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1. Introduction

Quantum Mechanics (QM) represents one of the pillars of modern physics: so far a
huge amount of theoretical predictions deriving from this theory have been confirmed
by very accurate experimental data. No doubts can be raised on the validity of this
theory. Nevertheless, even after one century since its birth, many problems related to the
interpretation of this theory persist: non-local effects of entangled states, wave function
reduction and the concept of measurement in QM, the transition from a microscopic
probabilistic world to a macroscopic deterministic word perfectly described by classical
mechanics and so on. A possible way out from these problems would be if QM represents a
statistical approximation of an unknown deterministic theory, where all observables have well
defined values fixed by unknown variables, the so called Hidden Variable Theories (HVT).
Therefore, the debate whether QM is a complete theory and probabilities have a non-epistemic
character (i.e. nature is intrinsically probabilistic) or whether it is a statistical approximation
of a deterministic theory and probabilities are due to our ignorance of some parameters (i.e.
they are epistemic) dates to the beginning of the theory itself.
The fundamental paper where this problem clearly emerged appeared in 1935 when Einstein,
Podolsky and Rosen asked this question by considering an explicit example (Einstein et al.,
1935). For this purpose, they introduced the concept of element of reality according to
the following definition: if, without disturbing a system in any way , one can predict
with certainty the value of a physical quantity, then there is an element of physical reality
corresponding to this quantity. They formulated also the reasonable hypothesis ( consistent
with special relativity) that every non-local action was forbidden. A theory is complete when
it describes every element of reality. They concluded that either one or more of their premises
was wrong or Quantum Mechanics was not a complete theory, in the sense that not every
element of physical reality had a counterpart in the theory.
This problem led to the search of a “complete theory" by adding hidden variables to the wave
function in order to implement realism. For a long time, there was a general belief among
quantum physicists that quantum mechanics can not be replaced by some complete theory
(HVT) due to Von Neumann’s impossibility proof ( who imposed an unwarranted constraint
on HVT). But in sixties we got two theorems due to J. S. Bell (Bell, 1964) (Bell, 1966) and Kochen
and Specker (Kochen & Specker, 1967). These theorems showed that quantum mechanics can
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2 Will-be-set-by-IN-TECH

not be replaced by some classes of HVT, namely local and non-contextual HVT. The most
celebrated of this kind of HVT was presented by Bohm in 1952 (Bohm, 1952). Bohm, just prior
to developing his HV interpretation, introduced a simplified scenario involving two spin-half
particles with correlated spins, rather than two particles with correlated positions and
momenta as used by EPR. The EPR-Bohm scenario has the advantage of being experimentally
accessible.
In 1964 John Bell (Bell, 1964) derived an inequality ( which is a statistical result, and is called
Bell’s inequality BI) using locality and reality assumptions of EPR-Bohm, and showed that
the singlet state of two spin-1/2 particles violates this inequality, and hence the contradiction
with quantum mechanics.
Contemporary versions of the argument are based on the Clauser, Horne, Shimony and Holt
(CHSH) inequality(Clauser et al., 1969), rather than the original inequality used by Bell. There
is a very good reason for that. While Bell’s argument applied only to the singlet state,
the CHSH inequality is violated by all pure entangled states (Gisin & Peres, 1992). Early
versions of CHSH inequalities involved only two observers, each one having a choice of two
(mutually incompatible) experiments. The various outcomes of each experiment were lumped
into two sets, arbitrarily called +1 and −1. Possible generalizations involve more than two
observers, or more than two alternative experiments for each observer, or more than two
distinct outcomes for each experiment. We may consider n-partite systems, each subject to
a choice of m v-valued measurements. This gives a total of (mv)n experimentally accessible
probabilities. The set of Bell inequalities is then the set of inequalities that bounds this region
of probabilities to those accessible with a local hidden variable model. Thus for each value
of n, m and v the set of local realistic theories is a polytopes bounded by a finite set of linear
Bell inequalities. The CHSH inequalities apply to a situation (n, m, v) = (2, 2, 2). Gisin et al

(Gisin & Bechmann-Pasquinucci, 1998) have found a family of Bell inequalities for the case
with the number of measurements is arbitrary, i.e. (n, m, v) = (2, m, 2). Collins et al (Collins,
Gisin, Linden, Massar & Popescu., 2002) and Kaszlikowski et al (Kaszlikowski et al., n.d.)
have produced inequalities for arbitrarily high dimensional systems, i.e. (n, m, v) = (2, 2, v).
The most complete study of Bell inequalities is for the case (n, m, v) = (n, 2, 2). n-particle
generalizations of the CHSH inequality were first proposed by Mermin (Mermin, 1990), and
Belinskii and Klyshko (Belinskii & Klyshko, 1993), and have been extended by Werner and
Wolf (Werner & Wolf, 2000), and Zukowski and Brukner (Zuckowski & Brukner, 2002) to give
the complete set for two dichotomic observables per site.
On the theoretical side, “ violation of Bell’s inequalities" had become synonymous with
“non-classical correlation", i.e., entanglement. One of the first papers in which finer
distinctions were made was the construction of states with the property that they satisfy
all the usual assumptions leading to the Bell inequalities, but can still not be generated by
a purely classical mechanism ( are not “separable" in modern terminology) (Werner, 1989).
This example pointed out a gap between the obviously entangled states ( violating a Bell
inequality) and the obviously non-entangled ones, which are merely classical correlated (
separable). In 1995 Popescu (Popescu, 1995) ( and later (Bennett et al., 1996)) narrowed this
gap considerably by showing that after local operations and classical communication one
could “distill" entanglement, leading once again to violations, even from states not violating
any Bell inequality initially. To summarize this phase: it became clear that violations of Bell
inequalities, while still a good indicator for the presence of non-classical correlations by no
means capture all kinds of “entanglement".
Bell inequalities are statistical predictions about measurements made on two particles,
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typically photons or particles with spin 1
2 . So some people were trying to show a direct

contradiction (which is not a statistical one) of quantum mechanics with local realism.
Greenberger, Horne and Zeilinger (GHZ)(Greenberger et al., 1990) found a way to show more
immediately, without inequalities, that results of quantum mechanics are inconsistent with the
assumptions of EPR. It focuses on just one event, not the statistics of many events. Their proof
relies on eight dimensional Hilbert space, unlike the case of Bell’s theorem, which is valid in
four dimensions. Heywood and Redhead (Heywood & Redhead, 1983) have provided a direct
contradiction (without inequalities) of quantum mechanics with local realism for a particular
state of two spin-1 particles. Finally, Hardy (Hardy, 1992) gave a proof of non locality
for two particles with spin 1

2 that only requires a total of four dimensions in Hilbert space
like Bell’s proof but does not require inequalities. This was accomplished by considering a
particular experimental setup consisting of two over-lapping Mach-Zehnder interferometers,
one for positrons one for electrons, arranged so that if the electron and positron each take
a particular path then they will meet and annihilate one another with probability equal to
1. This arrangement is required to produce assymetric entangled state which only exhibits
non locality without any use of inequality. The argument has been generalized to two spin s
particles by Clifton and Niemann (Clifton & Niemann, 1992) and to N spin half particles by
Pagonis and Clinton (Pagonis & Clifton, 1992).
Later, Hardy showed that this kind of non locality argument can be made for almost all
entangled states of two spin- 1

2 particles except for maximally entangled one (Hardy, 1993).
This proof was again simplified by Goldstein (Goldstein, 1994) and extended it to the case of
bipartite systems whose constituents belong to Hilbert spaces of arbitrary dimensions.
Conceptually, as well as mathematically, space and time are differently described in quantum
mechanics. While time enters as an external parameter in the dynamical evolution of a system,
spatial coordinates are regarded as quantum mechanical observables. Moreover, spatially
separated quantum systems are associated with the tensor product structure of the Hilbert
state-space of the composite system. This allows a composite quantum system to be in a state
that is not separable regardless of the spatial separation of its components. We speak about
entanglement in space. On the other hand, time in quantum mechanics is normally regarded as
lacking such a structure. Because of different roles time and space play in quantum theory one
could be tempted to assume that the notion of “entanglement in time" cannot be introduced in
quantum physics.
In this chapter we propose and analyze a particular scenario to account for the deviations of
QM from ‘realism’ ( defined below), which involves correlations in the outputs of successive
measurements of noncommuting operators on a spin-s state. The correlations for successive
measurements have been used previously by Popescu (Popescu, 1995) in the context of
nonlocal quantum correlations, in order to analyze a class of Werner states which are
entangled but do not break (bipartite) Bell-type inequality. Although local HVT can simulate
the quantum correlations between the outputs of single ideal measurement on each part of
the system, it fails to simulate the correlations of the second measurements on each part.
Leggett and Garg have used consecutive measurements to challenge the applicability of QM
to macroscopic phenomena (Leggett & Garg, 1985). While the temporal Bell inequalities,
considered in refs. (Leggett & Garg, 1985) (see also (Paz & Mahler, 1993)), are for histories,
we deal here with Bell-type inequalities with predetermined measurement values at different
times. The temporal Bell inequalities deal with measurement of the same observable at
different times, whereas we deal here with different measurements at different times. Finally
there is a large literature on the problem of information of a quantum state that can be

199Quantum Correlations in Successive Spin Measurements

www.intechopen.com



4 Will-be-set-by-IN-TECH

obtained by measuring the same operator successively on a single system. The research in
this area is elegantly summarized in (Alter & Yamamoto, n.d.). Bell-type inequality with
successive measurements was first considered by (Brukner et al., 2004). They have derived
CHSH-type inequality (Clauser et al., 1969) for two successive measurements on an arbitrary
state of a single qubit and have shown that every such state would violate that inequality for
proper choice of the measurement settings. They have shown that the quantum mechanical
correlation for three successive measurements, for any single qubit input state is the product of
two consecutive correlations each of which is the correlation of two consecutive measurements
– a scenario quite uncommon for spatial correlations. As an application of their approach, they
have used the correlations in two successive measurements to overcome the limitations in
RAM of a computer to calculate a Boolean function whose input bits are supplied sequentially
in time.
We consider and analyze the correlations between the outputs of successive measurements for
a general spin S state as against the general qubit state. We show that, for S >

1
2 , the quantum

mechanical correlation for three successive measurements is not a product of two successive
correlations, that is, the correlations in two successive measurements. We show that for S = 1

2 ,
the correlation between the outputs of measurements from n− k to n (last k out of n successive
measurements) k = 0, 1, . . . , n − 1, depend on the measurement prior to n − k, when k is even,
while for odd k, these correlations are independent of the outputs of measurements prior to
n− k. Further, we show that all qubit states break the Bell type inequalities corresponding to n
successive measurements, where n is any finite number. Finally, we study Hardy’s nonlocality
arguments for the correlations between the outputs of n successive measurements for all s-spin
measurements. We show that the maximum probability of success of Hardy’s argument in the
successive measurement is much higher than the spatial ones in a certain sense.
The chapter is organized as follows. In Section 2 we describe the basic scenario in detail.
Section 3 formulates the implications of hidden variable theory (HVT) for this scenario in
terms of Bell-type inequalities. Section 4 evaluates these inequalities for mixed input states of
single spin-s system for two and three successive measurements (considering various values
of s). Section 5 deals with n successive measurements on spin-1/2 system. Section 6 explains
the logical structure of Hardy’s argument on time locality and, we show that no time-local
stochastic HVT (SHVT) can simultaneously satisfy Hardy’s argument. Finally we conclude
with summary and comments in Section 7. Mathematical details are relegated to Appendices
A and B.

2. Basic scenario

Consider the following sequence of measurements. A quantum particle with spin s, prepared
in the initial state ρ0, is sent through a cascade of Stern-Gerlach (SG) measurements for the spin
components along the directions given by the unit vectors â1, â2, â3, . . . , ân (i.e., measurement

of observables of the form �S.â, where �S = (Sx, Sy, Sz) is the vector of spin angular momentum

operators Sx, Sy, Sz and â is a unit vector from R
3). Each measurement has 2s + 1 possible

outcomes. For the i-th measurement, we denote these outcomes (eigenvalues) by αi ∈ {s, s −
1, . . . ,−s}. We denote by 〈αi〉 the quantum mechanical (ensemble) average 〈�S · âi〉, by 〈αiαj〉
the average 〈(�S · âi)(�S · âj)〉 etc.
Each of the (2s + 1)n possible outcomes, which one gets after performing n consecutive
measurements, corresponds to a particular combination of the results of the measurements
at previous n − 1 steps and the result of the measurement at the n-th step. The probability
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of each of these (2s + 1)n outcomes is the joint probability for such combinations. Note

that even though the spin observables �S · â1, �S · â2, . . ., �S · ân, whose measurements are
being performed at times t1, t2, . . ., tn respectively (with t1 < t2 < . . . < tn) do not
commute, above-mentioned joint probabilities for the outcomes are well defined because
each of these spin observables act on different states (Fine, 1982) (Anderson et al., 2005)
(Ballentine, 1990). We emphasize that this is the joint probability for the results of n actual
measurements and not a joint probability distribution for hypothetical simultaneous values of
n noncommuting observables. Moreover, various sub-beams (i.e., wave functions) emerging
from every Stern-Gerlach apparatus (corresponding to (2s + 1) outcomes) in every stage of
measurement are separated without any overlap or recombination between them. In other
words, the eigen wave packet ψs−j,ti ,âi

(x), corresponding to the eigen value s − j of the

observable �S · âi, measured at time ti, will not have any part in the regions where the SG setups,

for measurement of the observables �S · âi+1,s, �S · âi+1,s−1, . . ., �S · âi+1,s−j+1, �S · âi+1,s−j−1, . . .,

�S · âi+1,−s, are situated. We further assume that, between two successive measurements, the

spin state does not change with time i.e. �S commutes with the interaction Hamiltonian, if any.
Also, throughout the string of measurements, no component (i.e., sub-beam) is blocked. It is
to be mentioned here that the time of each of the measurements are measured by a common
clock.

3. Implications of HVT

HVT assumes that in every possible state of the system, all observables have well defined
(sharp) values (Redhead, 1987). On the measurement of an observable in a given state,
the value possessed by the observable in that state ( and no other value) results. To gain
compatibility with QM and the experiments, a set of ‘hidden’ variables is introduced which is
denoted collectively by λ. For given λ, the values of all observables are specified as the values
of appropriate real valued functions defined over the domain Λ of possible values of hidden

variables. For the spin observable �S · â, we denote the value of �S · â in the QM (spin) state |ψ〉
by α. Considered as a function, α : Λ → IR , we represent the value of �S · â when the hidden
variables have the value λ by α(λ). More generally, we may require that a value of λ gives the
probability density p(α|λ) over the values of α rather than specifying the value of α (stochastic
HVT). We denote the probability density function for the hidden variables in the state |ψ〉 by
ρψ (ρψ(λ)dλ measures the probability that the collective hidden variable lies in the range λ to

λ + dλ). Then the average value of �S · â in the state |ψ〉 is

〈α〉 =
∫

Λ
α(λ)ρψ(λ)dλ, (1)

where the integration is over Λ defined above. In the general case (SHVT)

〈α〉 =
∫

Λ
αp(α|λ)ρψ(λ)dλ. (2)

We now analyze the consequences of SHVT for our scenario. In general, the outputs of kth
and lth experiments may be correlated so that,

p(αi, âk&αj, âℓ) �= p(αi; âk)p(αj; âl). (3)
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However, in SHVT we suppose that these correlations have a common cause represented by
a stochastic hidden variable λ so that

p(αi, âk&αj, âℓ|λ) = p(αi, âk|λ)p(αj, âl |λ). (4)

As a consequence of equation (4), the probability p(αi, âk|λ) obtained in a measurement (�S · âk

say) performed at time tk is independent of any other measurement (�S · âl say) made at some
earlier or later time tl . This is called locality in time (Leggett & Garg, 1985) (Brukner et al.,
2004).
One should note that for a two dimensional quantum mechanical system, one can always
assign values ( deterministically or probabilistically ) to the observables with the help of a
HVT. Once the measurement is done, the system will be prepared in an output state ( namely,
an eigenstate of the observable), and the earlier HVT may or may not work to reproduce
the values of the observables to be measured on that output state ( prepared after the first
measurement). We have considered possibility of existence of a HVT for every input qubit
state which can reproduce the measurement outcomes of n successive measurements.
Equation (4) is the crucial equation expressing the fundamental implication of SHVT to the
successive measurement scenario. We now obtain the Bell type inequalities from equation (4)
which can be compared with QM. Here we assume that in HVT all probabilities corresponding
to outputs of measurements account for the possible changes in the values of the observable
being measured, ( due to the interaction of the measuring device and the system), occurring
in the previous measurements.
Now 〈αiαj〉 is the expectation value of obtaining the outcome αi in the measurement of the

observable �S.âi at time ti as well as the outcome αj in the measurement of the observable �S.âj

at later time tj. Due to the HVT, we must have ( dropping âk, âℓ)

〈αiαj〉 =
∫

ρ(λ)E(αi, αj, λ)dλ, (5)

where

E(αi, αj, λ) = ∑
αi ,αj

αiαj p(αi, αj|λ) = ∑
αi

αi p(αi|λ)∑
αj

αj p(αj|λ)

= E(αi, λ)E(αj, λ) (6)

by equation (4). Now let us consider the case of two successive measurements, with options
â1, â′1 and â2, â′2 respectively for measuring spin components. In each run of the experiment,
a random choice between {â1, â′1} and {â2, â′2} is made. Define θi (i = 1, 1′) to be the angle
between âi and the positive z-axis, θij (i = 1, 1′ and j = 2, 2′) is the angle between âj and âi.
Using condition (6) and the result (Shimony, n.d.) (Jarrett, 1984)

−2s2 ≤ xy + xy′ + x′y − x′y′ ≤ 2s2, x, y, x′, y′ ∈ {−s,−s + 1, . . . , s − 1, s},

we obtain

− 2s2 ≤ E(α1, α2, λ) + E(α1, α′2, λ) + E(α′1, α2, λ)− E(α′1, α′2, λ) ≤ 2s2. (7)

Multiplying by ρ(λ)dλ and integrating over Λ, we get the CHSH-type inequality (Clauser
et al., 1969) (involving the hidden variable λ) corresponding to performing two successive
measurements of spin-s observables on a spin-s initial state:

|〈BI〉| = 1

2
|〈α1α2〉+ 〈α1α′2〉+ 〈α′1α2〉 − 〈α′1α′2〉| ≤ s2. (8)
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Similarly, using the algebraic fact

−2s3 ≤ xyz′ + xy′z + x′yz − x′y′z′ ≤ 2s3,

where
x, y, z, x′, y′, z′ ∈ {−s,−s + 1, . . . , s − 1, s}

and1

E(αi, αj, αk, λ) = E(αi, λ)E(αj, λ)E(αk, λ),

we can prove Mermin-Klyshko Inequality (MKI) (Mermin, 1990), (Belinskii & Klyshko, 1993)
for three successive measurements,

|〈MKI〉| = 1

2
|〈α1α2α′3〉+ 〈α1α′2α3〉+ 〈α′1α2α3〉 − 〈α′1α′2α′3〉| ≤ s3. (9)

Let |〈MKI′〉| ≤ s3, where |〈MKI′〉| is obtained from equation (9) by interchanging primes
with non-primes in MKI. It is easily shown that

|〈SI〉| = |〈MKI〉+ 〈MKI′〉| ≤ |〈MKI〉|+ |〈MKI′〉| ≤ 2s3. (10)

This is the Svetlichny inequality (SI) (Svetlichny, 1987),(Seevinck & Svetlichny, 2002),(Collins,
Gisin, Popescu, Roberts & Scarani, 2002).
For n successive measurements on spin s system, we define the MK polynomials recursively
as follows:

M1 = α1, M′
1 = α′1, (11)

Mn =
1

2
Mn−1(αn + α′n) +

1

2
M′

n−1(αn − α′n), (12)

where M′
n are obtained from Mn by interchanging all primed and non-primed α’s. The

recursive relation (12) gives, for all 1 ≤ k ≤ n − 1 (Collins, Gisin, Popescu, Roberts & Scarani,
2002) ,(Cabello, 2002a):

Mn =
1

2
Mn−k(Mk + M′

k) +
1

2
M′

n−k(Mk − M′
k). (13)

In particular, we have

M2 = BI =
1

2
(α1α2 + α′1α2 + α1α′2 − α′1α′2), (14)

M3 = MKI =
1

2
(α1α2α′3 + α1α′2α3 + α′1α2α3 − α′1α′2α′3). (15)

We now show that in HVT,

|〈Mn〉| ≤ sn. (16)

1 This is obtained by using equation (4) and the similar argument as has been used in deriving equation
(6).
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First note that (16) is true for n = 2, 3 (equations (8), (9)). Suppose it is true for n = k i.e.
Max|〈Mk〉| = sk. Now

|〈Mk+1〉| =
1

2
|〈Mkαk+1〉+ 〈Mkα′k+1〉+ 〈M′

kαk+1〉 − 〈M′
kα′k+1〉|.

Since HVT applies here we can use (4) to get

|〈Mk+1〉| =
1

2
|〈Mk〉(〈αk+1〉+ 〈α′k+1〉) + 〈M′

k〉(〈αk+1〉 − 〈α′k+1〉)|.

This implies, by induction hypothesis (and using the fact that max|〈M2〉| = s2), that

max |〈Mk+1〉| = s max |〈Mk〉| = sk+1.

This result is derived for n spin-s particles by Cabello (Cabello, 2002a).
We now define a quantity, denoted by ηn, which will be required later on. ηn, is
the ratio between maximum |〈Mn〉| given by quantum correlation between n successive
measurement’s outputs and the maximal classical one,

ηn =
max|〈Mn〉QM|

sn
. (17)

4. Mixed input state for arbitrary spin

4.1 Two successive measurements (BI)

We first deal with the case when input state is a mixed state whose eigenstates coincide

with those of �S · â0 for some â0 whose eigenvalues we denote by α0 ∈ {−s, · · · s}. For
spin 1/2 this is the most general mixed state because given any density operator ρ0 for spin
1/2 (corresponding to some point within the Bloch sphere), we can find an â0 such that the

eigenstates of �S·, â0 and ρ0 coincide. However, for s > 1/2, our choice forms a restricted class
of mixed states. We note that these are the only states accessible via SG experiments. Thus we
have

ρ0 = ∑
α0

pα0 |�S · â0, α0〉〈�S · â0, α0|;
(

∑
α0

pα0 = 1

)

(18)

After the first measurement along â1, the resulting state of the system is

ρ1 = ∑
α1

M†
α1

ρ0 Mα1 , (19)

where
M†

α1
= Mα1 = |�S · â1, α1〉〈�S · â1, α1|.

Now 〈α1α2〉QM is the expectation value (according to QM) that given the initial state ρ0 (given
in equation (18)), the 1st measurement along â1 will give rise to any value α1 ∈ {−s,−s +
1, . . . , s − 1, s}, and then, on the after-measurement state ρ1 (given in equation (19)), if one
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performs measurement along â2, one of the values α2 ∈ {−s,−s + 1, . . . , s − 1, s} will arise.
So

〈α1α2〉QM = Tr(ρ1
�S · â1

�S · â2) =

∑
α0α1α2

pα0 α1α2|〈�S · â0, α0|�S · â1, α1〉|2|〈�S · â1, α1|�S · â2, α2〉|2.

(20)

Note that, since �S · âi are complete observables, all of whose eigenvalues are non degenerate,
the probabilities factorize like those of a Markov chain (Beck & Graudenz, 1992). Every factor
in (20) corresponds to the transition amplitude between two successive measurements. By
equation (A.12), we get

〈α1α2〉 =
1

2
cos θ12[A cos2 θ1 + B], (21)

where

A = 3χ − s(s + 1), B = s(s + 1)− χ, χ =
+s

∑
α0=−s

α2
0 pα0 .

It is to be noted that although A can have positive and negative values, B will always be
positive. Moreover, for all θ ∈ [0, 2π], if A ≥ 0, Acos2θ1 + B is always positive and if A < 0,
Acos2θ1 + B ≥ B + A = 2χ ≥ 0. We now have the following expression for the quantity BI,
appeared in equation (8):

BI =
1

4
{(A cos2 θ1 + B)(cos θ12 + cos θ′12) + (A cos2 θ′1 + B)(cos θ′′12 − cos θ′′′12)}

=
3χ − s(s + 1)

4

{

cos2θ1

(

cosθ12 + cosθ′12

)

+ cos2θ′1
(

cosθ′′12 − cosθ′′′12

)

}

+
s(s + 1)− χ

4

{(

cosθ12 + cosθ′12

)

+
(

cosθ′′12 − cosθ′′′12

)}

, (22)

where (according to Appendix A) θ1 is the angle between â0 and â1, θ′1 is the angle between
â0 and â′1, θ12 is the angle between â1 and â2, θ′12 is the angle between â1 and â′2, θ′′12 is the
angle between â′1 and â2, θ′′′12 is the angle between â′1 and â′′2 . We have used, in Eq (22), the
expressions for A and B in terms of χ and s. Note that the second term in equation (22) (i.e., the

term with the factor
s(s+1)−χ

4 ) is similar to the expression for 〈α1α2〉+ 〈α1α′2〉+ 〈α′1α2〉− 〈α′1α′2〉
corresponding to the CHSH inequality (Clauser et al., 1969). And hence, its maximum value
will occur when we choose all the four vectors â1, â′1, â2, â′2 on the same plane. But we also
have to take care about maximization of the first term in equation (22) and that might require
these four vectors to be on different planes. In order to resolve this issue, we now consider
the spherical-polar co-ordinates (θ1, φ1), (θ

′
1, φ′

1), (θ2, φ2), (θ
′
2, φ′

2) of the vectors â1, â′1, â2, â′2
respectively, where θ1, θ′1, θ2, θ′2 ∈ [0, π] and φ1, φ′

1, φ2, φ′
2 ∈ [0, 2π]. Then BI has the form

BI =
1

4
(Acos2θ1 + B)[cos θ1(cos θ2 + cos θ′2) + sin θ1 sin θ2 cos(φ1 − φ2)

+ sin θ1 sin θ′2 cos(φ1 − φ′
2)] +

1

4
(A cos2 θ′1 + B)[cos θ′1(cos θ2 − cos θ′2)

+ sin θ′1 sin θ2 cos(φ′
1 − φ2)− sin θ′1 sin θ′2 cos(φ′

1 − φ′
2)]. (23)
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Here also the maximum value of |BI| will occur when all the vectors â1, â′1, â2, â′2 lie on the
same plane. This is obtained by:

∂BI

∂φ1
=

∂BI

∂φ2
=

∂BI

∂φ′
1

=
∂BI

∂φ′
2

= 0 ⇒ φ1 = φ′
1 = φ2 = φ′

2.

In that case, the maximum value of |BI| will occur when θ′1 = π − θ1, θ2 = π/2, θ′2 = 0 and
(correspondingly) the quantity

η2 =
|BI|
s2

=

(

1

2s2

)

|(sin θ1 + cos θ1)|(A cos2 θ1 + B) (24)

is maximized over all possible values of θ1 (A cos2 θ1 + B ≥ 0). If η2 > 1, the correlations for
two successive measurements violate the CHSH-type inequality (8), and hence a contradiction

with the above-mentioned HVT. In fact
∂η2

∂θ1
= 0 implies that

B tan3 θ1 + (2A − B) tan2 θ1 + (3A + B) tan θ1 − (A + B) = 0. (25)

Real roots (for tanθ1) of this equation give values of θ1 for which η2 is maximum. The
maximum value of η2 is evaluated at these θ1’s.
We find that for s = 1

2 , χ = 1/4 for all ρ0, and so A = 0, B = 1/4. So, from equation (24), we

have η2 = sinθ1 + cosθ1. Therefore equation (25) becomes tan3θ1 − tan2θ1 + tanθ1 − 1 = 0,
whose only one real solution is tanθ1 = 1. So θ1 = π/4 or 5π/4. θ1 = π/4 gives the maximum

possible value η2 =
√

2 > 1. Thus all possible spin-1/2 states break BI for (proper choices
of) two successive measurements. This can be compared with the measurement correlations
corresponding to measurement of spin observables on space-like separated two particles
scenario where only the entangled pure states break BI while not all entangled mixed states
break it (Werner, 1989).
From now on, we will use the range of values of the quantity ξ ≡ χ/s2 to identify the
parametric region of the initial density matrix ρ0 where the inequality (8) will be violated.
Thus we see that for all spin-1/2 input states ρ0, ξ = 1.
For a spin-1 system, we first consider all input states ρ0 none of which have a contribution of
Sz = 0 eigenstate. In this case χ = 1, A = B = 1. So η2 = (1/2)(sinθ1 + cosθ1)(cos2θ1 + 1)
and equation (25) takes the form tan3θ1 + tan2θ1 + 4tan3θ1 − 2 = 0. The only real root of
this equation is tanθ1 ≈ 0.433. Thus the maximum possible value of η2 is (using equation
(24)) 1.2112 ( approximately). Thus we see that all input spin-1 states ρ0, none of which has a
component along |Sz = 0〉, break BI (equation (8)) for proper choice of the observables.

Next, for s = 1, we consider the state ρ0, for which pα0=0 = 1, i.e., ρ0 = |�S · â0, 0〉〈�S · â0, 0|.
In this case, χ = 0, and so, A = −2, B = 2, ξ = 0. Then equation (25) takes the form
2tan3θ1 − 6tan2θ1 − 4tanθ1 = 0. It has three real solutions, which corresponds to θ1 = 0
(or π), 74.3165o (approx.), 150.6836o (approx.). The maximum possible value of η2 occurs at
θ1 = 74.3165o, and the corresponding value is given by η2 ≈ 1.1428. Thus the state ρ0 =

|�S · â0, 0〉〈�S · â0, 0| breaks the BI (equation (8)).
For s = 1, when 0 < pα0=0 ≡ p0 (say) < 1, we have χ = 1 − p0 = ξ, A = 1 − 3p0 = 3ξ − 2
and B = 1+ p0 = 2− ξ. We then have η2 = (1/2)|sinθ1 + cosθ1|{(3ξ − 2)cos2θ1 +(2− ξ)} (by
equation (24)), and equation (25) becomes (2 − ξ)tan3θ1 + (7ξ − 6)tan2θ1 + 4(2ξ − 1)tanθ1 −
2ξ = 0. In this case, one can show numerically that the BI will break (i.e., η2 > 1) if and only
if either 0 < ξ < 0.33 or 0.77 < ξ < 1 ( equivalently, either 0.67 < p0 < 1 or 0 < p0 < 0.23).
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Thus we see that, when s = 1, only those input states ρ0 ( given in equation (18)) will break
BI for each of which pα0=0 ∈ [0, 0.23) ∪ (0.67, 1]. Next we consider the situations where s > 1.
Note that, by definition (true for all s),

ξ = (ps + p−s) + (ps−1 + p−s+1)

(

1 − 1

s

)2

+ (ps−2 + p−s+2)

(

1 − 2

s

)2

+ . . . ,

where 0 ≤ ps, p−s, ps−1, p−s+1, ps−2, p−s+2, . . . ≤ 1 and ∑
s
α0=−s pα0 = 1. Therefore, we must

have 0 ≤ ξ ≤ 1. In this case, equations (24) and (25) respectively take the forms

η2 =
1

2s2
|sinθ1 + cosθ1|

[

{3ξs2 − s(s + 1)}cos2θ1 + {s(s + 1)− ξs2}
]

, (26)

{s(s + 1)− ξs2}tan3θ1 + {7ξs2 − 3s(s + 1)}tan2θ1+

{8ξs2 − 2s(s + 1)}tanθ1 − 2ξs2 = 0. (27)

Let us first consider the input states of the form

ρ0 = ps|�S · â0, s〉〈�S · â0, s|+ p−s|�S · â0,−s〉〈�S · â0,−s|, (28)

with ps + p−s = 1 and ps−1, p−s+1, ps−2, p−s+2, . . . = 0. Thus we see here that ξ = 1. Also
equations (26) and (27) have respectively been turned into the forms

η2 = (1/2s)|sinθ1 + cosθ1|{(2s − 1)cos2θ1 + 1}, (29)

tan3θ1 + (4s − 3)tan2θ1 + (6s − 2)tanθ1 − 2s = 0. (30)

As here s > 1, therefore the last equation will have only one positive root and the other two
roots will be complex. The positive root will correspond to an angle θmax

1 (s) ∈ (0, π/4) for
which it can be shown that ηmax

2 (s) ≡ η2(θ
max
1 (s)) > 1 for all s > 1. Hence, in this case, BI

is violated. If ρ0 has contribution from neither of the states corresponding to α0 = ±s (i.e.,
ps = p−s = 0), we have

ξ = (ps−1 + p−s+1)

(

1 − 1

s

)2

+ (ps−2 + p−s+2)

(

1 − 2

s

)2

+ . . . ≤
(

1 − 1

s

)2

.

From equation (24) it follows that

η2 =
1√
2s

|sin (θ1 + π/4)|
[

(s + 1 − sξ) + (3sξ − s − 1)cos2θ1

]

<
1√
2s

× 1 × [(s + 1 − sξ) + (3sξ − s − 1)× 1] =
√

2ξ ≤
√

2

(

1 − 1

s

)2

.

But the quantity
√

2(1 − 1/s)2 is less than 1 for all s = 1/2, 1, 3/2, . . . , 6. Therefore, for s > 1,
if the initial state ρ0 has contribution from neither of the states corresponding to α0 = ±s, BI
will be satisfied for all s ≤ 6. Thus we see that whenever s ∈ {3/2, 2, 5/2, . . . , 6}, in order that
ρ0 violates BI, the associated quantity ξ must have values near 1. In table 1, we have given the
ranges of values of ξ (obtained numerically) for which BI is violated, starting from s = 1/2.
The case when s → ∞ has also been considered in table 1.
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s ξ s ξ s ξ
1
2 ξ = 1 5

2 0.847 ≤ ξ ≤ 1 9
2 0.858 ≤ ξ ≤ 1

1 0 ≤ ξ ≤ 0.33 and 0.77 ≤ ξ ≤ 1 3 0.851 ≤ ξ ≤ 1 5 0.859 ≤ ξ ≤ 1
3
2 0.824 ≤ ξ ≤ 1 7

2 0.854 ≤ ξ ≤ 1 11
2 0.860 ≤ ξ ≤ 1

2 0.84 ≤ ξ ≤ 1 4 0.856 ≤ ξ ≤ 1 6 0.862 ≤ ξ ≤ 1
∞ 0.87 ≤ ξ ≤ 1

Table 1. The ranges of ξ, for which BI is violated.

s η2 s η2 s η2
1
2

√
2 5

2 1.1638 9
2 1.1538

1 1.2112 3 1.1599 5 1.1526
3
2 1.1817 7

2 1.1572 11
2 1.1517

2 1.17 4 1.1553 6 1.1509
∞ 1.143

Table 2. The maximum violation of BI for different spin values for two successive
measurements.

The maximum violation of Bell inequality, characterized by η2, decreases monotonically with
s. Table 2 summarizes ( obtained numerically) the maximum allowed value of η2 for each s.
We see from this table that for all spin values s, BI is broken. Note that there is a sharp decrease
in η2 from s = 1

2 to s = 1, while η2 decreases slowly as s increases from 1. A possible reason is
that, for s = 1/2, all states break BI while for s ≥ 1, only a fraction of spin states break it.
We now consider a case where the initial state ρmax

0 (given in equation (28)) is contaminated
by the maximally noisy state, resulting in the state

ρ( f ) = (1 − f ) ρmax
0 +

f

2s + 1
I, (31)

where the positive parameter f (≤ 1) is the probability of the noise contamination of the state
ρmax

0 . Proceeding as before ( see equation (21)), we get

〈α1α2〉 =
1

2
cos θ12[A

′ cos2 θ1 + B′] (32)

where

A′ = (1 − f )(2s − 1)s; B′ = (1 − f )s +
2

3
f (s + 1)s,

which leads to

ηnoise =

(

1

2s2

)

(sin θ1 + cos θ1)(A′ cos2 θ1 + B′). (33)

Using the maximization procedure (i.e., taking
∂ηnoise

∂θ1
= 0), tanθ1 for maximum ηnoise is given

by a real root of

B′ tan3 θ1 + (2A′ − B′) tan2 θ1 + (3A′ + B′) tan θ1 − (A′ + B′) = 0. (34)

The range of f for which ηnoise > 1 is tabulated in table 3. Note that for s = 1
2 the state

corresponding to f = 1 ( the random mixture) also breaks BI! Of course we have already
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s f s f s f
1
2 0 ≤ f ≤ 1 5

2 f < 0.287 9
2 f < 0.239

1 f < 0.696 3 f < 0.267 5 f < 0.234
3
2 f < 0.395 7

2 f < 0.254 11
2 f < 0.230

2 f < 0.321 4 f < 0.245 6 f < 0.227
∞ f < 0.195

Table 3. The range of the noise f over which BI is violated.

shown that for s = 1
2 , BI is broken for all states. This indicates that the notion of “classicality”,

compatible with the usual local HVT, is different in nature from the notion of classicality that
would arise from the non-violation of BI here.
Table 3 answers the question, “what is the maximum fraction of noise that can be added to
ρmax

0 , which maximally breaks BI, so that the state has stronger than “classical correlations2?”
We see that the corresponding fraction of noise (i.e., for which BI is violated) decreases
monotonically with s, or with the dimension of the Hilbert space. This may be compared
with the results of Collins and Popescu (Collins & Popescu, 2001) who found that the nonlocal
character of the correlations between the outcomes of measurements performed on entangled
systems separated in space is robust in the presence of noise. They showed that, for any
fraction of noise, by taking the Hilbert space of large enough dimension, one can find bipartite
entangled states giving nonlocal correlations. These results have been obtained by considering
two successive measurements on each part of the system. On the other hand, in the present
case of successive measurements on the single spin state, we see that the fraction of noise
that can be added so that the quantum correlations continue to break Bell inequality, falls off
monotonically with s, or the dimension of the Hilbert space. For s = 1

2 all fractions f ≤ 1 are
allowed, while for large s, f < 0.195.

4.2 Three successive measurements (MKI)

We again assume the input state to be given by equation (18). Using equation (A.19) :

〈α1α2α3〉 =
1

16
cos θ23{cos θ1[M cos2 θ12 + N] + R[3 cos2 θ12 − 1]} (35)

where

M =
+s

∑
α0=−s

pα0 α0[9α2
0 + s(s + 1)− 3],

N =
+s

∑
α0=−s

pα0 α0[5s(s + 1)− 3α2
0 + 1],

R =
+s

∑
α0=−s

pα0 α0[5α2
0 − 3s(s + 1) + 1],

θ1 is the angle between â0 and â1 (measured with respect to the right-handed system
(â0, â1, (â0 × â1)/|â0 × â1|)), θ12 is the angle between â1 , â2 (measured with respect to the
right-handed system (â1, â2, (â1 × â2)/|â1 × â2|)), etc.

2 i.e., correlations obeying “realism” and “locality in time”, as described in section 3.
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s η3 s η3 s η3
1
2

√
2 5

2 1.1736 9
2 1.1634

1 1.2178 3 1.1698 5 1.1621
3
2 1.1907 7

2 1.1670 11
2 1.1610

2 1.1793 4 1.1650 6 1.1601
∞ 1.1527

Table 4. The maximum violation of MKI for different spin values for three successive
measurements.

We now consider the pure state |�S · â0, s〉〈�S · â0, s| instead of considering the most general state
ρ0, given in equation (18). So here M = s(2s − 1)(5s + 3), N = s(2s2 + 5s + 1), and R = s(2s −
1)(s − 1). Substituting the correlations like that in equation (35) in the MKI (given in equation
(9)), using the above-mentioned values of M, N, R, and then finding out the conditions (
numerically) for which η3 ≡ |MKI|/s3 is maximized, we get the maximum possible η3-values
for different spins as summarized in table 4.

We see that η3 > 1 for all spins and η3 > η2 except s = 1
2 , while η3 = η2 =

√
2 for s = 1/2.

Also η3, like η2, decreases monotonically with s. It is interesting, in the case of two and three
successive measurements of spin s prepared in a pure state, the maximum violation of BI and
MKI tends to a constant for arbitrary large s .

η3(s → ∞) = 1.153 (approx.),

η2(s → ∞) = 1.143 (approx.).

It is thus seen that large quantum numbers do not guarantee “classical” ( as defined in this
chapter) behavior.
It is straightforward to check that, three successive measurements satisfy Svetlichny
Inequality (SI) (equation (10)). The reason is that, for all s, the settings of the measurement
directions which maximize MKI′are obtained from those which maximize MKI by
interchanging primes on the corresponding unit vectors. Thus these two settings are
incompatible so that we cannot get a single set of measurement directions, which maximize
both MKI and MKI′. In fact, for all s, the measurement directions which maximize MKI
(MKI′) correspond to MKI′ = 0 (MKI = 0).
We now consider the situation of three consecutive observations but two-fold correlations for
two measurements �S.â1 and �S.â3 performed, say, at time t1 and t3, but where an additional

measurement (�S.â2) is performed at time t2 lying between t1 and t3 (t1 < t2 < t3).
By substituting Eq (A.20) in Bell type inequality Eq(8) and simplifying, we obtain:

|BI| = 1

2
|[cos θ32 + cos θ3′2]〈α1α2〉+ [cos θ32 − cos θ3′2]〈α′1α2〉|

≤ 1

2
|[cos θ32 + cos θ3′2]||〈α1α2〉|+ |[cos θ32 − cos θ3′2]||〈α′1α2〉|

≤ cos θ32s2 ≤ s2. (36)

We have used max|〈α1α2〉| = max|〈α′1α2〉| = s2.
So, the correlation function (36) for a given measurement performed at t2 cannot violate the
Bell type inequality for measurements at t1 and t3. Therefore, any measurement performed at
time t2 “disentangles" events at time t1 and t3 if t1 < t2 < t3 (Brukner et al., 2004).
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5. n successive measurements for Spin- 1
2

5.1 Violation Mermin-Klyshko Inequality (MKI)

We consider now n successive measurements in direction �S · âi, (i = 1, 2, 3, . . . , n) on a spin
s = 1

2 particle in a mixed state. For simplicity we take the eigenvalues to be αk = ±1, i.e., the

eigenvalues of σz are taken here as ±1 instead of ±(1/2). We also write |αk〉 for |�S · âk, αk〉.
The initial state is taken as

ρ0 = p+1|α0 = +1〉〈α0 = +1|+ p−1|α0 = −1〉〈α0 = −1|. (37)

For a spin- 1
2 system, we have

|〈αk−1|αk〉|2 =
1

2
(1 + αk−1αk cos θk−1,k) (38)

where cos θk−1,k = âk−1 · âk for k = 1, 2, . . . , n. So, given the input state |α0〉, the (joint)
probability that the measurement outcomes will be α1 ∈ {+1,−1} in the first measurement,
α2 ∈ {+1,−1} in the second measurement, . . ., αn ∈ {+1,−1} in the n-th measurement, will
be given by

p(α1, α2, · · · , αn) =
1

2n

n

∏
i=1

(1 + αi−1αi cos θi−1,i). (39)

Thus we see that given the input state ρ0 = ∑α0=±1 pα0 |α0〉〈α0|, the average output state after
n successive measurements will be given by

ρn = ∑
α0,α1,...,αn=±1

pα0 p (α1, α2, . . . , αn) |αn〉〈αn| .

Then, for n successive measurements on spin-1/2 system,

〈αn−1αn〉QM = ∑
αn−1,αn=±1

αn−1{coeff. of |αn−1〉〈αn−1| in ρn−1}αn |〈αn−1|αn〉|2

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn−1αn p(α1, α2, · · · , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn−1αn(1 + αi−1αi cos θi−1,i)

= cos θn−1,n (40)

by equation (39). Further

〈αn〉QM = ∑
αn=±1

αn {coeff. of |αn〉〈αn| in ρn}

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn p (α1, α2, . . . , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn(1 + αi−1αi cos θi−1,i)

= (p+1 − p−1) cos θ1 cos θ12 · · · cos θn−1,n (41)
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where θ1 ≡ θ0,1, θ12 ≡ θ1,2, etc. Now equations (40) and (41) give,

〈αn〉QM = 〈α1〉QM〈α2α3〉QM · · · 〈αn−1αn〉QM. (42)

Further,

〈αn−k · · · αn〉QM =

∑
α0

pα0 2−n ∑
α1,α2,...,αn=±1

∏
n
i=1(αn−k · · · αn)(1 + αi−1αi cos θi−1,i) =

⎧

⎨

⎩

〈α1〉QM〈α2α3〉QM · · · 〈αn−1αn〉QM k even

〈αn−kαn−k+1〉QM〈αn−k+2αn−k+3〉QM · · · 〈αn−1αn〉QM k odd

(43)

All of the above results are inherently quantum and are not compatible with HVT ( see the
discussion in the next paragraph). The first two results ((41) and (42)) are the special cases
of the last result (43) for k = 1 and k = 0 (with α0 = 1). If the number of variables (
which are averaged) is odd (i.e. k is even) the average depends on the measurements prior
to (n − k), while in the other case the average does not depend on the measurements prior
to (n − k). For example, for two successive measurements ( taking n = 2 and k = 1),
gives 〈α1α2〉 = cos θ12, which is independent of the initial state. On the other hand, for
three successive measurements ( taking n = 3 and k = 2), we have 〈α1α2α3〉 = 〈α1〉〈α2α3〉
– showing its dependence on the initial state (as 〈α1〉 = (p+1 − p−1)cosθ1 depends upon
the initial state ρ0 = ∑α0=±1 pα0 |α0〉〈α0|). Moreover, the correlation 〈α1α2α3α4〉QM for four
successive measurements ( for example ) turns out to be dependent only on the two ‘disjoint’
correlations 〈α1α2〉QM and 〈α3α4〉QM . In general, we have:

〈

α1α2, . . . , α2p

〉

= 〈α1α2〉〈α3α4〉 . . . 〈α2p−1α2p〉 (44)

and

〈

α1α2, . . . , α2p+1

〉

= 〈α1〉〈α2α3〉 . . . 〈α2pα2p+1〉. (45)

Interestingly if â0 ⊥ â1 so that cosθ1 = 0 ( and so, 〈α1〉QM = 0) or, if the initial state is the
random mixture (1/2)∑α0=±1 |α0〉〈α0| ( and so 〈α1〉 = 0), then for all even k,

〈αn−k · · · αn〉QM = 0

and so
〈α1α2 · · · αn=2p+1〉QM = 0.

We shall now show that for n successive experiments ( with n > 1), QM violates the inequality

|〈MKI〉| ≤ s3 ( see equation (9)) up to
√

2 for s = 1/2 systems. We take the eigenvalues
to be αk = ±1 so |〈Mk〉|HVT ≤ 1). We have already shown that for n = 2 and n = 3,
the corresponding MKI’s are violated (section 4). Now, we know that temporal two-fold
correlations 〈αk−1α′k〉 , 〈α′k−1αk〉, 〈αk−1αk〉 and 〈α′k−1α′k〉 are independent on the previous
measurements. So by using equations (43) and (13) we find that

|〈Mk〉| =
1

2
|〈Mk−2〉[〈αk−1α′k〉+ 〈α′k−1αk〉] + 〈M′

k−2〉[〈αk−1αk〉 − 〈α′k−1α′k〉]|.
(46)
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We now consider the spherical-polar co-ordinates (θk−1, φk−1), (θ
′
k−1, φ′

k−1), (θk, φk), (θ
′
k, φ′

k)

of the vectors âk−1, â′k−1, âk, â′k respectively, where all θ ∈ [0, π] and all φ ∈ [0, 2π]. Then
|〈Mk〉| has the form

|〈Mk〉| =
1

2
|〈Mk−2〉[cos θk−1 cos θ′k + sin θk−1 sin θ′k cos(φk−1 − φ′

k)

+ cos θ′k−1 cos θk + sin θ′k−1 sin θk cos(φ′
k−1 − φk)]

+ 〈M′
k−2〉[cos θk−1 cos θk + sin θk−1 sin θk cos(φk−1 − φk)

− cos θ′k−1 cos θ′k − sin θ′k−1 sin θ′k cos(φ′
k−1 − φ′

k)]|. (47)

We know from

∂|〈Mk〉|
∂φk−1

=
∂|〈Mk〉|

∂φk
=

∂|〈Mk〉|
∂φ′

k−1

=
∂|〈Mk〉|

∂φ′
k

= 0 ⇒ φk−1 = φ′
k−1 = φk = φ′

k.

The maximum value of |〈Mk〉| will occur when all the vectors âk−1, â′k−1, âk, â′k lie on the same
plane. We obtain:

|〈Mk〉| ≤
1

2
|〈Mk−2〉[cos(θk−1 − θ′k) + cos(θ′k−1 − θk)]

+ 〈M′
k−2〉[cos(θk−1 − θk)− (cos θ′k−1 − θ′k)]|

≤ 1

2
|〈Mk−2〉|[cos(θk−1 − θ′k) + cos(θ′k−1 − θk)]

+
1

2
|〈M′

k−2〉|[cos(θk−1 − θk)− (cos θ′k−1 − θ′k)]|. (48)

By substituting x = θk−1 − θ′k, y = θ′k−1 − θk, z = θk−1 − θk and θ′k−1 − θ′k = x + y − z in
above-equation and by using

∂|〈Mk〉|
∂x

=
∂|〈Mk〉|

∂y
=

∂|〈Mk〉|
∂z

= 0,

we get x = y = −z = π/4. Finally, by using the fact |〈Mk〉|+ |〈M′
k〉| ≤ 2, we obtain:

|〈Mk〉| ≤
√

2

2
{|〈Mk−2〉+ 〈M′

k−2〉|} ≤
√

2. (49)

One can get this result by induction hypothesis. Thus, we conclude that QM violates the MKI

(|〈Mn〉| ≤ 1) for n successive measurements upto
√

2, i.e.,

ηn =
√

2. (50)

5.2 Violation Scarani-Gisin inequality (SCI)

Although in contrast to correlations in space there are no genuine multi-mode correlations
in time, we will see that temporal correlations can be stronger than spatial ones in a certain
sense. We denote by max[B

space
QM (i, j)] the maximal value of the Bell expression for qubits i and

j (Bell inequality is obtained by Eq(8)). Scarani and Gisin (Scarani & Gisin, 2001) found an
interesting bound that holds for arbitrary state of three qubits:

max[B
space
QM (1, 2)] + max[B

space
QM (2, 3)] ≤ 2. (51)
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Physically, this means that no two pairs of qubits of a three-qubit system can violate the CHSH
inequalities simultaneously. This is because if two systems are highly entangled, they can not
be entangled highly to another systems. Let us denote by max[Btime

QM (i, j)] the maximal value

of the Bell expression for two consecutive observations of a single qubit at times i and j. Since
quantum correlations between two successive measurements do not depend on the initial
state ( see Eq (40)), one can obtain:

[

Btime
QM (k − 1, k)] + [Btime

QM (k, k + 1)
]

=

1

2

[

cos θk−1,k + cos θk−1,k′ + cos θk−1′ ,k − cos θk−1′ ,k′
]

+

1

2

[

cos θk,k+1 + cos θk,k+1′ + cos θk′ ,k+1 − cos θk′ ,k+1′
]

. (52)

By selecting,

θk−1,k = θk−1,k′ = θk−1′ ,k = θk,k+1 = θk,k+1′ = θk′ ,k+1 =
π

4

and

θk−1′ ,k′ = θk′ ,k+1′ =
3π

4
,

we obtain:

max
[

Btime
QM (k − 1, k)] + max[Btime

QM (k, k + 1)
]

=
√

2 +
√

2 = 2
√

2 > 2. (53)

Thus, although there are no genuine three-fold temporal correlations, a specific combination
of two-fold correlations can have values that are not achievable with correlations in space for
any three-qubit system. In fact, one would need two pairs of maximally entangled two-qubit
states to achieve the bound in (53). Also note that the local realistic bound is 2, which is
equal to the bound in (51). Similar conclusion can be obtained for the sum of n successive
measurements.

max
[

Btime
QM (1, 2)

]

+ max
[

Btime
QM (2, 3)

]

+ . . . + max
[

Btime
QM (n − 1, n)

]

= n
√

2 > n. (54)

5.3 Violation chained Bell inequalities (CHI)

Generalized CHSH inequalities may be obtained by providing more than two alternative
experiments to each process. We consider two successive measurements on a spin- 1

2 particle
in a mixed state, such that the first experiment can measure spin component along one
of the directions â1, â3, . . . , â2n−1 and the second experiment along one of the directions
b̂2, b̂4, . . . , b̂2n. The results of these measurements are called αr (r = 1, 3, . . . , 2n − 1) and βs

(s = 2, 4, . . . , 2n), respectively, and their values are ±1 (in unit if h̄/2). We have a generalized
CHSH inequality (Braunstein & Caves, 1990),(Peres, 1993):

CBI =
1

2
|〈α1β2〉+ 〈β2α3〉+ 〈α3β4〉+ . . . + 〈α2n−1β2n〉 − 〈β2nα1〉| ≤ n − 1

(55)

This upper bound is violated by quantum correlations in two successive measurements,
increasingly with larger n. In order to obtain the maximum value above-inequality,
we consider the spherical-polar co-ordinates (θk, φk),(k = 1, 3, . . . , 2n − 1) of the vectors

214 Measurements in Quantum Mechanics

www.intechopen.com



Quantum Correlations in Successive

Spin Measurements 19

â1, â3, . . . , â2n−1 and (k = 2, 4, . . . , 2n) for vectors b̂2, b̂4, . . . , b̂2n. The maximum value |CBI|
will occur when all the vectors lie on the same plane. this is because of:

∂(CBI)

∂φk
= 0 ⇒ φ1 = φ2 = . . . = φn.

After partial differential over all θk, we get:

∂(CBI)

∂θk
= 0 ⇒ θ12 = θ23 = . . . = θ2n−1,2n = θ.

Therefore, we obtain:
CBI = (2n − 1) cos θ − cos(2n − 1)θ. (56)

So,
∂(CBI)

∂θ
= 0 ⇒ θ = π/2n. (57)

By substituting , we obtain:

CBI = (2n − 1) cos
ß

2n
− cos

(2n − 1)ß

2n
= 2n cos

ß

2n
(58)

We know cos( π
2n ) tends to (1 − π2

8n2 ) for n −→ ∞. Therefore the maximum CBI can be made
arbitrarily close to 2n.

5.4 Violation Bell inequalities involving Tri and Bi-measurements correlations

It would be interesting to consider Bell inequalities involving both two and three successive
measurement correlations. The simplest way of obtaining such an inequality would be by
adding genuinely bipartite correlations to the tripartite correlations considered in Mermin’s
inequality. For instance,a straightforward calculation would allow us to prove that any local
realistic theory must satisfy the following inequality (Cabello, 2002b):

−5 ≤ 〈α1α2α′3〉 − 〈α1α′2α′3〉 − 〈α′1α2α′3〉 − 〈α′1α′2α3〉−
〈α1α′2〉 − 〈α1α′3〉 − 〈α2α3〉 ≤ 3 (59)

A numerical calculation shows that both the GHZ and W states give a same maximal violation
of the inequality (59). However, if we assign a higher weight to the bipartite correlations
appearing in the inequality, then we can reach a Bell inequality such as

−8 ≤ 〈α1α2α′3〉 − 〈α1α′2α′3〉 − 〈α′1α2α′3〉 − 〈α′1α′2α3〉−
2〈α1α′2〉 − 2〈α1α′3〉 − 2〈α2α3〉 ≤ 4, (60)

which is violated by the W state but not by GHZ state (Cabello, 2002b). It is not difficult
to show that three successive measurements correlations for spin 1/2 break the hybrid Bell
inequalities.

−5.34 ≤ 〈α1α2α′3〉 − 〈α1α′2α′3〉 − 〈α′1α2α′3〉 − 〈α′1α′2α3〉−
〈α1α′2〉 − 〈α1α′3〉 − 〈α2α3〉 ≤ 3.8 (61)

and

−8.2 ≤ 〈α1α2α′3〉 − 〈α1α′2α′3〉 − 〈α′1α2α′3〉 − 〈α′1α′2α3〉−
2〈α1α′2〉 − 2〈α1α′3〉 − 2〈α2α3〉 ≤ 4.8. (62)

So two successive measurements correlations are relevant to those of three successive
measurements. This behavior is analogous to three particle W state (Cabello, 2002b).
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6. Hardy’s argument for n successive measurements for all spin-s measurements

Hardy’s nonlocality argument is considered weaker than Bell inequalities in the bipartite case,
as every maximally entangled state of two spin- 1

2 particles violates Bell’s inequality maximally
but none of them satisfies Hardy-type nonlocality conditions. The scenario in successive
spin measurements is quite different, however. We showed in previous sections that all n
successive spin-s measurements break Bell-type inequalities, in contrast to the bipartite case,
where only the entangled states break it. In this section, we prove that all n successive spin-s
measurements satisfy Hardy-type argument conditions. Consider four yes/no-type events

A, A
′
, B and B

′
, where A and A

′
may happen at time t1, and B and B

′
may happen at another

time, t2 (t2 > t1). The joint probability that, at the first time (t1), A and, at the second time (t2),
B are “ yes" is 0. The joint probability that, at the first time (t1), A is “no" and, at the second

time (t2), B
′

is “yes" is 0. The joint probability that, at the first time (t1), A
′

is “yes" and, at the

second time (t2), B is “no", is 0. The joint probability that both A
′

and B
′

are “yes" is nonzero.
We can write this as follows:

p(A = +1, B = +1) = 0,

p(A = −1, B
′
= +1) = 0,

p(A
′
= +1, B = −1) = 0,

p(A
′
= +1, B́ = +1) = p �= 0. (63)

We show that these four statements are not compatible with time-local realism. The nonzero
probability appearing in the argument is the measure of violation of time-local realism. It is
interesting that two successive s-spin measurements violate time-local realism. We deal with
the case where the input state is a pure state whose eigenstates coincide with those of s.â0 for
some â0 whose eigenvalues we denote α0 = j. Hardy’s argument for a system of n successive
spin-s measurements, in it’s minimal form (Parasuram & Ghosh, n.d.), is given by following
conditions:

p(s.â1 = j, s.â2 = j, . . . , s.ân = j) = 0, (64)

p(s.â1 = j − 1, s.â
′
2 = j, . . . , s.â

′
n = j) = 0,

p(s.â1 = j − 2, s.â
′
2 = j, . . . , s.â

′
n = j) = 0,

.

.

p(s.â1 = −j, s.â
′
2 = j, . . . , s.â

′
n = j) = 0,

.

.

. (65)

p(s.â
′
1 = j, . . . s.âl = j − 1, . . . , s.â

′
n = j) = 0,

p(s.â
′
1 = j, . . . , s.âl = j − 2, . . . , s.â

′
n = j) = 0,

(66)
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.

.

p (s.â
′
1 = j, . . . s.âl = −j, . . . , s.â

′
n = j) = 0, (67)

.

.

.

p (s.â
′
1 = j, s.â

′
2 = j, . . . , s.ân = j − 1) = 0,

p (s.â
′
1 = j, s.â

′
2 = j, . . . , s.ân = j − 2) = 0,

.

.

p (s.â
′
1 = j, s.â

′
2 = j, . . . , s.ân = −j) = 0,

p (s.â
′
1 = j, s.â

′
2 = j, . . . , s.â

′
n = j) = p. (68)

First, we prove here that all time-local SHVTs predict p = 0. Suppose that a time-local SHVT
reproducing, in accordance with Eq.(4), the quantum predictions exist. Accordingly, if we
consider, for example, Eq.(64), we must have

p(s.â
′
1 = j, . . . , s.âl = j − 1, . . . , s.â

′
n = j)

=
∫

Λ
dλρ(λ)pλ(s.â

′
1 = j, . . . s.âl = j − 1, . . . , s.â

′
n = j)

=
∫

Λ
dλρ(λ)pλ(s.â

′
1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â

′
n = j)

= 0, (69)

where the second equality is implied by the time-locality condition of Eq.(4). The last equality

in Eq.(69) can be fulfilled if and only if the product pλ(s.â
′
1 = j) . . . pλ(s.â

′
n = j) vavishes

every time within Λ. An equivalent result holds for Eqs.(64-69), leading to:

pλ (s.â1 = j)pλ(s.â2 = j) . . . pλ(s.ân = j) = 0, (70)

pλ (s.â1 = j − 1)pλ(s.â
′
2 = j) . . . pλ(s.â

′
n = j) = 0,

pλ (s.â1 = j − 2)pλ(s.â
′
2 = j) . . . pλ(s.â

′
n = j) = 0,

.

.

pλ (s.â1 = −j)pλ(s.â
′
2 = j) . . . pλ(s.â

′
n = j) = 0, (71)

.

.

.

pλ (s.â
′
1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â

′
n = j) = 0,

pλ (s.â
′
1 = j) . . . pλ(s.âl = j − 2) . . . pλ(s.â

′
n = j) = 0,

.

.

pλ (s.â
′
1 = j) . . . pλ(s.âl = −j) . . . pλ(s.â

′
n = j) = 0, (72)
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.

.

.

pλ (s.â
′
1 = j)pλ(s.â

′
2 = j) . . . pλ(s.ân = j − 1) = 0,

pλ (s.â
′
1 = j)pλ(s.â

′
2 = j) . . . pλ(s.ân = j − 2) = 0,

.

.

pλ (s.â
′
1 = j)pλ(s.â

′
2 = j) . . . pλ(s.ân = −j) = 0, (73)

pλ (s.â
′
1 = j)pλ(s.â

′
2 = j) . . . pλ(s.â

′
n = j) = p �= 0, (74)

where the first 2jn + 1 equations are supposed to hold almost every time within Λ, while the
last equation has to be satisfied in a subset of Λ whose measure according to the distribution
ρ(λ) is nonzero. To prove the more general result that no conceivable time-local SHVT can
simultaneously satisfy Eqs.(70)-(74), a manipulation of those equations is required. To this
end, let us sum all equations in each set. We obtain

(1 − pλ(s.â1 = j))
[

pλ(s.â
′
2 = j) . . . pλ(s.â

′
n = j)

]

= 0,

.

.

(1 − pλ(s.âl = j))
[

pλ(s.â
′
1 = j) . . . pλ(s.â

′
n = j)

]

= 0,

.

.

(1 − pλ(s.ân = j))
[

pλ(s.â
′
1 = j) . . . pλ(s.â

′
n−1 = j)

]

= 0. (75)

Now let us partition the set of hidden variables Λ and define the following subsets
A1, A2, . . . An, and B as:

A1 = {λ ∈ Λ|pλ(s.â1 = j) = 0},

.

.

Al = {λ ∈ Λ|pλ(s.âl = j) = 0}, (76)

.

.

An = {λ ∈ Λ|pλ(s.ân = j) = 0},

B = Λ − {A1 ∪ A2 ∪ . . . ∪ An}. (77)

We have that, for all λ belonging to B, pλ(s.â1 = j)pλ(s.â2 = j) . . . pλ(s.ân = j) �= 0.If set
B had a nonzero measure according to the distribution ρ, that is, if

∫

B dλρ(λ) �= 0, there
would be violation of Eq.(70) and, consequently, of Eq.(64). Therefore, to fuifill Eq.(70),
the set A1 ∪ A2 ∪ . . . ∪ An must coincide with Λ apart from a set of zero measure, and
we are left only with hidden variables belonging to either A1 or A2 or . . . or An. If λ
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belongs to Al , then, by definition, pλ(s.âl = j) = 0, so that Eq.(75) can be satisfied only if

pλ(s.â
′
1 = j) . . . pλ(s.â

′
n = j) = 0. Hence, for any λ ∈ {A1 ∪ A2 ∪ . . . ∪ An}, we obtain

a result leading to a contradiction of Eq.(74), which requires that there is a set of nonzero ρ
measure within Λ where both probabilities do not vanish. To summarize, we have shown
that it is not possible to exhibit any time-local hidden-variable model, satisfying Hardy’s logic
for n successive measurements.
Now, we show that in quantum theory for the n successive spin measurement, sometimes
p > 0. So, we consider n successive measurements in directions s.âi (i = 1, 2, . . . , n) on spin-s
particles. For a spin-s system, we have ( see Appendix-B):

|〈αk−1|αk〉| = |〈s.âk−1|s.âk〉| = d
(s)
αk−1,αk

(βk − βk−1), (78)

where βk is the angle between the âk and the +z axes. So, given the input state |α0〉, the
( joint) probability that the measurement outcomes will be |α1〉 ∈ {+j, . . . ,−j} in the first
measurement, |α2〉 ∈ {+j, . . . ,−j} in the second measurement,..., |αn〉 ∈ {+j, . . . ,−j} in the
n-th measurement, is given by

p(α1, α2, . . . , αn) =Πn
k=1|〈αk−1|αk〉|

=Πn
k=1d2

αk−1,αk
(βk − βk−1). (79)

We deal with the case where the input state is a pure state whose eigenstates coincide with

those of �S.â0 for some â0 whose eigenvalues we denote α0 = j. Now, by substituting Eq.(79)
in the minimal form of Hardy’s argument [ Eqs.(64)-(68)], we have

d 2
jj(β1)d

2
jj(β2 − β1) . . . d2

jj(βn − βn−1) = 0, (80)

d 2
j,j−1(β1)d

2
j,j−1(β

′
2 − β1) . . . d2

jj(β
′
n − β

′
n−1) = 0,

d 2
j,j−2(β1)d

2
j,j−2(β

′
2 − β1) . . . d2

jj(β
′
n − β

′
n−1) = 0,

.

.

d 2
j,−j(β1)d

2
j,−j(β

′
2 − β1) . . . d2

jj(β
′
n − β

′
n−1) = 0,

.

.

d 2
jj(β

′
1) . . . d2

j,j−1(βl − β
′
l−1)d

2
j,j−1(β

′
l+1 − βl) . . .

d 2
jj(β

′
n − β

′
n−1) = 0,

d 2
jj(β

′
1) . . . d2

j,j−2(βl − β
′
l−1)d

2
j,j−2(β

′
l+1 − βl) . . .

d 2
jj(β

′
n − β

′
n−1) = 0,

.

.

d 2
jj(β

′
1) . . . d2

j,−j(βl − β
′
l−1)d

2
j,−j(β

′
l+1 − βl) . . .

d 2
jj(β

′
n − β

′
n−1) = 0, (81)
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.

.

d 2
jj(β

′
1)d

2
jj(β

′
2 − β

′
1) . . . d2

j,j−1(βn − β
′
n−1) = 0,

d 2
jj(β

′
1)d

2
jj(β

′
2 − β

′
1) . . . d2

j,j−2(βn − β
′
n−1) = 0,

.

.

d 2
jj(β

′
1)d

2
jj(β

′
2 − β

′
1) . . . d2

j,−j(βn − β
′
n−1) = 0, (82)

d 2
jj(β

′
1)d

2
jj(β

′
2 − β

′
1) . . . d2

j,j(β
′
n − β

′
n−1) = p. (83)

From Eq (80), at least one of the factors must be 0. So

d2
jj(β1) = 0 =⇒ β1 = π

or

d2
jj(β2 − β1) =⇒ |β2 − β1| = π

or

.

.

.

d2
jj(βn − βn−1) =⇒ |βn − βn−1| = π

To satisfy all equations (81)-(82), we have the following conditions:

(β1 = 0) or (β
′
2 = β1)

and

(β2 = β
′
1) or (β2 = β

′
3)

.

.

.

(βl = β
′
l−1) or (βl = β

′
l+1) (84)

.

.

.

and

(βn = β
′
n−1).

Now, we can calculate the maximum value p by using these conditions. For example, if we

select β1 = π, so we must have β
′
2 = β1 = π. In this case,

p = d2
jj(β

′
1)d

2
jj(π − β

′
1)d

2
jj(β

′
3 − π) . . . d2

j,j(β
′
n − β

′
n−1). (85)
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By substituting d
j
jj(β) = cos2j(β/2), we have

p = cos4j(
β
′
1

2
) cos4j(

π − β
′
1

2
) cos4j(

β
′
3 − π

2
) . . .

cos4j(
β
′
n − β

′
n−1

2
). (86)

By selecting β
′
n = β

′
n−1 = . . . = β

′
3 = π and β

′
1 = π,

p ≤ (
1

2
)4j. (87)

We can obtain this result in the general case. We choose |βl − βl−1| = π, where 2 ≤ l ≤ n.
Without loss of generality, we select βl = π and βl−1 = 0. From the results obtained with

Eq.(84), β
′
l+1 = βl = π or β

′
l−1 = βl = π. Exactly for (l-1)th in Eq.(84), we have β

′
l = βl−1 = 0

or β
′
l−2 = βl−1 = 0. So we have four cases: (i) β

′
l−1 = π and β

′
l−2 = 0 (ii)β

′
l−1 = π and β

′
l = 0

(iii)β
′
l+1 = π and β

′
l = 0 and (iv)β

′
l+1 = π and β

′
l−2 = 0. It is easy see that for the first three

cases , the maximum value of p is 0, but in the forth case, by selecting β
′
1 = β

′
2 = . . . = β

′
l−1 =

0 and β
′
l+2 = β

′
l+3 = . . . = β

′
n = π, we get

p = cos4j(
β
′
l

2
) sin4j(

β
′
l

2
) ≤ (

1

2
)4j. (88)

We see that p > 0 for all spins, and also, the maximum probability of success of Hardy’s
non-time locality is independent of the number of successive measurements and decreases
with s.

7. Summary and comments

Entanglement in space displays one of the most interesting features of quantum mechanics,
often called quantum non locality. Locality in space and realism impose constraints -Bell’s
inequalities- on certain combinations of correlations for measurements of spatially separated
systems, which are violated by quantum mechanics. Non locality is one of the strangest
properties of quantum mechanics, and understanding this notion remains an important
problem.
Entanglement in time is not introduced in quantum mechanics because of different roles time
and space play in quantum theory. The meaning of locality in time is that the results of
measurement at time t2 are independent of any measurement performed at some earlier
time t1 or later time t3. The temporal Bell’s inequalities are derived from the realistic hidden
variable theory.
In this chapter we have considered a hidden variable theory of successive measurements on
a single spin-s system. In all the previous scenarios comparing HVT and QM the principal
hypothesis being tested was that, in a given state ( having spatial correlation), HVT implies
the existence of a joint probability distribution for all observables even if some of them
are not compatible. QM is shown to contradict the consequence of this requirement as it
does not assign joint probabilities to the values of incompatible observables. The particular
implication that is tested is whether the marginal of the observable A in the joint distribution
of the compatible observables A and B is the same as the marginal for A in joint distribution
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for the observables A and C even if B and C are not compatible. In other words, HVT
implies noncontextuality for which QM can be tested. The celebrated theorem of Bell and
Kochen-Specker showed that QM is contextual (Bell, 1966),(Kochen & Specker, 1967). In our
scenario, the set of measured observables have a well defined joint probability distribution as
each of them acts on a different state. Note that the Bell-type inequalities we have derived
follow from equation (4) which says that, for a given value of stochastic hidden variable
λ, the joint probability for the outcomes of successive measurements must be statistically
independent. In other words the hidden variable λ completely decides the probabilities of
individual measurement outcomes independent of other measurements. We show that QM
is not consistent with this requirement of HVT. A Bell-type inequality (for single particle),
testing contextuality of QM was proposed by Basu et al. (Basu et al., 2001) and was shown that
it could be empirically tested. However, the approach given in the present chapter furnishes
a test for realistic nature of QM independent of contextuality. We have compared QM with
HVT for different values of spin and for different number of successive measurements. The
dependence of the deviation of QM from HVT on the spin value and on the number of
successive measurements opens up new possibilities for comparison of these models, and
may lead to a sharper understanding of QM.
In the following, I bring some of the key surprising results obtained in this chapter.
1- We obtained temporal Mermin-Klyshko inequality (MKI) and svetlinchi inequality (SI) for
n successive measurements by using realism and non locality in time. We showed quantum
correlations violate temporal MKI and satisfy temporal SI.
2- It was interesting that, for a spin-s particle, maximum deviation of quantum mechanics from
realism was obtained for all convex combinations of α0 = ±1 states (the case when input state

is a mixed state whose eigenstates coincide with those of �S · â0 for some â0 whose eigenvalues
we denote by α0 ∈ {−s, . . . , s}). This is surprising as one would expect pure states to be more
‘quantum’ than the mixed ones thus breaking Bell inequalities by larger amount.
3- All spin 1/2 states maximally break Mermin-Klyshko inequalities for n successive

measurements (ηn =
√

2) as against only the entangled states break it in multipartite case.
Interestingly that for s = 1

2 the random mixture ( maximum noisy state) also breaks BI. This
indicates that the notion of “classicality", compatible with the usual local HVT, is different in
nature from the notion of classicality that would arise from the non-violation of BI here.
4- We saw that for all spins, BI and MKI is violated in two and three successive measurements
(η2 > 1,η3 > 1) and the value of violation MKI in three successive measurements is a little
more than the value of violation BI in two successive measurements η3 > η2 except s = 1

2 ,

while η3 = η2 =
√

2 for spin s = 1
2 . Also η3 and η2 decrease monotonically with increase in

the value of s. It is interesting, in the case of two and three successive measurements of spin
s prepared in a pure state, that the maximum violation of BI and MKI falls off as the spin of
the particle increases, but tends to a constant for arbitrary large s, η2(s −→ ∞) = 1.143 and
η3(s −→ ∞) = 1.153. It is thus seen that large quantum numbers do not guarantee classical
behavior.
5- We showed that for s = 1

2 , the correlation between the outputs of measurements from last k
out of n successive measurements (k < n) depend on the measurement prior to (n − k), when
k is even, while for odd k, these correlations are independent of the outputs of measurements
prior to n − k.
6- Interestingly if the initial state is the random mixture or first Stern-Gerloch measurements
for the qubit component along the directions a1 perpendicular to initial state â0 ⊥ â1 so that,
〈α1〉QM = 0, then always quantum averages for all odd number of successive measurements
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are zero.
7- We proved that the correlation function between first and third measurement (t1 and t3)
on spin-s particle for a given measurement performed at t2 can not violate the temporal Bell
inequality. Therefore, any measurement performed at time t2 disentangles events at time t1

and t3 if t1 < t2 < t3.
8- Three successive measurements on spin-s particles do not break Svetlinchi Inequality. But
it is proved that three successive measurements on qubit violate Scarani-Gisin inequality.
Thus, although there are no genuine three-fold temporal correlations, a specific combination
of two-fold correlations can have values that are not achievable with correlations in space for
any three-qubit system.
9- Also we showed that three successive measurements violate two types of Bell inequalities
involving two and three successive measurements. So two successive measurement
correlations are relevant to those of three successive measurements. This behavior is
analogous to three particle W-state.
10- Quantum correlations between two successive measurements on a qubit violates chained
Bell inequality which is obtained by providing more than two alternative experiments in every
step.
11- Also, we have studied Hardy’s argument for the correlations between the outputs
of n successive measurements for all s-spin measurements. We have shown that the
maximum probability of success of Hardy’s argument for n successive measurements is
( 1

2 )
4s, which is independent of the number of successive measurements of spin (n) and

decreases with increase of s. This can be compared with the correlations corresponding
to measurement of spin observables in a spacelike separated two-particles scenario where
only the non-maximally entangled states of any spin-s bipartite system respond to Hardy’s
nonlocality test.

8. Appendix A

We evaluate 〈α1〉, 〈α1α2〉 and 〈α1α2α3〉 in the state ρ0 given in(4.1).

(|�S · â0, α0〉 ≡ |â0, α0〉)

〈α1〉 =
s

∑
α1=−s

α1 p(α1) = 〈â0, α0|�S · â1|â0, α0〉 = 〈â1, α0|ei�S·n̂θ1 (�S · â1)e
−i�S·n̂θ1 |â1, α0〉 (A.1)

where θ1 is the angle between â0 and â1 and n̂ is the unit vector along the direction defined by
n̂ = â0 × â1. By using Baker- Hausdorff Lemma

eiGλ Ae−iGλ = A + iλ[G, A] +

(

i2λ2

2!

)

[G, [G, A]] + · · · (A.2)

we get,

〈α1〉 = 〈â1, α0|�S · â1|â1, α0〉+
iθ1

1!
〈â1, α0|[�S · n̂,�S · â1]|â1, α0〉

+
i2θ2

1

2!
〈â1, α0|[�S · n̂, [�S · n̂,�S · â1]]|â1α0〉+ · · · (A.3)

By using:

〈â1, α0|�S · â1|â1, α0〉 = α0, (A.4)
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〈â1, α0|[�S · n̂,�S · â1]|â1, α0〉 = 〈â1, α0|(i�S · (n̂ × â1))|â1, α0〉 = 0, (A.5)

and
〈â1, α0|[�S · n̂, [�S · n̂,�S · â1]]|â1, α0〉 = 〈â1, α0|�S · â1|â1, α0〉 = α0. (A.6)

Terms with odd powers of θ1 vanish

〈α1〉 = α0 −
θ2

1

2!
α0 +

θ4
1

4!
α0 − · · · = α0 cos θ1. (A.7)

If the initial state is mixed state(4.1):

〈α1〉 =
+s

∑
α0=−s

pα0 α0 cos θ1. (A.8)

Further we compute

〈α1α2〉 = ∑
α1

α1|〈â0, α0|â1, α1〉|2 ∑
α2

α2|〈â1, α1|â2, α2〉|2.

By using (A.7)

〈α1α2〉 = cos θ12 ∑
α1

α2
1|〈â0, α0|â1, α1〉|2 = cos θ12〈â0, α0|(�S · â1)

2|â0, α0〉

= cos θ12〈â1, α0|ei�S·n̂θ1 (�S · â1)
2e−i�S·n̂θ1 |â1, α0〉 (A.9)

Using the Baker-Hausdorff Lemma, and using

〈â1, α0|[�S · n̂, [�S · n̂, [�S · n̂, · · · [�S · n̂, (�S · â1)
2]] · · · ]]|â1, α0〉 (A.10)

=

⎧

⎨

⎩

0 if �S · n̂ occurs odd number of times

3α2
0 − s2 − s if �S · n̂ occurs 2p times

we get,

〈α1α2〉 =
1

2
cos θ12[(s

2 + s − α2
0) + (3α2

0 − s2 − s) cos2 θ1]. (A.11)

If the initial state is mixed state (4.1),

〈α1α2〉 =
1

2
cos θ12

+s

∑
α0=−s

pα0 [(s
2 + s − α2

0) + (3α2
0 − s2 − s) cos2 θ1]. (A.12)

Next we calculate,

〈α1α2α3〉 = ∑
α1

α1|〈â0, α0|â1, α1〉|2 ∑
α2

α2|〈â1, α1|â2, α2|2 ∑
α3

α3|〈â2, α2|â3, α3〉|2. (A.13)

By using (A.7) and (A.11) we get,

〈α1α2α3〉 =
1

2
α0 cos θ1 cos θ23 sin2 θ12s(s + 1) +

1

2
cos θ23(3 cos2 θ12 − 1)A, (A.14)
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where,

A = ∑
α1

α3
1|〈â0, α0|â1, α1〉|2 = 〈â1, α0|ei�S·n̂θ1 (�S · â1)

3e−i�S·n̂θ1 |â1, α0〉. (A.15)

Using Baker-Hausdorff lemma and

〈â1, α0|[�S · n̂, [�S · n̂, [�S · n̂, · · · [�S · n̂, (�S · â1)
3]] · · · ]]|â1, α0〉

=

⎧

⎨

⎩

0 if �S · n̂ occurs odd number of times

Y(X − a3
0) + X if �S · n̂ occurs 2p times

(A.16)

where,

X = 6α3
0 + α0(1 − 3s(s + 1))

Y = 32p−2 + 32p−4 + · · ·+ 32 = (
9

8
)[92p−2 − 1] (A.17)

we get,

A =
1

8

∞

∑
j=0

(−1)j[(9j − 1)X − (9j − 9)α3
0] (

θ
2j
01

2j!
).

This gives,

A =
1

8
α0{[3α2

0 + 3s(s + 1)− 1] cos θ01 + [5α2
0 − 3s(s + 1) + 1] cos 3θ01} (A.18)

After substituting (A.18) in (A.14) and simplifying,

〈α1α2α3〉 =
1

16
cos θ23{cos θ1[M cos2 θ12 + N] + R[3 cos2 θ12 − 1]} (A.19)

where,

M = α0[9α2
0 + s(s + 1)− 3]

N = α0[5s(s + 1)− 3α2
0 + 1]

R = α0[5α2
0 − 3s(s + 1) + 1].

If the initial state is a mixed state (4.1),

M =
+s

∑
α0=−s

pα0 α0[9α2
0 + s(s + 1)− 3]

N =
+s

∑
α0=−s

pα0 α0[5s(s + 1)− 3α2
0 + 1]

R =
+s

∑
α0=−s

pα0 α0[5α2
0 − 3s(s + 1) + 1].
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Also, by using equations (A.12) and (A.13), one obtains:

〈α1α3〉 = ∑
α1

α1|〈â0, α0|â1, α1〉|2 ∑
α2

|〈â1, α1|â2, α2|2 ∑
α3

α3|〈â2, α2|â3, α3〉|2

= cos θ32〈α1α2〉

=
1

2
cos θ32 cos θ21[(s

2 + s − α2
0) + (3α2

0 − s2 − s) cos2 θ1], (A.20)

and we can obtain:

〈α2α3〉 = ∑
α1

|〈â0, α0|â1, α1〉|2 ∑
α2

α2|〈â1, α1|â2, α2|2 ∑
α3

α3|〈â2, α2|â3, α3〉|2

= cos θ32〈α2
2〉

=
1

2
s cos θ32{(s + 1) sin2 θ12 +

1

2
(3 cos2 θ12 − 1)[1 + (2s − 1) cos2 θ1]}. (A.21)

9. Appendix B

Let us consider a situation where an ensemble of systems prepared in state ρ = |s.â0 = α0 ><

s.â0 = α0| at time t = 0, is subjected to a measurement of the observable A(t1) = s.â1 at
time t1 followed by a measurement of the observable B(t2) = s.â2 at time t2 (t2 > t1 > 0),
where we have adopted the Heisenberg picture of time evolution. Further, let us assume
that both A(t1) and B(t2) have purely discrete spectra. Let {α1} = {−s,−s + 1, . . . , s} and

{α2} = {−s,−s+ 1, . . . , s} denote the eigenvalues and PA(t1)(α1) = |s.â1 = α1 >< s.â1 = α2|,
PB(t2)(α2) = |s.â2 = α2 >< s.â2 = α2| the corresponding eigenprojectors of A(t1) and B(t2)
respectively. Then the joint probability that a measurement of A(t1) yields the outcome α1

and a measurement of B(t2) yields the outcome α2 is given by

Pr
ρ

A(t1),B(t2)
(α1, α2)

= Tr
[

PB(t2)(α2)PA(t1)(α1)ρPA(t1)(α1)PB(t2)(α2)
]

= |〈s.â0|s.â1〉|2 |〈s.â1|s.â2〉|2 . (B.1)

We know that |s.a = α >= ∑
+s
m=−s d

(s)
α,m(β)|m > where d

(s)
αm(β) ≡

〈

s, α|exp(
−iSy(β)

h̄ )|s, m
〉

and

it obtains Wigner’s formula (Sakurai, n.d.) and αi ∈ −s, . . . , s and βi is the angle between the
âi and the z axes. In contrast,

|〈s.â1|s.â2〉| = ∑
m

< m|d∗(s)α1,m(β1)∑
m′

d
(s)

α2,m′ (β2)|m
′
>

= ∑
m

d
∗(s)
α1,m(β1)d

(j)

α2,m′ (β2)

= d
(s)
α1α2

(β2 − β1). (B.2)

So, we obtain

prQM(α1, α2) = |d(s)α0α1
(β1 − β0)|2|d(s)α1α2

(β2 − β1)|2. (B.3)
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