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1. Introduction 

1.1 Parasitism 

Parasitism is an antagonistic relationship between organisms of different species where the 

parasite benefits at the expense of the host. Helminths are long-living, multicellular 

parasites. There are two major phylla of helminths; Nematodes and Platyhelminthes. The 

nematodes contain the intestinal worms known as soil-transmitted helminths including 

hookworms, whipworms and the filarial worms that cause lymphatic filariasis and 

onchocerciasis. The Platyhelminthes, known as flatworms, include the flukes and the 

tapeworms. Both nematodes, flukes and tapeworms widely infect humans and animals 

(Hotez & Kamath, 2009). Most of the parasitic species causing weakness and disease survive 

in and explore the host as natural environment. Helminths can be found in a great variety of 

tissue niches, and although they cause very high morbidity, direct mortality of the host 

species remains low (Brooker, 2010). Human hookworm infection is a common soil-

transmitted helminth infection that is caused by the nematode parasites Necator americanus 

and Ancylostoma duodenale. Hookworm infections are asymptomatic however substantially 

contributes to the incidence of anemia and malnutrition in developing nations (de Silva et. al 

2003, WHO 2010).  

Filarial diseases are rarely fatal and morbidity of human filariasis results mainly from the 

host reaction to microfilariae or developing adult worms in different areas of the body. Most 

of the filarial infected individuals have a subclinical condition associated with patent 

infection, and acute manifestations which are rarely life threatening. However, chronic 

manifestations, such as lymphedema (elephantiasis) and hydrocele, are debilitating (Keiser 

et al., 2002). 

Schistosomes,  the blood flukes reside in the mesenteric and vesical venules. They have a life 

span of many years and daily produce large numbers of eggs, which must traverse the gut 

or bladder tissues on their way to the lumens of the excretory organs. Many of the eggs 

remain in the host tissues, inducing immunologically mediated granulomatous 

inflammation and fibrosis (Warren, 1982). The relationship between the presence of 

schistosome infection and clinical morbidity revealed schistosomiasis-related disease and 

associated death (Van der Werf  et al., 2003). 

Worldwide, many cestode infestations occur with very low prevalence of infections and are 

asymptomatic. Nevertheless some of the more serious infestations result in symptoms from 

mass effects on vital organs, inflammatory responses, nutritional deficiencies, and the 

potential of fatal anaphylaxis (Del Brutto, 2005; Morar & Feldman, 2003; Ozturk et al., 2007). 
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1.2 The outcome of immunosuppression in population 

However the immune system is the system responsible for protection against parasites, 
mlticellular helminths which actively destroy host tissue evolved in effective immune 
system; the aim of parasite-related suppression is to get the right environment for existence 
and survival. The number of larvae which successfully invade the host, the number of 
migrating parasites and the number of settled adult forms and their reproductive capacity 
depend on the activity of the host immune system. Immune recognition, effectiveness of 
immune reactivity and protective response are the mechanisms that affect parasite 
abundance and survival in the host. In response to the action of immune system, parasites 
induce a plethora of mechanisms which evade or manipulate  host defence. All these 
reactions take place at the host–parasite interface and are regulated by gene products of both 
species. In the evolutionary sense both parasite products and host immune system are 
adjusted to their intimate relationship.  
Genetic population studies shown that helminths have been a major selective force on a 
subset of interleukin receptor genes (IL genes) from which some genes, have been a target of 
balancing selection, a process that maintains genetic variability within a population 
(Fumagalli et al., 2009). Allele frequency, host behaviour and helminth distribution in 
population may influence of heritable factors both in patterns of infection and immunity 
(Ellis et al., 2007). It is reflected in the effect of helminths on individual host responses to 
other pathogens such as microparasites, which is considerable variable. In concurrent 
infections with multiple coinfecting species, parasites interact with one another through the 
host’s immune system via mechanisms such as immune trade-offs and immunosuppression 
(Ezenwa & Jolles, 2011). A subset of immunomodulatory parasite species may have a key 
role in structuring other infections in natural vertebrate populations. Affecting expression of 
toll-like receptors (TLR) are important in initiating immunity; populations free from 
immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune 
activation, leading to an increased risk of immunopathology (Jackson et al. 2009). The host 
immunocompetence may give some indications of the control of parasite infection and of 
the host mediation effect, through immunity, on the parasite community structure (Combes, 
1997; Mouritsen & Poulin, 2005). Thus immunosuppression promotes over-dispersal of 
parasites and favours the most suitable genotype of the host for better propagation of the 
parasite. As intestinal mucins are an important component of innate defence even a single 
gene deficiency predisposes to infection with nematodes (Hasnain et al., 2010; McKay and 
Khan, 2003). 
The distribution of parasites among different individuals in the host population, infected 
with the same helminth species is heterogeneous. A consequence of this is the aggregated 
distribution of helminth infection in endemic communities; a small proportion of hosts are 
rapidly, frequently, and/or heavily infected (May & Anderson, 1990). Such a pattern of 
distribution suggests that some individuals are predisposed to heavy infection and intensity 
of parasitic infections are also under genetic control (Iraqi et al., 2003, Stear & Wakelin, 
1998). It is shown in humans as individual predisposition to infection, ethnic variation in 
susceptibility to disease and familial aggregation to infection (Quinnell, 2003). Genetic 
background determines both the favorable level of immune suppression necessary to 
sustain chronic infection as well as a highly active immune response to eradicate worms 
from the infected host. In lambs, naturally exposed to nematodes on pasture season, genetics 
acts mainly through the control of acquired anti-fecundity immune response (Stear et al., 
1997). Moreover, as the consequence of anthropogenic changes in natural environment the 
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evolution of different traits in parasites e.g. specificity, virulence, and  polymorphism may 
be influenced by humans (Lebarbenchon et al., 2008). 

1.3 The outcome of immunosuppression in the host  

Helminths tend to settle in privileged localization in the host which is reflected in the 
distinct location of larvae and adults in the host. Helminths need a suitable and non-
destructive localization to propagate and transmit their offspring. The state of immune 
unresponsiveness protects growing larvae during migration through the host tissue. Some 
nematode species larvae such as Ascaris and Strongylus undergo extensive migrations which 
begin and end in the same location, the intestine. Nematodes which migrate during 
development are usually bigger than their closest relatives that develop wholly within the 
gastrointestinal tract. Time to reproduction is the same, indicating that worms with a tissue 
phase during development grow faster in the intestine. Because fecundity is intimately linked 
with size in nematodes, this provides an explanation for the maintenance of tissue migration 
by natural selection (Read & Sharping, 1995). For example Trichinella spiralis infection results in 
depression of various parameters of immunity, including delayed type hypersensitivity and 
responses to bacterial lipopolysaccharide (Barriga, 1978; Beiting et al., 2007; Gerencer et al., 
1992). The nematode is a source of macrophage inhibitory factor (TspMIF) and is able to 
subvert host immunoregulation; MIF has been cloned and characterized with respect to 
structural, enzymic and cytokine properties (Tan et al., 2001). The maintenance of an 
immunosuppressed state in the host may improve the fitness of the parasite. 
Immunosuppression induced by helminths not only affects the parasite which already has 
infected the host, but also promotes infection with further infectious larvae. Parasite 
acquisition is density-dependent and the number of parasites successfully establishing in the 
host may over time increase with the parasite burden in the host. In long-lasting infections, 
immunosuppressive mechanisms prevent or limit parasite killing and expulsion; the 
ongoing infections do not elicit a strong host effector response; infection with one species 
predisposes for infection with other species and polyparasitism is common (Blaxter, 2003; 
Ellis & McManus, 2009; Keiser et al., 2002).  

2. When immunosuppression is expressed  

Immunosuppression may be recognized as; (i) the state when immune system is not 
specifically suppressed but is not active. That has been characterized for young or older 
individuals and also with genetic defects resulted in dysfunction of immune system or is 
artificially induced with immune suppressant for different reason; (ii) suppression activated 
during immune response which regulates inflammatory reactions and inhibits specific 
response to sustain the state of physiological homeostasis.  

2.1 When the immunosuppression is used 

The steady-state of immunosuppression develops as a naturally occurring regulatory 
pathway resulting in antigen-specific inhibition (von Boehmer, 1991) and the lack of 
immune response to antigen. Physiological immune homeostasis depends on a balance 
between the responses to infection or neoplasia and the reciprocal responses that prevent 
inflammation and autoimmune diseases. These phenomena lead to immunotolerance; the 
immunosuppressed host fails to responds to the presence of specific antigens or fails to 
respond to specific antigen. The outcome of these immune-compromising may be beneficial 
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to the host, through limiting the immunopathology and also beneficial to the pathogen, 
through subversion of the protective immune responses of the host (Kingston & Mills, 2004). 
Helminths survive within the host because they may induce the state of physiological and 
immune compromise and may consequently evade immune attack and actively subvert the 
host immune response (Mitchell, 1991; Ogilive & Wilson, 1976).  
The immune system does not function efficiently throughout the life of the host. Host 
individuals are more susceptible to infection when their immune system is less sensitive to 
antigenic signals and doesn't react as quickly or efficiently to infection (Matzinger, 1994). 
This immune suppression is related to the physiological state of the host and influences the 
pattern of infection in the population. Most parasitic species are propagated preferentially in 
young individuals when the immune system is not completely developed or educated 
(Roberts, 1999). Especially physiological immunosuppression associated with parturition 
and lactation and the immunological unresponsiveness of young ruminants allows parasites 
to increase transmission; these states are correlated with the unresponsiveness of 
lymphocytes to mitogens (Soulsby, 1987).  
Neonatal exposure to antigens appears to develop immune tolerance (Billingham et al., 
1956). From the neonate major environmentally associated changes in immune response 
phenotype occurred (Wilkie et al., 2011) and neonatal T cells were susceptible to induction 
of tolerance (Gammon et al., 1986). In such immune milieu morbidity is acceptable in the 
host population. From evolution, it is likely that immunosuppression in the meaning of 
unresponsiveness or selective mortality of the most sensitive individuals, protect the better 
(suitable) genotypes of the host which are able to tolerate surviving parasites.  
Changes with age in the average intensity of Ascaris infection tend to be convex, rising in 
childhood and declining in adulthood (Bundy et al., 1987). Also piglets are more susceptible 
to Trichuris suis infection than adult pigs (Pedersen & Saeed, 2002). In contrast, hookworm 
frequently exhibits a steady rise in intensity of infection with age, peaking in adulthood 
(Hotez et al., 2008). Similarly, Brugia malayi infection establishes more rapidly in adults than 
in children (Terhell et al., 2001). Changes in cytokine phenotype, particularly CD4 T cells, 
contribute to age-associated switch from Trichuris muris resistance to susceptibility in mice 
(Humphreys & Grencis, 2002). As the parasite load gained through the life differs among 
parasite and host species, the establishment of infection may be therefore dependent not 
only on the host immune response but also on parasite–related factors which may actively 
modulate immune reactions.  
The immune system is involved in creating a favorable environment in the tissue for the 
parasites. The compromise of immune responsiveness by the host endocrine system may 
support establishment, growth, reproduction and survival of helminths. The contribution of 
stress, host sex or age may also reflect neuroimmunoendocrine interactions. The gender-
dependent immune regulation was identified; adult individuals of Senegalese population 
chronically infected with Schistosoma haematobium parasite presenting similar intensities of 
infection showed specific IgA response and production of TGF-β and IL-10 significantly 
higher in females compared to males. This specific profile was supposed to be associated 
with T helper type-3 (Th3) immune response. Nonimmunological factors like sexual 
hormones, were proposed to influence the chronicity of the infection (Remoué et al., 2001). 
Hormones are strongly involved in immune suppression observed in stress-fully conditions 
which predispose to greater and longer infection or make the host susceptible to infection 
(Hernandez-Bello et al., 2010). Increases in gastrointestinal nematode egg production in 
sheep with age were greatest among individuals that had experienced the highest degree of 
stress (Hayward et al., 2009). 
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2.2 When the immunosuppression is expressed 

Immunosuppression may be reached by different mechanisms in response to a plethora of 
parasitic molecules and may be expressed at each point of infection; from the ongoing 
invasion to chronic prolonged infection (Robinson et al., 2010). When parasites enter host 
tissues, a balance between the host effector mechanisms and the defense by the parasite 
have to be established allowing the survival of a number of larvae that escape from the first 
immune attack, and as long as some parasites persist, are able to act as effectors to regulate 
immune responses. One of the possibilities to cope with host defence is to inhibit innate 
immunity. Helminth derived products are able to modulate the function of non-immune 
and immune cells (Perrigoue et al, 2008). T cell hyporesponsiveness to antigen-specific 
stimuli from the beginning of infection may support survival of the developing stages of the 
parasite (Schwartz, 2003; Taylor et al., 2009). Induced hyporesponsiveness of T cells as a 
defect in lymphocyte function may contribute to the failure of the immune system to 
eliminate filarial nematodes (W. Harnett & M.M. Harnett, 2008; W. Harnett & M.M. Harnett, 
2006). In ruminants immunosuppression caused by parasites leads to reduced 
responsiveness of lymphocytes to mitogens (Soulsby, 1987). 
Helminth infections induce regulatory T cells (Treg: Tr1, Th3) secreting IL-10 and 

transforming growth factor (TGF-β) (Doetze et al, 2000) as well as CD4+CD25+ Treg 
expressing the Foxp3 transcription factor in the host (Cervi et al.; 2009; Pacífico et al., 2009). 
These regulatory T cells can alter the course of inflammatory disorders by increased 

production of IL-10 and TGF-β, together with induction of CD25+CD4+ Foxp3+ T cells 
(Correale & Farez, 2007). This also may represent a potential explanation regarding how 
exposure to a parasite could alter immune reactivity to unrelated stimuli.  
Parasites release products whose molecular structure and specificity may be changed during 
infection and most parasite immune evasion mechanisms depend on a form of molecular 
recognition between parasite and host. Helminths especially in long lasting infection 
produce factors that interfere with the tissue of the host and for that many helminths-
derived substances are considered as immune modulators (W. Harnett & M.M. Harnett, 
2008; Harn et al., 2009; Imai & Fujita, 2004). Infection with helminths drives CD4+ T cell 
biasing towards Th2-types and also induces the state of immunosuppression or anergy 
(Stadecker, 1992; Tawill et al., 2004). 
From the beginning of infection down regulation of innate response may occur. Typically 
for helminthic infections, expanded populations of eosinophils, basophils, mast cells and 
macrophages appear (Anthony et al., 2007; Jenkins & Allen, 2010). Nitric oxide produced by 
activated macrophages, eosinophils and other myeloid cells, is involved in many signalling 
pathways and may mediate induction of immunosuppression (Stamler et al., 1992). 
Hookworm infection inducing NO production is associated with impaired function of 
antigen-presenting cells and depletion of lymphocyte subpopulations (Dondji et al., 2008); 
myeloid cells derived from helminth infected animals exhibit antiproliferative properties 
(Mylonas et al., 2000). 
Myeloid suppressor cells displaying an alternative activation phenotype CD11b/GR-1 
emerged gradually in progression of Taenia crassiceps infection and in the late stage of 
infection, the suppressive activity relied on arginase activity, which facilitated the production 
of reactive oxygen species including H2O2 and superoxide (Brys et al., 2005). These cells are 
potent to impair antigen-specific T cell responses (Terrazas et al., 2001). Helminth extracts 
activate various macrophage populations and the most active in regulation of immune 

response are alternatively activated macrophages (AAMΦ) (Herbert et al., 2004). 
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2.3 Immunosuppression for tissue repair 

During helminth infections Th2 immune responses and parasitic-related products 
downregulate immunity; both of which minimize pathology in the host (Maizels & 
Yazdanbakhsh, 2003; Tawill et al., 2004). 
Macrophages are frequently the most abundant cell type recruited to the site of helminth 
infection but their activation and role are strictly dependent on the stage of infection and 
localization of the parasite. In the construction of tissue homeostasis suppression of 
inflammation is propagated by AAMΦ as anti-inflammatory down-regulatory cells (Allen & 
Loke, 2001; Villanueva et al., 1994). These cells are sources of TGF-β and IL-10 (Mylonas et 
al., 2009; Loke et al., 2000) as well prostaglandins PGE2 (Rodriguez-Sosa et al., 2002) and the 

IL-1 receptor antagonist (Goerdt & Orfanos, 1999). AAMΦ are also involved in repairing 
tissue or wound healing followed migration of larvae through the host tissue (Gratchev et 
al., 2001; Munder et al., 1998). Activation of myeloid cells may represent not only the state of 
innate protection but also have been already activated by helminth products and represent 
suppressor or repair responses. 
Metazoan parasites localized in the tissue require a supply of nutrients and the removal of 
waste products therefore angiogenesis may be a key mechanism for helminth survival and 
presumably depend on the host tissue. The multifactorial induction of parasitic helminth-
associated neovascularization could arise through, either a host-, a parasite- or a host-
/parasite-dependent, angiogenic switch (Dennis et al., 2011). It is possible that  mechanisms 
that downregulate the inflammatory reaction and support wound healing are the main 
outcome of immunosuppression in the host tissue. Upon immunosuppression, the activation 
or efficacy of the immune response is reduced. Some portions of the immune system itself 
have immunosuppressive effects on other parts of the immune system, and 
immunosuppression may also occur as an adverse reaction to treatment of other conditions. It 
is really that helminths inducing inflammatory responses provoke opposite or reverse 
reactions of immune cells (Erb, 2009). Depending on the parasite stages and their localization a 
distinct local and systemic immune reaction may be observed in the host tissue (Löscher & 
Saathoff, 2008). The rapid and persistent release of tegument glycoconjugates play a key role in 
immune evasion and life-long inflammation seen in many neurocysticercosis patients (Alvarez 
et al., 2008). The production of pro-inflammatory cytokines is often required to control 
parasites but the same cytokines contribute to immunopathology. In the tissue, cytokines and 
prostaglandins or glucocorticoid hormones may differentially suppress an inflammatory 
response provoked by the parasite (Dhabhar,  2009; Noverr et al., 2003; Wiegers & Reul, 1998).  
The immunosuppressive effect may be also maintained by other mechanisms such as 
induction of immunosuppressive B cells (Wilson et al., 2010) and regulatory function in 

helminth infection is also pointed for B cells. IL-10 and TGF-β are secreted form B cells 
during Schistosoma mansoni infection (Velupillai & Harn, 1994) or in mice infected with 
Brugia pahangi (Gillan et al., 2005). 

2.4 The action of immunosuppressive factors 

Immune non-responsiveness may also be the result of particular external processes such as 
deactivation of immune molecules or factors by helminthic products. Helminth parasites 
secrete considerable quantities of proteins and glycoproteins into the host environment, 
many of which are capable of modulating antiparasite immunity. Such molecules interfere 
with crucial stages in the immune response such as extravasations (blocked by parasite 
lectins and glycans through binding to endothelial selectins), chemokine attraction 
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(hookworms release proteases capable of degrading eotaxin), release of host proteases 
(inhibited by helminth serpins), attack by reactive nitrogen and oxygen intermediates by 
eosinophils and other effector cells (inhibited by helminth antioxidants such as glutathione-
S-transferase) (Falcone et al., 2004; Maizels et al., 2004).  
Helminth parasites may also secrete cytokine homologues such as TGF-β and produce 
protease inhibitors that are capable of blocking peptide antigen presentation and of eliciting 
an IL-10 response from macrophages. Immune non-responsiveness may also be the result of 
deactivation of immune molecules or factors by helminthic products such as macrophage 
migration inhibitory factor (Vermeire et al., 2008). Lipid-like molecules of schistosomes such 
as lyso-PS can interact with dendritic cells to induce T regulatory phenotypes in naïve T 
cells (van der Kleij et al., 2002) and homologous molecules have been identified in Ascaris. 
Potent immunosuppressive effect of Ascaris suum extract components on the host immune 
system was related to their property of down-regulating the antigen presenting ability of 
dendritic cells via an IL-10-mediated mechanism (Silva et al., 2006). Filariae cystatin as 
immunoregulator exploits host signalling events to regulate cytokine production in 
macrophages (Klotz et al., 2011).  
The efficiency of the innate response is crucial for invasion and survival of arriving larvae. 
Key attack points for selective immunoregulation conducted by parasites rely on (i) 
modulation of antigen recognition with changes in pathways of signal transduction; (ii) 
costimulation blockade; (iii) induction of regulatory cells; (iv) deviation to protective 
responses; (v) neutralization of proinflammatory cytokines; (vi) induction of anti-
inflammatory cytokines and; (vii) modulation of leukocyte trafficking. Immunosuppressive 
action of parasites can be primarily directed to antigen-presenting cells (APC) and induction 
of suppressor/regulatory T cells and macrophages, with the common effect to selectively 
inhibition of local or systemic immune response.  

2.5 How and when to get the immunosuppression 
2.5.1 Innate and adaptive immune response   

Innate immunity provides the first line of defence against invading pathogens. Excretory – 
secretory products released by helminths described as conserved molecular patterns 
associated with the pathogen (PAMP) may interact with the host pattern recognition 
receptor (PRRs) (Jackson et. al., 2009). Different carbohydrate moieties of helminths 
molecules are recognized by toll-like receptors (Medzhitov, 2007) and the C-type lectins 
receptors on dendritic cells and macrophages (Cambi et al., 2005). As a consequence of 
ligation, these DC will receive signals that are subsequently translated into different sets of 
Th1-, Th2-, or Treg-polarizing molecules. However, TLR ligation by helminth derived 
factors is recognized as a mechanism to limit of Th1 cytokine-mediated inflammation. 
Mature DC generated during helminth infection express relatively low levels of co-
stimulatory molecules and proinflammatory cytokines promoting proliferation of CD4- 
positive T cells with Th2 phenotypes (MacDonald & Maizels, 2008;  Semnani et al., 2008). 
Regulation of the host response starts from the recognition of the parasite; helminths 
products are able to stimulate partially activated dendritic cells with suppressed expression 
of TLRs and activate factors which promote Th2 and Treg phenotypes (Jackson et al., 2008). 
Some molecules which are released during tissue damage may interact with and induce 
anti-inflammatory effects (Ehlers & Ravetch, 2007). 
Helminths strongly drive Th2-cell differentiation (Liu et al., 2005). Th2 related defence is 
involved in protective immune responses to helminths and is dominated by IL-4, IL5 and IL-
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13 production (Finkelman et al., 2004). During Th2 related response, in addition to IL-4, IL-
13, IL-5, IL-9, and IL-10 (Anthony et al., 2007). Th2 cells can make IL-25 and IL-33 (Fallon et 
al., 2006; Neill et al., 2010) which can further promote and/or regulate Th2 immune 
responses. IL-10 is differentially used by helminths to regulate immune response and as 
produced by different cells in vivo downregulates both Th1 and Th2 response (Hoffman et 
al., 2000; Taylor et al., 2006). Induction of type 2 immune responses may also be influenced 
by thymic stromal lymphopoietin (TSLP) synthesized by epithelial cells, and blocking IL-12 
production can condition dendritic cells to promote Th2 cell development (Rimoldi et al., 
2005). The innate cell sources of factors promoting Th2 and Treg response were only now 
proposed as a new innate type-2 immune effector leukocyte that were named the nuocyte. 
Nuocytes expand in vivo in response to the type-2-inducing cytokines IL-25 and IL-33, and 
represent the predominant early source of IL-13 during helminth infection with 
Nippostrongylus brasiliensis (Neill et al., 2010). 
Apoptosis is mechanism which is involved in regulation of cell abundance during immune 
response. Cells induced to die release extramembrane phosphotidylserine which causes 
differentiation of immature dendritic cells to cells with a tolerogenic phenotype which favours 
anti-inflammatory responses (Steinman et al., 2000; Wallet et al., 2005). However, a plethora of 
helminths are able to modulate host apoptosis pathways to their own advantage. The 
involvement of apoptosis in immune regulation of the host immune function was proposed as 
one possible mechanism in creating the host−parasite relationship. The relative numbers of 
activated cells in both tissue and lymph nodes via the apoptotic pathway could determine 
pathology (Donskow-Schmelter & Doligalska, 2005). There is growing evidence that parasites 
can regulate apoptosis of T cells. Apoptosis can be triggered by diverse stimuli (Domen, 2001), 
including stimulation via T cells, Fas receptor, TNF receptors, glucocorticoids, removal of 
growth factors and enhanced expression of some proteases. In mice infected with microfilariae 
of the filariae nematode B. malayi, CD4+ T cells showed high levels of apoptosis and displayed 
an antigen specific proliferative defect what is related to elevated macrophages activity (Jenson 
et al., 2002). Parasites may provoke apoptosis directly by secretion of active mediators or 
indirectly by producing an inflammatory milieu that promotes death of reactive  T cells. 

2.5.2 The regulation of immunosuppression by Heligmosomoides polygyrus 

The H. polygyrus nematode is known to induce a dominant Th2 CD4+ response and it 
provides an excellent example of downregulation of immune responsiveness. The adult 
worms had a potent immunosuppressive influence on the mouse host, but the histotropic L4 
larvae provided the strongest signal for acquired immunity (Wahid & Behnke, 1992). In 
helminths, glycans provide a major contribution to the induction of Th2 development which 
is strongly skewed but the effectiveness of these responses for elimination or maintenance of 
the parasite is not fully elucidated. Additionally, in response to IL-4 and/or IL-13 producing 
cells, alternatively activated macrophages are activated, and express high levels of PRR. 

These population of cells produce high amounts of IL-10 and TGF-β but fail to generate NO 
(Gordon, 2003; Rodríguez-Sosa et al., 2002) and therefore may contribute to the general 
immune hyporesponsiveness observed in helminth-infected individuals (Leng et al., 2006; 
van Riet et al., 2007). Profoundly downregulatory cytokine TGF-β is critical to the 
immunosuppression induced by nematodes. Neutralization of these cytokines in human 
peripheral blood lymphocyte (PBL) cultures reversed antigen responsiveness toward filarial 

antigens (Cooper et a., 2001). Neutralization of TGF-β in BALB/c infected with H. polygyrus 
mice did not affect the Th2 related immune response (Doligalska et al., 2006). However 
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adult worms might express ligands from the TGF-β superfamily- TGH-2  to bind to 

mammalian TGF-β receptors which may induce naïve T cells to adopt a regulatory T-cell 
phenotype; thereby promoting long-term survival of parasites (Peng et al., 2004).  
 

 

Table 1. Cellular and cytokines responses to H. polygyrus infection in BALB/c mice. H. 
polygyrus is trichostrongylid nematode parasite used as a model of human gastrointestinal 
nematode infection. Within 24 hrs of infection by gavage larvae, the stage L3, penetrate the 
submucosa of duodenum. The fourth larval molt takes place about 90-96 hrs after infection 
and larvae reside in for 8 days. Pre-adult stage re-enter the lumen of the intestine and 
mature to adult stages. H. polygyrus infection in BALB/c mice is widely used for studies of 
parasite immunomodulation. BALB/c mice moderately respond to H. polygyrus infection 
and the immunoresponsiveness of this strains is well documented (Donskow-Schmelter et 
al., 2008). The H. polygyrus causes chronic, asymptomatic infection. Primary exposure to L3 
larvae results in an upregulation of the Th2 cytokine response,  minimal damage in the 
tissue provoked by L4 larvae and  significant reduction of inflammation by adult stages. 

AAMΦ, alternatively activated macrophage; CAMΦ, classically activated macrophage 

Intestinal submucosa                Reference                                                     Mesenteric lymph node                      Reference 

 

L3 Larvae 

Neutrophils↑   Morimoto et al., 2004    T cells proliferation↑               Doligalska  et al., 2006 

Eosinophils↑   Morimoto et al., 2004    CD4+ T cells apoptosis↓               Doligalska et al., 2006 

AAMΦ↓   Morimoto et al., 2004    

Basophils↓  Anthony et al., 2006 

Mast cells↓   Morimoto et al., 2004 
CD4+ T cells↑   Morimoto et al., 2004 
CD8+ T cells↓   Liu et al., 2007 
B cells↓    Liu et al., 2007 
  
Cytokines & chemokines     Cytokines & chemokines 
IL-4↑, IL-13↑, IL-6↑  Donskow-Schmelter et al., 2008  IL-4↓, IL-6↓                Doligalska et al., 2007 

IL-2↑, IL-12p70↑, IFN-γ↑ Donskow-Schmelter et al., 2008  IL-2↓, IL-12 p70↓, IFN-γ↓               Doligalska et al., 2007 

TNF-α↑, IL-10↑, MCP-1↑ Donskow-Schmelter et al., 2008  TNF-α↑, IL-10 , MCP-1↑               Doligalska et al., 2007 

       TGF-β↓                 Doligalska et al., 2006 

 

L4 Larvae 

AAMΦ↑   Kreider et al., 2007   T cells proliferation↓               Doligalska  et al., 2006 

CAMΦ↓   Donskow-Schmelter et al., 2008  CD4+ T cells apoptosis↓               Doligalska et al., 2006 

CD4+ T cells↓  Kreider et al., 2007 
CD8+ T cells↓  Kreider et al., 2007 
 
Cytokines & chemokines     Cytokines & chemokines 
IL-4↓ , IL-13↓, IL-6↑  Donskow-Schmelter et al., 2008  IL-4↓, IL-6↓               Doligalska et al., 2007 

IL-2↓, IL-12p70↑, IFN-γ↑ Donskow-Schmelter et al., 2008  IL-2↓, IL-12 p70↓, IFN-γ↓              Doligalska et al., 2007 

TNF-α↑, IL-10↓, MCP-1↑ Donskow-Schmelter et al., 2008  TNF-α↑, IL-10↓, MCP-1↓              Doligalska et al., 2007 

       TGF-β↑                Doligalska et al., 2006 

 

Adult worms 
Eosinophils ↓  Doligalska et al., 2006   T cells proliferation↓            Donskow  et al., 2011 

AAMΦ ↑   Anthony et al., 2006   CD4+ T cells apoptosis ↓            Donskow  et al., 2011 

CD4+ T cells ↓  Doligalska et al., 2006   CD8+ T cells apoptosis↓            Donskow  et al., 2011 
CD8+ T cells↑  Metwali, 2008   CD4+CD25hi Treg apoptosis↓               Donskow  et al., 2011 

CD4+CD25hi Treg ↑  Metwali, 2008 

 
Cytokines & chemokines     Cytokines & chemokines 
IL-4↑, IL-13↓, IL-6↓  Donskow-Schmelter et al., 2008  IL-4↓, IL-6↑             Doligalska et al., 2007 

IL-2↓, IL-12p70↑, IFN-γ↓ Donskow-Schmelter et al., 2008  IL-2↓, IL-12 p70↓, IFN-γ ↑           Doligalska et al., 2007 

TNF-α↓, IL-10↑, MCP-1↓ Donskow-Schmelter et al., 2008  TNF-α↑, IL-10↑, MCP-1↑           Doligalska et al., 2007 

IL-5↑   Doligalska et al., 2006   TGF-β↑             Doligalska et al., 2006 

IL-17↓   Elliott et al., 2009   IL-17↓             Elliott et al., 2009 
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The induced immunosuppressive mechanisms including apoptosis of activated cells is 
dependent on the host genotype (Donskow-Schmelter et al., 2007). The other immune 
response of fast FVB responder and slow C57Bl/6 responder mice during infection with H. 
polygyrus is associated with differences in apoptosis of CD4+ T cells in mesenteric lymph 
nodes (MLN). The apoptosis of these lymphocytes at the beginning of infection, when the 
first immune signal is given by infective L3 larvae, might play an important role in the 
modulation of the response in C57Bl/6 slow responder (Donskow-Schmelter, et al., 2007) 
but not in fast responder mice.  
The expression of host-protective immunity to H. polygyrus was dependent on the 
development of resistance to the immunomodulatory factors secreted by the worms (Behnke 
& Parish, 1979). The differences in sensitivity of T cells to apoptosis is provoked by distinct 
protein production by H. polygyrus worms in different strains of mice (Morgan et al., 2006). 
Calreticulin or other proteins produced by H. polygyrus (Morgan et al., 2006; Rzepecka et al., 
2006) in slow responder mouse could be responsible for the observed apoptosis in C56Bl/6 
mice. The recombinant form of human hookworm calreticulin can disturb the complement 
cascade and induce cell apoptosis in vitro (Kasper et al., 2001; Chow et al., 2000) thereby 
supporting chronic infection (Donskow-Schmelter et al., 2007). 
Interestingly, in resistant strains immunosuppression during infection does not affect the 
outcome of parasite-induced apoptosis, but results from a hyporesponsiveness experienced 
by CD4+ T cells during H. polygyrus infection (Doligalska et al., 2006). In the prepatent and 
chronic phase of infection, CD4+ T cells that are leaving the MLN survive better, do not 
proliferate and already have a hyporesponsive or anergic phenotype induced by 
CD4+CD25hi T cells which increased in number (Donskow et al., 2011).  
Chronic helminth infections are associated with a general hyporesponsiveness in which the 
activity of regulatory T cells can induce peripheral tolerance and constrain mucosal 
reactivity. However, little is known about particular helminth molecules that can induce 
Treg cells but characterization of some of them has started. The role of native and adaptive 
regulatory T cells and CD8+ lymphocytes have been elucidated. The H. polygyrus 
downregulation of immune responsiveness, is attributable in part to the activity of host 
natural Treg cells with the CD4+CD25hi  phenotype (Finney et al., 2007) and regulatory 
CD8+ T cells (Metwali et al., 2006). The expansion of CD4+CD25hi Treg cells in mice MLN is 
a consequence of inhibited apoptosis of this subpopulation regulated by glucocorticoid 
during the infection (Donskow et al., 2011). H. bakeri antigen modulates CD4- positive T cell 
resistance to glucocorticoid induced apoptosis by inducing overexpression of Bcl-2 and 
FLICE-like inhibitory protein (FLIP). They are transcriptionally regulated by the 

transcription factor, nuclear factor kappa B (NF-κB) (Doligalska, unpublished data). 
Additionally colonization with H. polygyrus induces a mucosal CD8+ T cell that inhibits 
proliferation of CD4+ T cells and CD8+ T cells through a contact and transporter associated 
with antigen processing (TAP)-dependent mechanism (Metwali et al., 2006). These 
observations have far-reaching implications. Undoubted host parasite relationships are 
complex and there may be several mechanisms by which parasites could protect host from  
inflammation. 
Helminths and their hosts need to achieve a state of homeostatic balance in which 
regulatory mechanisms operate for the survival of both the parasite and the host. Molecular 
signalling and cross-talk between cells of the endocrine, neuronal or immune systems and 
secreted factors such as hormones, neuropeptides, cytokines and chemokines influence the 
course of infection and severity of disease. Neural pathways regulate immune response at 
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regional, local and systemic levels through neurotransmitters and neuropeptides, and may 
have variable effects on immune cell activation and cytokine production. In turn, cytokines 
and chemokines produced both at peripheral inflammatory sites and/or locally in the CNS 
can modulate neural tissue function and hormonal secretion by endocrine glands (Delgado 
et al., 2004; Escobedo et al., 2005; Hernandez-Bello et al, 2010). One consequence of the 
invasion of nematode larvae is inflammation and tissue damage which provokes 
immunosuppression and analgesia. An increased number of neuronal opioid receptors on 
neurons is necessary for analgesic effects of opioids and their expression on immune effector 
cells allows immunomodulatory effects.  
H. polygyrus is a strictly intestinal nematode and displays no systemic migration during its 
development in the host.  L3 larvae briefly inhabit the duodenal wall and during this period 
the inflammation provoked by the larvae is regulated by opioids (Donskow-Schmelter et al., 
2008). The endogenous opioid peptides have a wide array of immunomodulatory effects on 
the immune system, directly through MOR opioid receptor of macrophages and indirectly 
through the hypothalamic-pituitary-adrenal (HPA) axis. The administration of naltrexone 
(NLX),  an oral antagonist of opioid receptors which completely blocks the effects of opioid 
agonists in mice infected with L4 larvae, caused a dramatic increase in classically activated 

macrophages (CAMΦ) activity; NO and cytokine production and migration. Additionally, 
as end-effectors of the HPA axis, endogenous glucocorticoids play an important role in the 
suppression of immunity by induction of CD4+CD25+ Treg lymphocytes. The opioid action 
is strictly determined by tissue damage; adult worms in the intestinal lumen inhibit 
inflammation without opioid receptor-linked mechanism activation  (Donskow-Schmelter et 
al., 2008). 

2.5.3 ”Therapeutic helminths” 

Nematode suppress the immunity generated by infection and also affect systemic responses 
to other non-nematode antigens (Barthlott et al., 2003). For this reason there has been a 
dramatic increase in the prevalence of immune-mediated diseases in areas where previously 
common exposure to helminths is now rare. These observations suggest that the parasites 
produce a natural governor that helps to prevent autoimmune disease such as inflammatory 
bowel disease (IBD), asthma, autoimmune diabetes (type I) or multiple sclerosis 
(Yazdanbakhsh et al., 2001). Laboratory and clinical studies confirm that nematodes can 
both prevent disease onset and reverse ongoing diseases. 
The development of immunologically well-defined laboratory models of nematode infection 
helps to understand the immunological basis of effector mechanisms operating during these 
and other infections. Infected mice develop immunological characteristics which are very 
similar to those observed in m infection in man. H. polygyrus infection in mice is a laboratory 
model which generates new information in the wider fields of allergic and autoimmune 
inflammatory disorders. 
Nematode infection of humans and animals induce immune responses which are 
characterized by the production of Th2 associated cytokines IL-4, IL-5, IL-10, IL-13 and Treg 

associated cytokines IL-10 and TGF-β. This type of response generally down regulates the 
Th1 immune responses and  persists for the duration of the infection. H. polygyrus infection 
suppresses asthma in a murine model by induction of CD4+CD25+Foxp3+ regulatory T cells 
and IL-10 production (Wilson et. al., 2005). In ovalbumin (OVA) induced asthmatic mice 
infected with H. polygyrus reduced Th2 responses and eosinophil responses by down-
regulation of eotaxin concentration, reduced CCR3 chemokine receptor expression on 
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eosinophils and decreased chemotactic activity of these cells toward eotaxin (Rzepecka et al., 
2006). The suppression of OVA-induced inflammation by Nippostrngylus brasiliensis is 
additional strictly mediated by IL-10 (Wohlleben et al., 2004). IL-10 which is a component of 
the natural host response to infection with enteric helminth parasites could be the key for  
therapeutic benefit. 
T. spiralis, Trichuris trichiura and H. polygyrus infection protects animals from IBD (Eliott et. 
Al., 2007), but the complex pathways activated by nematodes to regulate the host’s immune 
system, especially during colitis, is unknown. The combined induction of both Th2 (Setiawan 
et al., 2007) and Treg cells (Eliott et al., 2005) provoked by concurrent infection with H. 
polygyrus only partly explain the beneficial effects in mice with colitis. The inflammatory 
infiltrate in colitis is both Th1- and Th2-mediated. Therefore, additional parasite-induced 
mechanisms reduce inflammation. 
Such regulatory cells can control self-reactive T cells and are functionally important in 
limiting inflammation in various animal models of IBD. In addition, H. polygyrus 
suppression of colitis requires CD8+ T cells, suggesting that such these population of T cells 
may be important for this protection (Metwali et al., 2006). Furthermore, a resistance of 
Schistosoma mansoni infected mice to dextran sulfate sodium (DSS) induced colitis is 
macrophage dependent but not mediated by alternatively activated macrophages in the 
colon (Smith et al., 2007). H. polygyrus reduced established colitis by proopiomelanocortin-
alpha (Pomc-a) and MOR opioid pathway (Donskow, unpublished data). 
Recently treatment with living helminths such as T. suis or N. americanus, was initiated to 
control Cohn’s disease, ulcerative colitis and asthma in human (Ruyssers et al., 2008). The 
opportunity to reveal novel ways to manipulate the human immune system to treat 
autoimmune inflammatory diseases by utilization of the natural response of the host to 
infection is exciting. In order that they may survive for long periods in an adverse and 
aggressive environment, nematodes secrete several soluble factors that interact with host cells. 
Some of these molecules may modify host-cell homeostasis and increase the susceptibility to 
infection and oncogenic factors. Undoubtedly, host parasite relationships are complex and 
there may be several mechanisms by which parasites induce immunosuppression and 
modulate host cells. Therapeutic helminth infection of humans needs to be closely examined 
for potential adverse side effects. For this reason the complex pathways that nematodes 
activate to regulate the host’s immune system need further investigation.  

3. Conclusions 

Helminth infections are widely distributed. The extended survival of parasitic worms 
suggests that they are successful in an evolutionary sense. It is because they survive in and 
explore the host as natural environment. Helminths are often long lived and  support 
tolerogenic reactions in host tissue rather than devastating immune reactions; they may 
induce the state of physiological and immune compromise and may consequently evade 
immune attack and actively subvert the host immune response. The immunosuppressive 
reactions provoked by different stages of the parasite in different periods of the host life 
span are embroiled in the host-parasite relationship and in this sense sustain the state of 
physiological homeostasis. 
Helminths seeking for survive themselves using a plethora of mechanisms have been a 
major selective force for the host population and may influence of heritable factors both in 
patterns of infection and host immunity. The state of immune unresponsiveness in the host 
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protects growing larvae during migration through the tissue and allow for non-destructive 
localization of adults to propagate and transmit their offspring. The maintenance of an 
immunosuppressed state in the host may improve the fitness of the parasite, promotes 
infection with further infectious larvae. Infection with one species predisposes also for 
infection with other species. As the parasite load gained through the life differs among 
parasite and host species, the establishment of infection may be therefore dependent not 
only on the host immune response but also on parasite–related factors which may actively 
modulate immune reactions. Immunosuppression may be reached by different mechanisms 
in response to a plethora of parasitic molecules and may be expressed at each point of 
infection. Helminths especially in long lasting infection produce factors that directly 
interfere with the tissue of the host and for that many helminths-derived substances are 
considered as immune modulators.  
The efficiency of the innate response is crucial for invasion and survival of arriving larvae. Key 
attack points for selective immunoregulation conducted by parasites rely on: modulation of 
antigen recognition with changes in pathways of signal transduction; costimulation blockade; 
induction of regulatory cells; deviation to protective responses, neutralization of 
proinflammatory cytokines, induction of anti-inflammatory cytokines and modulation of 
leukocyte trafficking. Immunosuppressive action of parasites can be primarily directed to 
antigen-presenting cells (APC) and induction of suppressor/regulatory T cells and 
macrophages with the common effect to selectively inhibition of local or systemic immune 
response. The development of immunologically well-defined laboratory models of 
nematode infection helps to understand the immunological basis of effector mechanisms 
operating during hyperactive or auto-destructive disorders. Heligmosomoides bakeri related 
mechanisms involved in suppression of immune response in mice as representing for 
regulation of the host immune response are proposed.  Helminths and their hosts need to 
achieve a state of homeostatic balance in which immunosuppressive and regulatory 
mechanisms operate for the survival of both the parasite and the host.  
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