinger transform 

It is important to select the parameter at  of Schrödinger transformation while the potential 

function is selecte. In the section, we’ll discuss the effects of scale parameter and potential 
function for Schrödinger Transform of image. 

4.1 Schrödinger transform of rectangle image 
Fig. 2 shows the parameter at  is scale parameter of Schrödinger transformation. To make 

clear the relation between the parameter at  and Schrödinger transformation, without loss of 

generality, take Schrödinger transform of rectangle image for example. And, the parameter 
at  is denoted by the parameter a . 

Let a rectangle image be 

 1 2 1 21,if ,
( , )

0,otherwise

M m M N n N
f m n

   
 


 (34) 

Its Fourier transform is  

2 2

1 1

( , ) exp( 2 ( ))
M N

m M n N

mu nv
F u v j

M N


 
     

 
  1 2 1 22 / 2 ( 1)/ 2 / 2 ( 1)/

2 / 2 /(1 )(1 )

j uM M j u M M j vN N j v N N

j u M j v N

e e e e

e e

   

 

     

 

 


 
 (35) 

www.intechopen.com



 
Schrödinger Transform of Image: A New Tool for Image Analysis 

 

281 

The transfer function of two-dimensional discrete Schrödinger transform is  

 
 2 2( /2) ( /2)

( , )
ja u M v N

H u v e
   

  (36) 

   2 2
1 2 1 22 / 2 ( 1)/ ( /2) 2 / 2 ( 1)/ ( /2)

2 / 2 /

( , ) ( , ) ( , )

1 1

j uM M j u M M ja u M j vN N j v N N ja v N

j u M j v N

G u v F u v H u v

e e e e e e

e e

   

 

         

 



 
 

 

 

Then, Schrödinger transform of rectangle image ( , )f m n  is 

1 1

0 0

1
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mu nv
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Fig. 5. The function 640,120,280| ( )|g m . a = 0.00001 and 0.0001, respectively 
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4.2 Scale parameter of Schrödinger transform 

For given threshold ( 0.5)T  , denote  

     1 2 1 21 , , , , 2

1
1 min : ( ) max : ( )

2
M M M M M Md M m g m T m g m T M        (37) 

Then, the vaiable d , which depend on the constant a , represents the propagation distance 
of I-type Schrödinger transform(see Fig. 6). The following experiment shows that the bigger  
 

 
(a) 480M  , 1 120M  , 2 280M  , 0.5T   

 
(b) 480M  , 1 180M  , 2 400M  , 0.5T   

 
(c) 960M  , 1 180M  , 2 400M  , 0.5T   

Fig. 6. The relationship between  propagation distance d  and scale parameter a .  
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a  is, statistically speaking, the bigger d  is. So, the constant a (or at ) is the Scale Parameter of 
Schrödinger Transform. In the experiment, we investigate the relation between propagation 
distance and the constant a , size of image M , size of object 2 1M M . The variable M  varies 
from 480 to 900 with the increment 10, 2M  from 1 10M   to 100M   with the increment 2, 
and a  from 0.00001 to 0.0001 with the increment 0.00001 while 1 170M   and  the distance 
threshold 0.5T  . We can obtain 88580 samples using Equation (37). The Table 1 lists some 
descriptive statistics of sample datas. Pearson correlation coefficents between propagation 
distance d and a , M , 2 1M M  is 0.823, 0.494 and 0.224, respectively. The multiple 
regression procedures of SPSS estimate a linear equation of the form: 

 2 19.625 0.13 0.01( ) 90249.047d M M M a       (38) 

And standard error of the estimate, which is less than one pixel, is 0.88556. From Fig. 6 and 

Equation (38), we know the biggest affect on propagation distance d  is the scale parameter 

a , size of image M  takes  second place while  the propagation distance d  and scale 

parameter a  have a strong positive linear correlation, the propagation distance d  and size 

of image M  have a weak positive linear correlation,. 

 

variable Mean Std. Deviation 

d  4.8186 3.15129 

M  727.38 118.334 

2 1M M  233.69 146.615 

a  .00005500 .000028723 

Table 1. Descriptive Statistics  

Remark: Schrödinger Transform of image can be directly computed for a little number a by 

using Equation (14) while it needs to use Equation (14) repeatedly for a big unmber a , and 

use a little scale parameter every times, so that interference effect of  Schrödinger Transform 
can be avoided for using a big scale parameter a . 

4.3 Potential function of Schrödinger transform 
It doesn't need to use potential function  for I-type Schrödinger Transform of image, which 
is isotropic. II-type Schrödinger Transform  is anisotropic since nonzero potential function is 
applied. It is necessary that a right potential function is chosed so that we can obtain a 
perfect deformation processing according to anisotropic property of II-type Schrödinger 

Transform. However, if  the potential function VD  is real, from Equation (29), we know 

  /
1 1( )( ) ( ) ( )( ) ( )( )VitD N

V N N Ne   
   x x x x    (39) 

That is, II-type Schrödinger Transform of image ( ) x  based on ( )v x , ( )v  , is only 

equivalent to implement I-type Schrödinger Transform N  times for image  . Obviously, 

that is surely not the result we want. So, the potential function VD  of  II-type Schrödinger 

Transform must be imaginary so that / 1VitD Ne  . Meanwhile, if we hope that deformation 
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processing  of II-type Schrödinger Transform stop in some place, /VitD Ne will be small in 

the place. Hence, if we hope that deformation processing  of II-type Schrödinger Transform 
will be carried through in homogeneous region of image while it will stop in edge region of 
image, we can select the potential function of I-type Schrödinger Transform as the following 
formula: 

 ( ( ( )))VD ih G v  x  (40) 

Where ( )G 
 
is arbitrary gradient or edge-detection operator, ()h is a monotone increasing 

function. 

5. Application of Schrödinger transform 

As a new tool for image analysis, Schrödinger Transform of image can be applied to image 

smoothing, image enchancement, contour extraction, image inpainting and so on. And 

Schrödinger Transform of image can also be applied to image segmentation for 3D image. In 

the section, we’ll give some examples. 

5.1 Constructing high and low pass filter using I-Type Schrödinger transform of image 
By the definition and formula of Schrödinger transform of image, transformed image has 

the same size as the original image. In transformed image, every pixel is related to that of all 

pixels of original image. So Schrödinger transform is global. High and low pass filter of 

image, which can detect image edge, enhance and smooth image, can be constructed 

according to Property 2 and 3 of Schrödinger transform. The filter consider both global and 

local feature of image while the traditional edge detection operators use only local template. 

Suppose Schrödinger transform of m m  image ( ) x  be ( , )u tx . Then, 
1

( ) ( , )
2

u t x x  is the 

smoothed image of image ( ) x while ( ) ( , )u t x x  is the edge image of ( ) x  if
22

at
m


 . 

However, ( , )u tx  is a complex-valued image, the result is not good using the above high and 

low pass filtering directly. Replacing ( ) ( , )u t x x with ( ) ( , )u t x x has better high pass 

filtering effect. Similarly, the smoothing effect of 
1

( ) ( , )
2

u t x x  is better than 

1
( ) ( , )

2
u t x x . The steps of high pass filtering of image by Schrödinger transform are as 

follows(the steps of low-pass filtering is similar): 

1. Compute Fourier transform ( ) y of image ( ) x ; 

2. Compute Fourier transform ( , )u ty of ( , )u tx , according to 
2| |( , ) ( ) aitu t e  yy y ; 

3. Compute inverse Fourier transform ( , )u ty to obtain Schrödinger transform ( , )u tx of 

image ( ) x ; 

4. Compute ( ) ( , )u t x x  to obtain high pass filtered image; 

5. Enhancing edge of image ( ) x by ( ) ( ) ( , )u t  x x x . 
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We should pay attention to two issues using the above method to detect image edge, 
enhance image and smooth image: 
1. The parameter at  should be appropriate. If the parameter is too small ,the filtering 

effect would not be obvious. Contrariwise, Schrödinger transforme will cause 

interference which effects the filtering. The parameter at  should not exceed 
22M


. In 

the following experiments, Schrödinger transform of image is completed by using 
Schrödinger transform with smaller at  repeatly So that the interference can be avoided.  

2. The origin of coordinates of frequency domain is the center rather than the top left 

corner of the image when the formual 
2| |( , ) ( ) aitu t e  yy y  is used to compute Fourier 

transform ( , )u ty  of ( , )u tx . 

We give the results of image edge detection by using Schrödinger Transform in Fig. 7. The 
experements show the comparison results of a fan image by several edge detection 
operators in Fig. 8. According to the comparison results of traditional edge detection 
operators, the high-pass filter designed by Schrödinger transform can better detect image 
edge and it would not increase noise simultaneously. In fact, filter designed by 
Schrödinger transform consider both the local and global feature of image, so filtering 
effect is better. 
 
 

 

   
 
 

   
 
 

Fig. 7. Edges detected using Schrödinger Transforms of image 
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   (a)                  (b)                    (c) 
 

   
   (d)                  (e)                    (f) 

(a) High pass filter based on Schrödinger Transform of Image, (b) Robert operator, (c) Prewitt operator, 
(d) Sobel operator, (e) Canny operator, (f) Laplace operator 

Fig. 8. Comparison of several edge detection methods 

5.2 Automatic contour extraction for multiple objects using I-Type Schrödinger 
transform of image 
5.2.1 Exterior and interior points of multiple objects 

Assume ( , )I x y  be an original image that contains multiple dark objects. We use 
Schrödinger Transforms of original image ( , )I x y  and its inverse image 255 ( , )I x y  to 
obtain exterior and interior of multiple objects. So we can separate dark objects from bright 
background. Let 1( , )u tx , 2( , )u tx  be  Schrödinger transforms of original image and its 
inverse image, respectively. To obtain enough exterior and interior points exactly, in the 
following experiments, we implement Schrödinger transforms of image many times using 
small parameter at . Denote  

1 1( , ) ( , ) ( , )I x y I x y u t  x  

2 2( , ) 255 ( , ) ( , )I x y I x y u t   x  

Then, according to the Proposition 1, these pixels with high gray values in the image 

1( , )I x y  are interior points of multiple objects while these pixels with high gray values in the 

image 2( , )I x y  are exterior points of multiple objects. To obtain interior and exterior points 

of multiple objects, we convert an intensity image to a binary image using Otsu's threshold 
method. 

www.intechopen.com



 
Schrödinger Transform of Image: A New Tool for Image Analysis 

 

287 

5.2.2 Contour extraction of multiple objects 
After obtaining exterior and interior points of multiple objects, we take the following steps 
to extract contours of multiple objects: 
1. Thinning of sets of exterior and interior points. 

Sets of exterior and interior points need to be thinned because there are too many points 

in the two sets. Generally speaking, the exterior points surround the interior points for 

the same object. For each point A  in the set of exterior points(or interior points), we 

could find the point B which is the point with the shortest distance between the point 

A and the set of interior points(or exterior points). The point B shall be added into the 

thinned set of  interior points(or exterior points). 

2. Find pairs of exterior and interior points with the smallest distance between them. 

The closest pair of points problem is a problem of computational geometry. Using the 

brute-force algorithm, the closest pair of points can easily be computed in 2( )O n  time. 

To do that, one could compute the distances between all pairs of points, then pick the 

pair with the smallest distance. The problem can also be solved in ( log )O n n  time using 

the recursive divide and conquer approach (Cormen et al., 2001). 

5.2.3 Algorithm 
The actual operation of the algorithm is as follow: 
1. If necessary, convert an original gray image to a binary image using Otsu's threshold 

method. 

2. Compute  Schrödinger transforms 1( , )u tx , 2( , )u tx of original image and its inverse 
image. 

3. Compute 1 1( , ) ( , ) ( , )I x y I x y u t  x , 2 2( , ) 255 ( , ) ( , )I x y I x y u t   x . 
4. Find interior and exterior points of multiple objects by converting images 1( , )I x y and 

2( , )I x y to binary images using Otsu's threshold method. 
5. Thin sets of exterior and interior points. 
6. Find pairs of exterior and interior points by using the brute-force algorithm. If the 

distance between the pair points is larger than some constant, a new object will appear. 
7. Obtain contours of multiple objects by connecting all pairs of points belong to the same 

object in turn. 

5.2.4 Experiments 
To evaluate the performance of proposed scheme by experiments, we do Schrödinger 

transform and contour extraction experiments using the simulated and real images. 

Schrödinger transform of image can separate boundaries of object from background. Contour 

extraction experiments for the simulated images consisting of three objects are shown in Fig. 9.  
With growing pollution levels and an ever growing coastal population, hydrophobicity 
(water repellence) of insulators has become an important consideration for equipment 
specifiers. An insulator with hydrophobic properties causes water to bead on its surface and 
roll off assisting pollution to freely wash away rather than forming a continuous wet sheet 
or zone and combining with pollutants to form a conductive film. The hydrophobic effect 
helps to reduce discharge activity and maintenance requirements as well as decreasing the 
probability of flashover. Hydrophobicity demonstrated by beading on the surface of a new 
polymer insulator(see Fig. 10(a)). The extracted contours of beads using Schrödinger 
transform of image are shown in Fig. 10(d). 
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             (a)                         (b) 

    
              (c)           (d) 

(a) The original simulated image, (b) The interior points of objects (white  pixels),  
(c) The exterior points of objects (white pixels), (d) the extracted contours. 

Fig. 9. The extracted contours of multiple objects using Schrödinger transform of image.  

 

    
     (a)                  (b) 

    
      (c)    (d) 

(a) beads on the surface of a polymer insulator, (b) The interior points of objects (white pixels),  
(c) The exterior points of objects (white pixels), (d) The extracted contours of beads. 

Fig. 10. The extracted contours of beads using Schrödinger transform of image.  
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5.3 Image segmentation using II-Type Schrödinger transform of image 
The following experiments show how to segment the target area by useing II-Type 
Schrödinger Transform. Fig. 11 shows segmentation results of an image with three goals, 
Fig. 12 shows object segmentation results of a fan image. The two results show that we can 
extract the contour of object using evolution of II-Type Schrödinger Transform of image. The 
segmentation results are less depending on the initial contour, as long as be the inside or 
outside the target area. 
 
 
 
 
 
 

 
         (a)                               (b) 
 
 
 
 

 
         (c)               (d) 

 
 
 

(a) original image, (b) image of potential function, 
(c) initial region of object, (d) segmented region of object 

Fig. 11. segmented result images of three objects by using II-type Schrödinger transform of 
image 
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(a) original image, (b) image of potential function, 
(c) initial region of object, (d) segmented region of object 

Fig. 12. segmented result of fan image by using II-type Schrödinger transform of image 

6. Conclusion 

Image segmentation has been, and currently still is, a relevant research area in Computer 
Vision, and hundreds of segmentation algorithms have been proposed in the last few 
decades. However, it is well known that elemental segmentation techniques based on edge 
or region information often fail to produce accurate segmentation results. The chapter 
attempts to provide a brief introduction of Schrödinger transform of image for the novel 
segmentation techniques and discussed its potential applications in image analysis and 
understanding. Schrödinger transform of image is extended from I-type to II-type. 
Schrödinger Transform of image is applied to image smoothing, image enchancement, 
contour extraction, and so on. The demonstrate experiment results show the robust of the 
algorithm. 

7. Acknowledgment 

This work was supported by the National Natural Science Foundation of China under Grant 
No. 60975011. The research work was also partially supported by the Basic and Frontier 
Technology Research Programs of the Department of Science & Technology of Henan 
Province (No. 092300410043), and Supported by Foundation for University Youths Key 
Teacher by the Education Department of Henan Province; and a grant from the Nature 
Science Basic Research Programs of the Education Department of Henan Province (No. 
2007510023), and Supported by Foundation for key project by the Education Department of 
Hubei Province(D20101502), China. 

www.intechopen.com



 
Schrödinger Transform of Image: A New Tool for Image Analysis 

 

291 

8. References 

Caselles, V.; Catte, F.; Coll, T. & Dibos, F. (1993). A Geometric model for active contours. 
Numer. Math., Vol.66, (1993), pp. 1-31, ISSN 0945-3245 

Caselles,V.; Kimmel, R. & Sapiro, G. (1995). Geodetic active contours. Proc. 5th Intl. Conf. 
Computer Vision, pp.694-699, ISBN 0-8186-7042-8, Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA, June 20-23, 1995 

Chan, T  & Vese, LA. (1999). An active contour model without edges, Proceedings of the 
Second International Conference on Scale-Space Theories in Computer Vision, pp. 141-
151, ISBN 354066498X, Corfu, Greece, September 26-27, 1999  

Chan, T & Vese, LA. (2002). Active contour and segmentation models using geometric PDE’s 
for medical imaging, In: Geometric methods in bio-medical image processing, Ravikanth 
Malladi (Editor), pp. 63–75, Springer, ISBN 9783540432166. Berlin, German  

Cohen, L. D. & Cohen, I. (1993). Finite-element methods for active contour models and 
balloons for 2-D and 3-D images. IEEE Trans.Pattern Anal. Mach. Intell., Vol.15, 
No.11, (1993), pp. 1131-1147, ISSN 0162-8828 

Cohen, L. D. & Kimmel, R. (1997). Global minimum for active contour models: a minimal 
path approach. Int. J. Comput. Vis.,Vol. 24, No.1, (1997), pp. 57-78, ISSN 0920-5691 

Cohen, L. D. (1991). On active contour models and balloons. CVGIP: ImageUnderstand., 
Vol.53, No.2, (1991), pp. 211-218, ISSN 1049-9660 

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2001). Introduction to Algorithms 
(Second Edition), MIT Press and McGraw-Hill, ISBN 0-262-03293-7., Cambridge, 
England 

Evans, L. C. (1998). Partial Differential Equations, American Mathematical Society, ISBN 
0821807722, Providence, USA 

Feynman, R. P. & Hibbs,A. R. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill 
Inc., ISBN 0070206503, New York, USA 

Kass, M.; Witkin,A. & Terzopoulos,D. (1987). Snakes: active contour models. Int. J. Comput. 
Vis., Vol.1, No.4, (1987), pp. 321-331, ISSN 0920-5691 

Lobergt, S. & Viegever, M. A. (1995). A discrete dynamic contour model. IEEE Trans. Med. 
Imaging, Vol.14, No.1, (1995), pp. 12-24, ISSN 0278-0062 

Lou, Liantang & Ding, Mingyue (2007a). Principle and approach of boundary extraction 
based on particle motion in quantum mechanics. Optical Engineering, Vol.46, No,2, 
(2007), pp. 027005-1- 027005-16, ISSN 0091-3286 

Lou, Liantang; Fu, ZhongLiang & Jiang, Si (2007b). Maximal probability method of 
boundary extraction based on particle motion. Proc. SPIE, MIPPR 2007, pp. 
67861F.1-67861F.5, ISBN 9780819469502, Wuhan, Hubei, China, November 15-17, 
2007 

Lou, Liantang; Zhan, Xin; Fu, Zhongliang & Ding, Mingyue (2008). Method of Boundary 
Extraction Based on Schrödinger Equation, Proceedings of the 21th Congress of the 
International Society for Photogrammetry and Remote Sensing - ISPRS 2008, B5-2, pp. 
813-816, ISSN 1682-1750, Beijing, China, July 3-11, 2008 

Malladi, R. & Sethian, JA. (1996). Level set and fast marching methods in image processing 
and computer vision, Proceedings of the IEEE International Conference on Image 
Processing, Vol.1, pp. 489 – 492, ISBN 0-7803-3259-8, Lausanne, Switzerland, Sep., 
16-19, 1996 

www.intechopen.com



 
Measurements in Quantum Mechanics 

 

292 

McInerney, T. & Terzopoulos, D. (1999). Topology adaptive deformable surfaces for medical 
image volume segmentation. IEEE Trans. Med. Imaging, Vol.18, No.10, pp. 840-850, 
(1999), ISSN 0278-0062 

Osher, S. & Sethian, J. (1988). Fronts propagating with curvature dependent speed: 
algorithms based on Hamilton-Jacobi formulations. J. Comput Phys., Vol.79, No.1, 
pp. 12–49, (1988), ISSN  

Terzopoulos, D.; Witkin, A. & Kass, M. (1987). Constraints on deformable models: 
recovering 3D shape and nonrigid motion. Artif. Intell., Vol,36, No.1, (1987), pp. 91-
123, ISSN 0004-3702 

Williams, L.R. & Jacobs, D.W. (1995). Stochastic Completion Fields: A Neural Model of 
Illusory Contour Shape and Salience, Proc. 5th Intl. Conf. Computer Vision, pp.694-
699, ISBN 0-8186-7042-8, Massachusetts Institute of Technology, Cambridge, 
Massachusetts, USA, June 20-23, 1995  

Xu, CY & Prince, JL. (1998). Snakes, shapes, and gradient vector flow. IEEE Trans Image 
Process, Vol.7, No.3, pp. 359–369, (1998), ISSN   

www.intechopen.com



Measurements in Quantum Mechanics

Edited by Prof. Mohammad Reza Pahlavani

ISBN 978-953-51-0058-4

Hard cover, 348 pages

Publisher InTech

Published online 22, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Perhaps quantum mechanics is viewed as the most remarkable development in 20th century physics. Each

successful theory is exclusively concerned about "results of measurement". Quantum mechanics point of view

is completely different from classical physics in measurement, because in microscopic world of quantum

mechanics, a direct measurement as classical form is impossible. Therefore, over the years of developments

of quantum mechanics, always challenging part of quantum mechanics lies in measurements. This book has

been written by an international invited group of authors and it is created to clarify different interpretation about

measurement in quantum mechanics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Liantang Lou, Hua Zeng, Jipeng Xiong, Lingling Li and Wenliang Gao (2012). Schrödinger Transform of

Image: A New Tool for Image Analysis, Measurements in Quantum Mechanics, Prof. Mohammad Reza

Pahlavani (Ed.), ISBN: 978-953-51-0058-4, InTech, Available from:

http://www.intechopen.com/books/measurements-in-quantum-mechanics/schr-dinger-transform-of-image-a-

new-tool-for-image-analysis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


