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1. Introduction

For several meteorological problems and a large number of applications, the knowledge of

the 3–D wind field over a region is required. Examples include prediction of the transport,

diffusion and dispersion of air pollutants in the atmosphere (Finardi et al., 2010; Sherman,

1978), realization of wind maps for the design of different urban and general projects

(Castino et al., 2003), and the effect of wind on structures and fire spreading (Potter & Butler,

2009), among others. Moreover, meteorological wind fields are also required inputs for air

quality models. In practice, usually limited horizontal wind field measurements are available,

and therefore the calculation of the vertical motion must be predicted or calculated. Several

methods and strategies, with various levels of complexity, have been proposed to address

this problem. They can be included into two general model types: prognostic models and

diagnostic models. Prognostic models are complex time–dependent hydrodynamic models

governing air flow, including thermal effects, density variation and turbulent interaction.

While these models are “realistic”, they are expensive to operate, need extensive computer

facilities, and require specialized training for their operation. On the other hand, diagnostic

wind models do not require the integration of the non–linear hydrodynamic equations.

Instead, available interpolated data is used to generate wind fields, which satisfy some

physical or dynamical constraints. For instance, to assure mass conservation, a simplified

steady–state version of the continuity equation is imposed, and the resulting model is then

called a mass–consistent model. A review of these models is available in Ratto et al. (1994)

and Ratto (1996).

We focus in a variational mass–consistent model which is based in the original formulation by

Sasaki (Sasaki, 1958). This approach has been used for a variety of meteorological problems

(Castino et al., 2003; Pennel, 1983; Sherman, 1978; Wang et al., 2005). Mass–consistent models

are attractive because of their simplicity, and because they are easy and economical to

operate. In some applications, these models outperform the more sophisticated and expensive

dynamical models (Ratto et al., 1994). However, mass–consistent models have some

disadvantages, because they are based on incomplete or idealized models and have difficulty
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representing flows accurately in data–sparse regions as mountains or oceans. Despite these

limitations, mass–consistent models are a valuable tool for air quality applications and

consequently several developments have taken place over last decades (Ferragut et al., 2010;

Ratto, 1996; Ratto et al., 1994; Ross et al., 1988; Wang et al., 2005). Most of the results presented

in this chapter has been published in the last few years (Flores et al., 2010; Núñez et al., 2007;

2006), but we also include some additional ideas and recent results.

The variational method proposed by Sasaki uses the continuity equation ∇ · u = 0, where u is

the wind velocity vector field on a given domain Ω. The method is based on the minimization

of the functional L defined by

L (u, λ) =
1

2

∫

Ω

{

S
(

u − uI
)

·
(

u − uI
)

+ λ [∇ · u]
}

dV , (1)

where uI is an initial observed wind field, λ is a Lagrange multiplier and S is a diagonal matrix

with weighting parameters αi > 0, i = 1, 2, 3, called Gaussian precision moduli, related to

the scales of the respective components of the velocity field. The vertical component of the

initial wind field is taken as zero because meteorological stations usually do not measure this

component. The Euler–Lagrange equations of (1) are:

u = uI + S−1∇λ, (2)

Usually u is obtained from (2), after λ is computed. Since ∇ · u = 0, then from (2) we obtain

the elliptic equation −∇ ·
(

S−1∇λ
)

= ∇ · uI, from which λ is obtained. To complement

(close) this equation, two types of boundary conditions are commonly used: homogeneous

Dirichlet boundary conditions, λ = 0, for open or “flow through” boundaries (like truncated

boundaries), and Neumann boundary conditions, ∂λ/∂n = 0, for closed or “no flow through”

boundaries (like the surface terrain or topography). Many authors have been used and

recommend these boundary conditions (Kitada et al., 1986; 1983; Ratto et al., 1994; Sherman,

1978). However they are physically and mathematically inconsistent as we will show in this

work. Even though, there have been several sophisticated developments in the numerical

simulations of this model as, for instance, the application of multigrid methods (Wang et al.,

2005), and the application of genetic algorithms to estimate parameters (Montero et al., 2005),

it seems that the analysis of boundary conditions has not attracted the attention of the

community in meteorology.

In this work we study how boundary conditions affect solutions of the elliptic equation

for λ. We show that the application of incorrect boundary conditions may degrade the

solutions several orders of magnitude, and we propose some strategies to overcome this

problem. In particular, we introduce a new approach based on the saddle–point formulation

of the constrained least squares formulation of the problem, which allows the introduction

of successful techniques from computational fluid dynamics. This new approach does not

require boundary conditions for the multiplier. It produces much better results, and it

also helps us to establish more consistent boundary conditions on truncated nonphysical

boundaries. We also explore other boundary conditions for the multiplier better suited for

artificial truncated boundaries. Furthermore, we present some preliminary numerical results

using a meshfree method based on a radial basis function collocation method.

24 Fluid Dynamics, Computational Modeling and Applications
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Mass–Consistent Wind Field Models: Numerical Techniques by L2–Projection Methods 3

2. Mathematical formulation of the problem

Let Ω be an open, simply connected and bounded region in R
d (d = 2 or 3) with Lipschitz

boundary ∂Ω = ΓN ∪ ΓD, where ΓN is the part of the boundary associated to the surface

terrain (topography), and ΓD is the rest of the boundary (artificial vertical boundaries and top

boundary), as shown in Figure 1. Given an initial vector field uI in Ω (which can be obtained

Fig. 1. Bounded region Ω.

by interpolating atmospheric data, or by other means), our goal is to generate a solenoidal

field u –called adjusted field– as close to uI as possible in a sense that will be clarified below,

such that u · n = 0 on ΓN .

We define the following vector function spaces: L2(Ω) = L2(Ω)d and H(div; Ω) =
{ v ∈ L2(Ω) : ∇ · v ∈ L2(Ω) }. Then, the adjusted wind field u must belong to the normed

closed space

V = { v ∈ H(div; Ω) : ∇ · v = 0 and v · n = 0 on ΓN }, (3)

with the norm ‖·‖S,Ω associated to the inner product 〈u, v〉S =
∫

Ω
Su · v dx, where v · w =

∑
d
1 vi wi is the usual scalar product in R

d. We can now formulate the problem as a least squares

projection problem. For this purpose, we define a convex quadratic functional J : V → R as

J(v) =
1

2
‖ v − uI ‖2

S,Ω=
1

2

∫

Ω
S(v − uI) · (v − uI) dx. (4)

Then, our problem can be stated as follows:

Given uI ∈ L2(Ω), find u ∈ V such that J(u) ≤ J(v), ∀ v ∈ V. (5)

Due to the properties of this functional, u ∈ V is a minimizer of J if and only if it is a stationary

point of J:
∂

∂ǫ
J(u + ǫ v)|ǫ=0 =

∫

Ω
S(u − uI) · v dx = 0, ∀ v ∈ V. (6)

The Lax–Milgram theorem guaranties that this equation has a unique solution.

25Mass–Consistent Wind Field Models: Numerical Techniques by L2–Projection Methods
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3. The traditional approach. Advantages and difficulties

3.1 Derivation of the elliptic problem

The first approach is based on a Helmholtz–type decomposition of the Hilbert vector space

L2(Ω), and it reduces to the traditional approach used by meteorologists.

Proposition 1 The orthogonal complement in L2(Ω) of the closed subspace V is

V⊥ = { ∇q : q ∈ H1(Ω), q = 0 on ΓD }.

An argument very similar to that given by Girault and Raviart (Girault & Raviart, 1986),

shows that this decomposition is valid (details are given in (Núñez et al., 2007)). Therefore

we get from (6) that S
(

u − uI
)

= ∇λ, with λ in

H1
D(Ω) ≡ { q ∈ H1(Ω) : q = 0 on ΓD }. (7)

With the above properties, we obtain a saddle–point problem for u and λ (left), as well as the

correspondent elliptic problem for λ (right):

Su −∇λ = SuI, and ∇ · u = 0 in Ω, −∇ ·
(

S−1∇λ
)

= ∇ · uI in Ω, (8)

λ = 0 on ΓD, λ = 0 on ΓD, (9)

u · n = 0 on ΓN . −S−1∇λ · n = uI · n on ΓN . (10)

To obtain the elliptic problem, we eliminate u from the saddle–point problem using that u

belongs to V. Once λ is calculated from (8)–(10), the adjusted field is recovered from (2).

Equation (8) has traditionally been used by meteorologists. However, this equation is

generally introduced from a discussion in which it is not clear how to establish the proper

boundary conditions for λ. The crucial argument in our study is the decomposition of L2(Ω)
in orthogonal subspaces V and V⊥, from which the boundary conditions for λ arises in

a natural way, from the mathematical point of view. We would like to mention that the

boundary condition (10) has already been used in recent research (Ferragut et al., 2010).

3.2 Finite element solution of the elliptic problem

The variational formulation of the elliptic problem (8)–(10) is

∫

Ω
S−1∇λ · ∇q dx =−

∫

Ω
uI · ∇q dx, ∀ q ∈ H1

D(Ω). (11)

Here, we consider the two–dimensional case. Let Th be a finite element triangulation of

Ω ⊂ R
2 (Ciarlet, 2002), where h is taken as the space discretization step. Let’s denote by

P1 the space of polynomials of degree less or equal than 1. Then, L2(Ω) and H1
D(Ω) are

approximated by the finite dimensional spaces

Lh =
{

vh ∈ C0(Ω̄)2 : vh|T ∈ P1 × P1, ∀ T ∈ Th

}

, (12)

Hh =
{

q ∈ C0(Ω̄) : q|T ∈ P1, ∀ T ∈ Th, q = 0 on ΓD

}

, (13)

26 Fluid Dynamics, Computational Modeling and Applications
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respectively. Thus, the finite element algorithm is: Given uI
h ∈ Lh, find λh∈Hh such that

∫

Ω
S−1∇λh · ∇q dx = −

∫

Ω
uI

h · ∇q dx, ∀ q ∈ Hh, (14)

where uI
h ∈ Lh is the interpolant of the given initial velocity field uI. We obtain λh after

solving the resulting system of linear equations, and the numerical approximation uh of u is

computed by the weak version of (2) as follows: Find uh ∈ Lh with uh · n = 0 on ΓN such that

∫

Ω
(Suh) · v dx =

∫

Ω
(SuI

h) · v dx −
∫

Ω
λh∇ · v dx, ∀ v ∈ Lh, v · n = 0 on ΓN . (15)

From now on, we identify the algorithm (14)–(15) as the E1–algorithm.

Example 1. We consider the solenoidal vector field u(x, z) = (x, −z) defined in Ω =
(1, 2)× (0, 1), so that u ∈ V. Assuming that we have uI(x, z) = (x, 0) as an initial horizontal

wind field, we want to apply the E1–algorithm to see how much we can recover of the vertical

component of u. For this numerical calculation, Ω is divided into a 80 × 80 triangular mesh,

and we choose the following values for the Gaussian Precision moduli: α1 = 1 and α3 = 0.001.

Figure 2 shows the exact field in red and the computed adjusted field in blue. Both fields agree

fairly well almost everywhere, except on the vertical artificial boundaries x = 1 and x = 2.
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Fig. 2. Exact field u = (x,−z) in red, adjusted field obtained by the E1–algorithm in blue.

The relative error and the mean divergence of the computed solution are defined as

er =
||u − uh||2

||u||2
, and mdiv = mean

xi

{ ∇ · uh(xi) | xi is a interior vertex}, (16)

respectively. The point–wise divergence is computed in a weak sense, as follows

∇ · uh(xi) = −
∫

Ω
uh · ∇φi dx , (17)

where φi is the piece–wise linear base function associated to vertex node xi. For the present

example, we obtain er = 1.9 × 10−2 and mdiv = 4.1 × 10−2.

The values for the Gaussian precision moduli were chosen based on numerical performance.

Table 1 shows the behavior of er and mdiv for different values of α3 when α1 is kept constant

27Mass–Consistent Wind Field Models: Numerical Techniques by L2–Projection Methods
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and equal to one. Clearly the best results were obtained with α3 = 0.001. We will explain this

behavior later on. But, for the moment, we want to emphasize that this algorithm produces

satisfactory results almost everywhere, except on the boundary ΓD, where homogeneous

Dirchlet boundary conditions were imposed.

α3 0.001 0.01 0.1 1 100 1000

er 1.9 × 10−2 9.6 × 10−2 1.4 × 10−1 5.2 × 10−1 6.4 × 10−1 9.8 × 10−1

mdiv 4.1 × 10−2 −6.1 × 10−2 2.9 × 10−1 5.4 × 10−1 7.8 × 10−1 9.8 × 10−1

Table 1. Numerical performance of E1–algorithm for different values of α3.

We can say that the main advantage of this traditional way to solve the problem is its

simplicity, since it only involves the solutions of an elliptic partial differential equation (PDE).

On the other hand, one of its major drawbacks is that inconsistent or incorrect boundary

conditions, on truncated artificial boundaries, degrade the accuracy of the solution. In the

rest of the chapter, we introduce some alternatives to overcome these problems.

4. A saddle–point formulation and the conjugate gradient algorithm

4.1 Derivation of the formulation

The second approach to solve the problem (5), or equivalently problem (6), is based on the

usual methodology to solve constrained optimization problems. That is, we introduce the

space of vector functions

VN = { v ∈ H(div; Ω) : v · n = 0 on ΓN } , (18)

together with the Lagrangian L defined on VN × L2(Ω) as

L(v, q) ≡ J(v) + 〈q,∇ · v〉 = 1

2

∫

Ω
S(v − uI) · (v − uI) dx +

∫

Ω
q∇ · v dx.

A stationary point (u, λ) of L solves the following saddle–point problem

∫

Ω
Su · v dx +

∫

Ω
λ∇ · v dx =

∫

Ω
SuI · v dx, ∀ v ∈ VN , (19)

∫

Ω
q∇ · u dx = 0, ∀ q ∈ L2(Ω), (20)

where λ need not satisfy boundary conditions. The solution u is the minimizer of J, and now

it is obtained from the enlarged space VN where free divergence is not required. Instead, the

condition ∇ · u = 0 is relaxed by the introduction of the Lagrange multiplier λ so that u must

satisfy the weaker condition (20). To solve (19)–(20) we introduce a method which has shown

to be very effective for solving Stokes problems in computational fluid dynamics (Glowinski,

2003). The idea is as follows: assuming that (u, λ) is a solution of the problem (19)–(20), the

vector field u is decomposed as u = uI + uλ, where uI is the given initial vector field, and

uλ ∈ VN solves
∫

Ω
Suλ · v dx = −

∫

Ω
λ∇ · v dx, ∀ v ∈ VN . (21)

28 Fluid Dynamics, Computational Modeling and Applications
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Furthermore, uλ must satisfy (20) which has the following equivalent strong version

−∇ · uλ = ∇ · uI. (22)

A key point is that problem (21)–(22) can be formulated as a functional equation. For this we

introduce the linear operator A from L2(Ω) into L2(Ω) defined by

A q = −∇ · uq , (23)

where uq ∈ VN is the solution of

∫

Ω
Suq · v dx = −

∫

Ω
q∇ · v dx, ∀ v ∈ VN . (24)

With this definition, it is clear, from (21)–(22), that the multiplier λ satisfies the functional

equation

Aλ = ∇ · uI. (25)

4.2 Conjugate gradient algorithm

Operator A is selfadjoint, and strongly elliptic, since from (23) and (24) we have

∫

Ω
q′ A q dx = −

∫

Ω
q′ ∇·uq =

∫

Ω
S uq′ · uq dx ∀ q, q′ ∈ L2(Ω),

∫

Ω
q A q dx =

∫

Ω
S uq · uq > c ‖uq‖2

L2(Ω) ∀ q �= 0 (0 < c < min{αi})

Therefore, the following iterative conjugate gradient algorithm may be used to solve the

infinite dimensional problem (25):

1. Given λ0 ∈ L2(Ω), solve for u0 ∈ VN

∫

Ω
S u0 · v dx =

∫

Ω
S uI · v dx −

∫

Ω
λ0∇ · v dx, ∀ v ∈ VN .

Set g0 = −∇ · u0 and d0 = −g0.

2. For k ≥ 0, assuming we know λk, gk, dk, uk, find λk+1, gk+1, dk+1, uk+1, doing the

following: Solve for uk∈ VN

∫

Ω
S uk · v dx = −

∫

Ω
dk∇ · v dx, ∀ v ∈ VN .

Set wk = −∇ · uk and compute αk =
〈gk, gk〉
〈dk, wk〉 .

Compute λk+1 = λk + αk dk, uk+1 = uk + αk uk, gk+1 = gk + αk wk.

3. If 〈gk, gk〉 ≤ ε〈g0, g0〉, take λ = λk+1 and u = uk+1 and stop. Otherwise, compute

dk+1 = −gk+1 + βk dk where βk =
〈gk+1, gk+1〉

〈gk, gk〉 .

29Mass–Consistent Wind Field Models: Numerical Techniques by L2–Projection Methods
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Do k = k + 1 and return to 2.

Above, 〈·, ·〉 indicates the usual scalar product in L2(Ω). Observe that the adjusted field u

is also computed as an intermediate step in the algorithm. In this algorithm, no boundary

conditions are imposed on λ, contrary to what it was done in the first approach. This fact has

a very important effect in the numerical calculation.

4.3 A mixed finite element method

To approximate the functions in VN and L2(Ω), considered in the previous algorithm,

we use the Bercovier–Pironneau finite element approximation (Bercovier & Pironneau, 1979).

Functions in L2(Ω) are approximated by continuous piecewise linear polynomials over a

triangulation Th of Ω, while the elements in VN are also approximated by linear polynomials

but now over a twice finer triangulation Th/2 of Ω. The fine triangulation Th/2 is obtained

from a regular subdivision of each triangle T ∈ Th. Then, the functional spaces VN and L2(Ω)
will be approximated, respectively, by the finite dimensional spaces

VNh =
{

vh ∈ C0(Ω̄)2 : vh|T ∈ P1 × P1, ∀ T ∈ Th/2, vh · n = 0 on ΓN

}

,

Lh =
{

qh ∈ C0(Ω̄) : qh|T ∈ P1, ∀ T ∈ Th

}

,

We apply this mixed method, particularly to solve the integral equations in steps 1 and 2,

as well as for the calculation of the weak divergence to obtain g0 in step 1 and wk in step 2.

Those calculations require this mixed method, or any other stable finite element pair, to avoid

instabilities in the numerical solution. Actually, the main cost of this algorithm is the solution

at each iteration of the integral equation to get uk and the calculation of wk. However, if the

trapezoidal rule is applied to approximate the left hand side of the integral equations, we

obtain a system of algebraic equations with diagonal matrix, and the cost to solve them is just

a vector multiplication. We call this new algorithm the CG–algorithm.

Example 2. We consider again the initial horizontal field uI = (x, 0), as in Example 1 to

test the performance of the CG–algorithm. In order to compare the numerical results with

those obtained with the E1–algorithm, we chose h = 1/40 and h/2 = 1/80 in this case.

To stop the iterations we choose ε = 10−8 at step 3. Figure 3 shows the exact and the

adjusted wind fields. The agreement is excellent this time, even at the vertical boundaries

x = 1 and x = 2. The relative error and the average divergence are er = 5.9 × 10−4 and

mdiv = −5.3 × 10−12, respectively. Note that we got a significant improvement: nearly two

orders of magnitude better on the relative error, and about ten orders of magnitude better on

the average divergence. The improvement of the relative error is mainly due to the reduction

of the error on truncated boundaries, while the enhancing of average divergence is mainly

due to the iterative method, because it stops when it reaches the tolerance (i.e. when the norm

of the divergence is small enough).

To test further the CG–algorithm we consider two, more “realistic”, additional examples. The

first one includes a domain with a topography of a cosine–shape, and the second one includes

a domain with a real topography. In both cases, the “exact” wind field was obtained with a

Stokes solver using the methodology described in (Glowinski, 2003). The initial wind field

uI was obtained dropping the vertical component of the “exact” one in both cases. Then, the

vector wind field is recovered using the same discretization parameters as in example 2.

30 Fluid Dynamics, Computational Modeling and Applications
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Fig. 3. Exact field u = (x,−z) in red, adjusted field obtained by the CG–algorithm in blue.

Example 3. Cosine–shape topography. In this case, we define the domain as follows

Ω =

{

(x, y) ∈ R
2 : 0 < x < 10,

1

2
cos

3πx

10
+

1

2
< y < 10

}

.

The “exact” wind field satisfies ∇ · u = 1.2 × 10−16. Figure 4 shows the adjusted and “exact”

wind fields.
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Fig. 4. “Exact” field for cosine topography in red, adjusted field obtained by the CG–algorithm
in blue.

Example 4. Terrain elevation from real data. In this case, the domain is defined as

Ω =
{

(x, y) ∈ R
2 : 0 < x < 10, h(x) < y < 10

}

,

where h(x) is a function constructed via cubic splines, which interpolate discrete data over

10 Km of real topography of a certain region in Mexico, contained in a database (GTOPO,

1997). The “exact” wind field satisfies ∇ · u = 6.1 × 10−16. Figure 5 shows the adjusted

and “exact” wind fields. We have an excellent agreement in all cases, even on truncated

artificial boundaries. The relative error and the computed mean divergence are about the

same order as in example 2. Table 2 shows a summary of the numerical results obtained with

31Mass–Consistent Wind Field Models: Numerical Techniques by L2–Projection Methods
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the CG-algorithm. All numerical calculations were performed in a DELL Latitude D610 2.13

GHz laptop with an Intel Pentium M processor and 2 GB of RAM.
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Fig. 5. “Exact” field for real topography in red, adjusted field obtained by the CG–algorithm in
blue.

Example Case with er mdiv No. iters. CPU–time (sec.)

2 u(x,z) = (x,-z) 5.9 × 10−4 −5.3 × 10−12 1214 3.9

3 cosine topography 3.6 × 10−6 9.8 × 10−9 955 3.3

4 real topography 4.1 × 10−6 5.7 × 10−11 1000 3.7

Table 2. Performance of the CG–algorithm for three different cases.

4.4 Preconditioned conjugate gradient method

The CPU time to solve the problem with the CG–algorithm, at the level of accuracy shown

in Table 2, is about twice the CPU time needed to solve the problem with the E1–algorithm.

In order to make this algorithm more reliable we need to speed up the iterative algorithm

to get at least a comparable computational efficiency. Fortunately, we have found a good

preconditioner for the iterative algorithm. This preconditioner is an optimal one, and we are

presently working in its computer implementation, so we only describe here the main ideas

without presenting numerical results yet.

Let B : L2(Ω) → L2(Ω) be an operator defined by

B q = φq, where φq solves :
∫

Ω

(

S−1∇φq

)

· ∇ψ dx =
∫

Ω
q ψ dx ∀ ψ ∈ H1(Ω) (26)

Operator B is self-adjoint and elliptic, and satisfies A (B q) = q, inside Ω, for every q ∈ L2(Ω).
An easy way to see these properties is considering the differential form of operators A and B:

A q = −∇·uq = −∇ · (S−1∇ q), since S uq = ∇q in Ω, (27)

B q = φq = −[∇ · (S−1∇)]−1 q, since −∇ · (S−1∇φq) = q in Ω. (28)

32 Fluid Dynamics, Computational Modeling and Applications
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Then, from (27)–(28) we obtain

A (B q) = A φq = −∇ · (S−1∇φq) = q. (29)

This shows that B can be used as an optimal preconditioner. Therefore, the additional cost

of the preconditioned conjugate gradient algorithm is the solution of an elliptic problem

at each iteration. However, this additional cost is offsetted by two nice properties: a) the

preconditioning must reduce drastically the number of iterations (from about 1000 to less

than 20, based on previous experience in CFD); b) there is a significant reduction of degrees of

freedom in the discrete version of the elliptic problem associated to operator B. This elliptic

problem is solved in a coarse mesh, and it is four times smaller than the elliptic problem for

the multiplier λ in the 2–D case, and about eight times smaller in 3–D problems.

5. Some extensions and future research

In this section, we present some additional alternatives to look at the problem. We first

consider a different set of boundary conditions on vertical truncated boundaries for the

multiplier λ, and we show that it produces better results than the traditional approach. We

also show that if we introduce ghost nodes on the truncated artificial boundaries, we get

even a better improvement. Finally, we introduce radial basis functions to solve the elliptic

problems for the multiplier, and show that this is a promising alternative for 3-D wind fields.

5.1 Alternative boundary conditions for the elliptic problem

From equations (19)–(20), we obtain

∫

Ω

(

Su −∇λ − SuI
)

· v dx =
∫

Γ�ΓN

λ v · n dΓ, ∀ v ∈ VN , (30)

∫

Ω
q∇ · u dx = 0, ∀ q ∈ L2(Ω). (31)

The boundary integral in (30) vanishes in two cases, namely: when v · n = 0 or when λ = 0

on Γ � ΓN . The first case is not possible since it holds only on ΓN , and the second case is not a

good choice on vertical boundaries as we have already seen in Section 3. However, there is a

possibility: decompose ΓD as the union of the vertical boundaries, ΓV , and the top boundary,

ΓT. Now, at ΓT we still impose λ = 0, and on ΓV we impose the new boundary condition

u · n = uI · n. This new boundary condition is reasonable, since we assume that uI is the

horizontal part of u. Therefore, with this choice, we obtain the saddle–point problem (left)

and its corresponding elliptic problem (right):

Su −∇λ = SuI, and ∇ · u = 0 in Ω, −∇ ·
(

S−1∇λ
)

= ∇ · uI in Ω, (32)

λ = 0 on ΓT, λ = 0 on ΓT, (33)

u · n = uI · n on ΓV , −S−1∇λ · n = 0 on ΓV , (34)

u · n = 0 on ΓN . −S−1∇λ · n = uI · n on ΓN . (35)
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The finite element algorithm for the elliptic problem is: Given uI
h ∈ Lh, find λh∈Hh such that

∫

Ω
S−1∇λh · ∇q dx = −

∫

Ω
uI

h · ∇q dx +
∫

ΓV

q uI
h · n dΓ, ∀ q ∈ Hh, (36)

where Hh is defined as in (13), but with q = 0 on ΓT instead of ΓD. Equation (36) differs

from equation (14) only by the boundary integral on ΓV . We call (36), together with (15), the

E2–algorithm.

Example 5. Let us consider one more time the problem introduced in example 1 and in

example 3, with the same discretization parameter, h = 1/80. The recovered wind field for

both cases is better than the one obtained with the E1–algorithm, since the vertical component

is recovered fairly well, not only in the interior of the domain but also at the vertical

boundaries. Figure 6 shows the exact and recovered wind fields. Table 3 shows a summary of

the results obtained in examples 1, 2, 3 and 5. For the case with exact wind field u = (x,−z)
the immediate effect of this improvement is the reduction of the relative error by two orders of

magnitude. However, we do not obtain a comparable reduction of the mean divergence. For

the problems with cosine topography occurs the opposite. Actually, the numerical results

show that the most effective algorithm to reduce both, the relative error and the average

divergence is the CG–algorithm.
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Fig. 6. Exact field (red) and adjusted field obtained by the E2–algorithm (blue). Left: case with
exact field u = (x,−z). Right: case with cosine topography.

Ex. Case with Algorithm er mdiv No. iters. CPU time(s)

1 u = (x,−z) E1–algorithm 1.9 × 10−2 4.1 × 10−2 — 1.78

2 u = (x,−z) CG–algorithm 5.9 × 10−4 −5.3 × 10−12 1214 3.90

5 u = (x,−z) E2–algorithm 4.0 × 10−4 1.8 × 10−2 — 1.78

3 cosine topography CG–algorithm 3.6 × 10−6 9.8 × 10−9 955 3.30

5 cosine topography E2–algorithm 9.2 × 10−2 3.6 × 10−4 — 2.08

Table 3. Summary of the numerical results obtained in examples 1, 2, 3 and 5.

5.2 Ghost nodes

Given that u belongs to V and satisfies (2), then λ satisfies the equations

−∇ · (S−1∇λ) = ∇ · uI, in Ω, (37)

−(S−1∇λ) · n = uI · n, on ΓN . (38)
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Instead of looking for boundary conditions on ΓD, we may enforce mass conservation by

asking any solution of (37)–(38) to satisfy

∫

Γ
u · n dΓ =

∫

ΓD

(uI + S−1∇λ) · n dΓ = 0. (39)

Equations (37)–(39) imply the identity
∫

Ω
∇ · uI dx =

∫

Γ
uI · n dΓ. Actually, this is

the compatibility condition associated to the the above Poisson–Neumann–like problem.

Therefore, this problem has a unique solution λ ∈ H1(Ω)/R, and its variational formulation

is: Given uI ∈ L2(Ω), find λ ∈ H1(Ω)/R such that

∫

Ω
(S−1∇λ) · ∇q dx = −

∫

Ω
uI · ∇q dx +

∫

ΓD

q (uI + S−1∇λ) · n dΓ , ∀ q ∈ H1(Ω)/R. (40)

Observe that when q = 1 in H1(Ω)/R, we recover (39). However, the computational solution

of this problem is not trivial, since the matrix associated to the discrete version is semidefinite.

On the other hand, the symmetry of the matrix is lost because the boundary integral in the

right–hand side has the unknown λ. A way to overcome this computational problem is to

introduce “ghost nodes”, around and beyond of the nonphysical truncated boundary ΓD.

Then, we may impose λh = 0 and/or ∂λh/∂n = 0 on the outer layer of those ghost nodes.

At the end, we discard the solution on the ghost nodes, and we only keep the solution values

on the actual nodes. Actually, this is a well–known way to deal with differential equations in

domains with truncated boundaries.

Example 6. We consider one more time the problem from example 1 with the same

discretization parameters. We incorporate two layers of ghost nodes and impose λ = 0 on

the outer layer. The recovered wind field obtained is such that the relative error and average

weak divergence are er = 2.1 × 10−5 and mdiv = 1.6 × 10−6, respectively. The figure with

the comparison of the adjusted wind field and the exact wind field is not shown, because it is

very similar to Figure 5. Instead, we summarize in Table 4 the results for this example with

the different algorithms.

Case E1–algortihm E2–algortithm Ghost-Nodes CG–algorithm

er 1.9 × 10−2 4.0 × 10−4 2.1 × 10−5 5.4 × 10−4

mdiv 4.1 × 10−2 1.8 × 10−2 1.6 × 10−6 −5.2 × 10−12

Table 4. Comparison of numerical solutions obtained with different algorithms.

Table 4 shows how boundary conditions degrade numerical calculations. It is observed that

the solution improves each time the Dirichlet boundary condition λ = 0 is applied to a

smaller section of the non-physical boundary. This is not surprising, since this boundary

condition introduces a large artificial gradient, mainly on vertical truncated boundaries, when

calculating the term ∇λ in order to get u = uI + S−1∇λ at the corresponding boundary nodes.

At this time, and taking in account the performance of every algorithm, we may recommend

to use either the classical approach with ghost nodes or the saddle point problem approach

with the conjugate gradient algorithm, specially if we do not have enough information at

truncated boundaries.
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5.3 Approximation with radial basis functions

A function Φ : R
d → R is called a radial basis function (RBF) if Φ(x) = φ(‖x‖) where the

kernel φ is a scalar function φ : R
+ → R, and d the spatial dimension. Usually ‖x‖ is denoted

by r, and typical functions used in applications are, among others:

1. Multiquadrics, φ(r) =
√

c2 + r2.

2. Gaussians, φ(r) = e−c r2
.

3. Thin plate splines, φ(r) = r2 ln(r).

4. Inverse multiquadrics, φ(r) = 1/
√

c2 + r2.

The constant value c es called the shape parameter. The radial basis function method was first

introduced in the 1970s for multivariate scattered data approximation, (Hardy, 1971). This

interpolation problem is defined as follows:

Given a set of points {xj}n
j=1 ⊂ Ω ⊂ R

d, approximate the function f (x) from the set of values

f j = f (xj). A simple form is to define

s(x) =
k

∑
j=1

λj φ(‖x − xj‖) + p(x). (41)

where p is a polynomial which depends on the specific RBF. Then the interpolation condition

s(xi) =
k

∑
j=1

λj φ(‖xi − xj‖) + p(xi) = fi, i = 1, . . . , n, (42)

gives an algebraic system of equations for λ = {λi}k
j=1. However, the corresponding matrix

could be ill conditioned and, in some cases, even rank deficient, and special techniques are

needed, like preconditioning and least squares (Buhmann, 2003), (Wendland, 2005).

In the last two decades, the main focus of the applications seems to have slowly shifted

from scattered data approximation to the numerical solution of PDE. Radial basis function

collocation methods for solving PDE are truly meshfree algorithms, in the sense that

collocation points can be chosen freely and no connectivity between the points is needed

or used (Kansa, 1990), (Narcowich & Ward, 1994). The main attraction of RBF collocation

method to solve PDE is that it can be extended directly to solve 3–D problems. Moreover, due

to the absence of a grid, these techniques are better suited than classical methods to cope with

problems having complex boundaries. So, we think that the RBF collocation method is a good

choice to study our problem, and we want to explore this alternative.

Let us denote by L the linear elliptic differential operator for the multiplier λ, and B the

boundary operator. Suppose that we want to solve the problem

L λ = −∇ · (S−1∇λ) = ∇ · uI in Ω, (43)

B λ = g on ΓN . (44)

We consider a set of collocation points {xi}n
i=1, with ni points in the interior and nb points

on the boundary, so that n = ni + n f . We look for an approximate solution λh(x) =
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∑
n
j=1 λj φ(‖x − xj‖), where the unknown vector {λi}n

i=1 satisfies the system of equations

L λh(xi) =
n

∑
j=1

λj L φ(‖xi − xj‖) = ∇·uI(xi), i = 1, . . . , ni, (45)

B λh(xi) =
n

∑
j=1

λj B φ(‖xi − xj‖) = g(xi), i = ni + 1, . . . , n. (46)

Therefore the recovered wind field uh is given by

uh(x) = uI(x) +
n

∑
j=1

λj S−1∇φ(‖x − xj‖). (47)

Example 8. As a last example we include a 3–D numerical calculation using radial basis

functions. The exact syntectic wind field for this example is u = (x, y,−2z). We dropped

the vertical component so that uI = (x, y, 0). A multiquadric kernel with c = 11.33 was

used, and we chose α1 = α2 = α3 = 1. The collocation points were obtained by a 5 × 5 × 5

regular subdivision of Ω = (1, 2)× (0, 1)× (0, 1). Figure 7 shows the collocation points and

the comparison between the exact and recovered wind field. The agreement is excellent, we

obtained a relative error er = 1.98 × 10−4 and mean divergence mdiv = −5.59 × 10−6.
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Fig. 7. Collocation points (left), and comparison of exact and recovered wind fields (right).

6. Conclusions

We studied the problem of generating an adjusted wind field from horizontal wind data by

different numerical techniques. We have shown that boundary conditions can significantly

affect numerical solutions depending of how we treat artificial truncated boundaries.

The usual methodology (E1–algorithm) does not produce satisfactory results close to the

vertical boundaries due to the high gradients introduced by the term S−1∇λ in (2), when

homogeneous Dirichlet boundary conditions are imposed there. The formulation of the

problem as a saddle–point one, with a functional equation that has a self–adjoint and

strongly elliptic operator, allows the use of an iterative conjugate gradient algorithm (the

CG–algorithm). This new methodology, in the context of mass consistent models, produces
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much better results, it does not involve the solution of differential equations, and it does not

require boundary conditions for the multiplier. An optimal preconditioner for the conjugate

gradient algorithm was introduced, and we hope, based on previous experience with the

solution of the Stokes problem, to reduce the number of iterations of nearly a thousand to

a few tens.

In an attempt to improve the numerical results obtained with the traditional approach,

we introduced new boundary conditions for the multiplier on vertical boundaries. These

boundary conditions are demonstrated to be physically and mathematically consistent. The

numerical reconstruction of the wind field was improved by two orders of magnitude,

but a comparable reduction on the weak divergence is not always obtained. However,

the introduction of “ghost nodes” produces more satisfactory results, reducing both the

relative error and the mean weak divergence by two or more orders of magnitude. On the

other hand, we have just started to explore meshfree methods. In particular, radial basis

collocation methods seem to be a very simple reliably alternative to the reconstruction of

three–dimensional wind fields, according to the preliminary numerical results shown in this

work.

The application of the different alternatives and methodologies presented here to the more

realistic three–dimensional case is a continuation of the present work. Another interesting

issue is the potential extension and application of these methodologies to other experimental

fields, such as fluid dynamics and computer vision. In particular, the reconstruction

of solenoidal velocity fields from experimental data, obtained through the particle image

velocimetry technique, is an important issue, (Adrian, 2005). Its relation with computer vision

is established by optical flow estimation, (Ruhnau & Schnorr, 2007).
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