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1. Introduction  

Heavy metals are ubiquitous environmental pollutants and concern over possible health 
risks and ecosystem effects in sediments have increased in recent years. In aquatic 
sediments, heavy metals are mostly enriched in the fine grained fractions (Salomon and 
Förstner 1984; Muwanga, 1997; Prego et al., 1999). Studies have therefore used clay (< 2 µm) 
(Förstner 1987) and < 63 µm (Muwanga 1997) fractions in assessment of heavy metal 
concentrations in sediments. The specific surface area of sediments is dependant on 
granulometric parameter and mineral composition (Juracic et al., 1982). Association of 
metals with smaller grain-size particles is attributed to co-precipitation and complexation of 
metals on particle surfaces and this determines the distribution pattern of heavy metals in 
sediments (Ho et al., 2010). Most of the metal content occurs in complex form with insoluble 
inorganic and organic ligands. Heavy metal emissions from anthropogenic activities occur 
in stream or river sediments, where they are absorbed onto clays and other fine grained 
materials (Ho et al., 2010) Heavy metals can be absorbed on negatively charged surfaces of 
clay minerals, organic matter or iron and manganese oxides and hydroxides. Sediments are 
considered to be important carriers as well as sinks for heavy metals in the hydrological 
cycle (Muwanga, 1997). The objectives of this study were: (1) to determine heavy metal 
content in urban stream sediment fractions and, (2) to assess source apportionment of heavy 
metals in stream sediments. This study was conducted between the months of August 2008 
to November 2009, along the Nakivubo Channelized stream, Kampala Uganda. 

2. Materials and methods 

2.1 Study area and sampling site 
This study was conducted along the Nakivubo Channelized stream in metropolitan 
Kampala (0°15'N and 32°30'E). Nakivubo channel drains through Kampala city centre and 
the Upper and Lower Nakivubo swamps before discharging into the Inner Murchison Bay 
of Lake Victoria. The study area is located 45km north of the equator and 8km north of Lake 
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Victoria , with a total area of 190 km2 (Fig. 1). The study area has a tropical climate that is 
attributed to high altitude, relief, proximity to Lake Victoria and long distance from the sea 
(Matagi et al., 1998). The Lake Victoria basin has warm temperatures ranging between 23°C 
to 32°C and a bi-modal rainfall pattern averaging approximately 1260 mm annually. The 
area is underlain by granites and granitoid gneisses of the Precambrian. These are overlain 
by phyllites and schist of the Buganda-Toro system with a mixture of alluvial and lacastrine 
sand, silt and clay that characterise Nakivubo swamp soils. Soils have been derived from 
weathering of the rocks. The alluvial soils from the upper (profile A) layers are composed of 
semi-liquid organic material and those underneath consists of reddish ferruginous loams 
and clays (profile B) attributed to organic decomposition and runoff (Kansiime and 
Nalubega, 1999).  
In this study, the stream was subdivided into three sections (Fig. 1; Table 1) namely; 
Upstream (US01 – MD05) characterised by commercial establishments, Midstream (MD05 – 
DS15) characterised by commercial and industrial establishment and Downstream (DS15 
and beyond), characterised by the Nakivubo wetland. 
 

 

Fig. 1. Map of Kampala showing the locations of the sampling sites along the Nakivubo 
Channelized stream in Kampala. US-upstream; MS-midstream; MST-midstream tributary; 
RW-rain water; MSD-midstream discharge point; DS-downstream; DST-downstream 
tributary 
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Site/Location Code Activity/Establishment Sediment 

Upstream    

Agakhan High 
School Bridge 

US1 
Car washing bay, fish factory, gas/fuel station, 

residential, bus parking yard, seepage from 
walls 

Sand 

Bativa Hotel Bridge US2 
Car washing bay, gas/fuel station, slum 
residential and commercial and seepage 

Sand 

Kiseka market Bridge US3 
Car washing bay, garage, commercial and 

seepage 
Sand 

Nakivubo Stadium 
Bridge 

US4 
Recreational, commercial, market, vehicle 

traffic, bus park, gas/petro station, and seepage
Silty sand 

Midstream    

Fire Brigade Bridge MS5 
Commercial, recreational, vehicle traffic, bus 
park, gas/petro station, cement stores, Katwe 

metal works and fabrications and seepage 
Silty sand 

6th Street Bridge 
Mukwano 

MS9 
Commercial,  oil storage in vicinity, vehicle 

traffic, gas/petro station, seepage, industries 
Silty sand 

Downstream    

5th Street Bridge DS15 
Industries, vehicle traffic, sewerage plant,   
seepage, garages, metal fabrication, petro 

station , residential 
Sand 

Luzira Culvert DS17 Industries, cultivation, fishing, residential Muddy sand 

Tributaries    

Kayunga Stream MT7 
Solid waste dump sites, horticulture, 

recreational, slum and residential, vehicle 
traffic, gas/petro station 

Sand 

Kitante Stream MT10 
horticulture, recreational,  residential and 

commercial, vehicle traffic, gas/petro station 
Sand 

Lugogo Stream MT13 
Vehicle traffic, commercial, residential and 

Industrial, electric station, horticulture, 
carpentry works, pole treatment and seepage 

Sand 

Kibira Road Stream DT16 
Battery , plastic  and paper factory, Industries, 

and gas/petro station 
Sand 

US-upstream; MS-midstream; DS-downstream; MT-midstream tributary; DT-downstream tributary 

Table 1. Sample site Location, description of activities and sediments type  

2.2 Determination of sediment particle size (texture) 
Sediment samples were collected between August, 2008 to November, 2009 along the 

Watindo stream (the control) and Nakivubo Channelized stream and its tributaries (Fig.1), 

using a hand trowel. Watindo stream was chosen to be outside the study area, 30 km along 

Gulu road for comparison purposes. The samples were placed in Ziploc bags and 

transported to the laboratory. The hand trowel [plastic] was washed with a detergent, rinsed 

and dried before each use so as to minimize contamination. Sediment samples were air 

dried and 300.0 g were transferred into a set of standard sieves (0.063 mm, 0.125 mm, 0.25 

mm, 0.5 mm, 1.0 mm and 2.0 mm) with the largest mesh size on top and the smallest at the 

bottom. The sieving was carried out using a vibrating machine. The weight of soil retained 
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on each sieve was determined and a cumulative percentage calculated. Coefficient of 

curvature and uniformity were assessed to determine particle-size distribution fractions of 

each sample.  

The total content of Pb, Cd, Cu, Zn, Mn and Mn in sediment fractions was determined 
using the method as described by Sekabira et al. (2010). Ideally, 1.25 g of each sample  
was digested with 20 mL aqua regia (HCl/HNO3 3:1) in a beaker (open-beaker digestion) 
on a thermostatically controlled hot plate. The digest was heated to near dryness and 
cooled to ambient temperature. Then 5.0 mL of hydrogen peroxide was added in parts to 
complete the digestion and the resulting mixture heated again to near dryness in a fume 
cupboard. The beaker wall was washed with 10 ml of de-ionised water and 5.0 ml HCl 
were added, mixed and heated again. The resulting digest was allowed to cool and 
transferred into a 50 mL standard flask and made up to the mark with de-ionised water. 
Pb, Cd, Cu, Zn, Mn and Fe were then analyzed by direct aspiration of the sample solution 
into a Perkin-Elmer model 2380 Flame Atomic Absorption Spectrophotometer (AAS). All 
metals were analysed using lean-blue acetylene flame at wavelength 324.8 nm, slit width 
0.2 mm and sensitivity check of 5.0 mg/L Cu; wavelength 228.8 nm, slit width 0.7 and 
sensitivity check of 2.0 mg/L Cd; wavelength 213.9 nm, slit size 0.7 nm and sensitivity 
check 9.0 mg/L Pb and wavelength 279.5 nm, slit size 0.2 nm and sensitivity check of  
2.5 mg/L Mn. Sediment pH was measured in a suspension of 1:2.5, sediment to water 
ratio using a calibrated pH meter (WE-30200). Accuracy of the analytical method  
was evaluated by comparing the expected metal concentrations in certified reference 
materials with the measured values. Simultaneous performance of analytical blanks, 
standard reference (JG-3) (Imai et al., 1995) and calculation of the average recoveries  
of heavy metals confirmed that the accuracy of the method was within acceptable  
limits (Table 2).  
 

Heavy metals Pb Cd Cu Zn Mn (%) Fe (%) 

Reference 
material 

11.7 0.054 6.81 46.5 0.055 2.58 

Measured 
values 

10±0.981 0.05±0.002 6.75±0.131 48.25±1.041 0.048±0.003 2.35±0.139 

%  Recovery 85.5 92.6 99.1 103.8 87.3 91.1 

Table 2. Quality control (mean ± SD) (mg/kg trace and % for elements) 

2.3 Assessment of heavy metal distribution in sediment 
Enrichment Factor (EF): As proposed by Simex and Helz (1981), EF was employed to assess 
the degree of contamination and to understand the distribution of heavy metal elements of 
anthropogenic origin from sites by individual elements in sediments.  Iron (Fe) was chosen 
as the normalizing element while determining EF-values, since in wetlands it is mainly 
supplied from sediments and is one of the widely used reference element (Loska et al., 2002; 
Kothai et al., 2009:  Chakravarty and Patgiri, 2009; Seshan et al., 2010). Other widely used 
reference metal elements include Al and Mn (Nyangababo et al., 2005a; Kamaruzzaman et 
al., 2008; Ong and Kamaruzzaman, 2009).  

Enrichment Factor (EF) = (Cn/Fe) sample/ (Cn/Fe) background 
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where Cn is the concentration of element “n”. The background value is that of average shale 
(Turekian and Wedepohl, 1961). Elements which are naturally derived have an EF value of 
nearly unity, while elements of anthropogenic origin have EF values of several orders of 
magnitude. Six categories are recognised: ≤ 1 background concentration, 1 - 2 depletion to 
minimal enrichment, 2 – 5 moderate enrichment, 5 – 20 significant enrichment,  20 – 40 very 
high enrichment and > 40 extremely high enrichment (Sutherland, 2000). 
Analysis of variance (ANOVA): ANOVA was employed to determine whether groups of 
variables have the same means on data that are continuous or normally distributed and with 
homogeneous variance. Additionally, it was employed to assess the relationship between 
heavy metal concentrations and their interaction between sections of the stream. 
Correlation analysis: Pearson’s correlation analysis was adopted to analyse and establish 
inter-metal relationship and physico-chemical characteristics of the stream water. 
Cluster Analysis (CA) and Factor analysis (FA): CA was performed to classify elements of 
different sources on the basis of their similarities using dendrograms and to identify 
relatively homogeneous groups of variables with similar properties. FA was employed on 
the variables that are correlated to isolate or determine specific factors that are associated 
with such groupings of metal concentrations so as to establish their origin and distribution. 
The data was standardised to give a normal distribution with a mean of 0 and a variance of 
1. Sample means were standardised by subtracting the mean of their distribution and 
dividing by standard error (SE) or square root of the variance. 

3. Results 

3.1 Sediment grain size 
Textural composition of the sediment samples is shown in Fig 3. Stream sediments along 
Nakivubo Channelized stream ranged from 3.0 to 14.0 % clay and silt, 5.0 to 20.0 % fine 
sand, 15.0 to 29.0 % medium sand and 16.0 to 48.0 % coarse sand grain size fractions. The 
Nakivubo tributaries ranged from 3.3 to 7.2 % clay and silt, 6.0 to 18.0 % fine sand, 25.0 % to 
60.0 % medium sand and 27.0 to 52.0 % coarse sand grain size fractions. Industrial outfall 
sediments indicated a range of 3.2 to 16.0 % clay-silt, 3.0 to 15.0 % fine sand, 15.0 to 30.0 % 
medium sand and 31.0 to 53.0 % coarse sand grain size fractions. Watindo stream sediments 
range from 11 to 16.4 % clay and silt, 14 to 18.0 % fine sand, 17 to 23.0 % medium sand and 
23 to 29.0 % coarse sand grain size fractions. However, sediments sampled along the 
Nakivubo channelized stream can generally be described as coarse grained. The percentage 
of all fractions showed a similar trend (Fig. 3) along the Nakivubo stream.    

3.2 Heavy metal concentrations in various fractions 
The mean pH ranged between 5.71±1 (slightly acidic) and 7.25±1 (neutral), but at Watindo 
stream, the mean pH of the sediments ranged from highly acidic (4.53±1) to acidic (5.40±1) 
(Table 3). Total heavy metal concentrations in < 63 µm and 63-125 µm sediments as well as 
distribution pattern along the Nakivubo Channelized stream are indicated in Table 3, Fig. 2 
and Fig. 4. The Nakivubo stream sediments showed the highest heavy metal content of Pb 
(218.64 mg/kg) at Kisekka market in fine sand fractions, Cd (2.46 mg/kg) and Cu (435.96 
mg/kg) at Agakhan High School Bridge in fine sand fractions and Zn (261.2 mg/kg) at 
Luzira culvert in clay-silt fractions. Industrial outfall sludge and sediment samples showed 
high heavy metal concentration of Pb (132.0 mg/kg), Cu (495.2 mg/kg) and Zn (1361.2 
mg/kg) at National Water and sewerage corporation plant in clay-silt fractions and Cd  
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Table 3. Total heavy metal content (mg/kg) in the stream sediments (silt-clay < 63 and  
63- 125µm) fractions of Nakivubo Channel, its tributaries, industrial discharge outfall and 
Watindo stream 
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Fig. 2. Heavy metal concentrations along Nakivubo channelized stream in sediment 
fractions: (A) clay-silt fractions; (B) fine-sand fractions 

(4.0 mg/kg) at Peacock paint factory in clay and silt fractions respectively. Nakivubo 
tributaries also indicated high heavy metal concentration of Pb (352.0 mg/kg) along Kibira 
Road stream in clay-silt fractions and Cu (283.2 mg/kg) and Zn (577.2 mg/kg) along 
Lugogo stream in clay-silt fractions. Watindo stream sediments showed high concentration 
of Pb (54.05 mg/kg) at site CTL1 in fine sand fractions, Cd (2.0 mg/kg) at CTL3 in clay-silt 
fractions and Cu (195.6 mg/kg) and Zn (93.2 mg/kg) at CTL 1 in clay-silt fractions. Heavy 
metal concentrations corresponded with the percentage clay-silt fractions in sediments 
along the Nakivubo channelized stream. 
Analysis of variance (ANOVA) was used to determine whether heavy metal variables in the 
sediment fractions have the same mean on data that are normally distributed. ANOVA 
results are shown in Table 4. Heavy metal concentrations in sediments along Nakivubo 
Channelized stream showed significant variation in the means of clay-silt and fine sand 
fractions for Zn (F1,14 = 6.646, p < 0.05) whereas, Pb (F1,14 = 1.258, p = 0.281), Cd (F1,14 =0.069, 
p = 0.797) and Cu (F1,14 = 0.901, p = 0.359) were not significantly different. Mean values for 
Cu (F1,4 = 10.52, p < 0.05) and Cd (F1,4 = 65535, p < 0.05)along Nakivubo tributaries were 
significantly different whereas, Pb (F1,4 = 0.238, p = 0.651), and Zn (F1,4 = 3.13, p = 0.152) 
showed no significant difference. Lead, cadmium, copper and zinc showed no significant  
(p ˃ 0.05) difference in the means of the elemental concentrations along Watindo stream 
(Table 4). However, the mean values were higher for clay-silt fractions than fine sand. 
ANOVA showed no significant variation in the means of clay-silt and fine sand in Pb, Cd and 
Cu elements Mean concentrations of clay-silt fractions were higher than the mean of fine sand 
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fractions. Clay-silt and fine sand sediment fractions accumulated Pb, Cd, Cu, Zn, Mn and Fe. 
Concentrations of Cu in tributaries, Zn along the Nakivubo Channelized stream and Mn and 
Fe elements were significantly high in clay-silt fractions (< 63 µm). EF values of heavy metals 
in the clay-silt fractions showed a relatively homogeneous distribution pattern within the 
Upstream and Midstream section, suggesting local pollution and terrigenous influences. 
 

 

(A and B); tributaries (C); Watindo (D); industrial outfall (E) 

Fig. 3. Textural composed of the sediment grain-size fractions in Nakivubo stream 
sediments  

 
Source of Variation Dependent variables SS DF MS F p 
Nakivubo Channel sites Pb 0.050 1 0.050 1.258 0.281 
  Cd 0.001 1 0.001 0.069 0.797 
  Cu 0.085 1 0.085 0.901 0.359 
  Zn 0.316 1 0.316 6.646 0.022 
 Nakivubo tributaries Site Pb 0.046 1 0.046 0.238 0.651 
  Cd 0.000 1 0.000 65535 0.051 
  Cu 0.543 1 0.543 10.520 0.032 
  Zn 0.322 1 0.322 3.130 0.152 
 Industrial outfall sites Pb 0.007 1 0.007 0.223 0.649 
  Cd 0.009 1 0.009 0.204 0.664 
  Cu 0.117 1 0.117 0.858 0.381 
  Zn 0.000 1 0.000 0.000 0.995 
 Watindo stream Pb 0.000 1 0.000 0.004 0.951 
  Cd 0.008 1 0.008 0.560 0.496 
  Cu 0.231 1 0.231 2.426 0.194 
  Zn 0.105 1 0.105 2.426 0.194 

Table 4. One-way ANOVA results for sites and mean heavy metal concentration variables 
(Dependent variables were log-normal transformed) 
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Fig. 4. Heavy metal contents of Pb, Cd, Cu and Zn in the fine fractions (< 63 µm and  
63-125 µm) of Nakivubo stream sediments 

3.3 Sediment enrichment 
The results show that enrichment factor values can be assessed with respect to the average 

shale in reference to the degree of contamination (Harikumar et al., 2009; Ong and 

Kamaruzzaman, 2009). Enrichment factor values for fine sediments were highest at 

Nakivubo Stadium Bridge for Pb (19.0), Cd (13.33), Cu (2.8), Zn (2.74) and Mn (0.47) in 

fine sand fraction. The sequence of elemental enrichment in sediment fractions followed a 

decreasing order of Pb > Cd > Cu > Zn > Mn in clay-silt and fine sand fractions at Fire 

Brigade Bridge, whereas, sediments at 5th Street Bridge showed a decreasing sequence of 

Pb > Cd > Zn > Cu > Mn in clay-silt and fine-sand fractions. Lead and cadmium in 

sediments are significantly enriched (5-20), Cu and Zn are moderately enriched (2-5) and 

Mn was within background concentration (≤1) in fine sand fractions. Generally, 

enrichment factor in clay-silt fractions for Pb, Cd, Cu, Zn and Mn increased downstream, 

whereas the EF values for fine sand fractions showed a gradual decrease. Manganese  

EF values showed background concentrations in clay-silt and fine sand fractions (< 1) 

(Fig. 5). EF values of heavy metals (Pb, Cd, Cu, Zn and Mn) in clay-silt fractions showed a 

relatively homogeneous distribution pattern along the Nakivubo stream sediments.  

The heavy metal concentrations in clay-silt (< 63µm) and fine sand (63- < 125 µm) 

fractions are within the same order of magnitude, with some variations in concentrations 

at different sites. 
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Fig. 5. Distribution of enrichment factor values of Pb, Cd, Cu, Zn, Mn and Fe along the 
Nakivubo Channelized stream sediment fractions; c-clay-silt fractions; s-fine sand fractions 

Results of Pb-Fe, Cd-Fe, Cu-Fe, Zn-Fe and Mn-Fe scatter plots are shown in Fig. 6a. A very 

poor correlation between naturally occurring concentrations of Fe and other metals (Pb, Cd, 

Cu and Zn) sampled except Mn which was positively correlated. This may suggest 

anthropogenic influences of Pb, Cd, Cu and Zn and Mn as a naturally occurring metal 

concentration in clay-silt fractions. Heavy metals were weakly adsorbed to iron oxides in the 

clay-silt fractions. At neutral pH, clays have strong negative surface charges that attract Pb, 

Cd, Cu and Zn cations and iron oxides and hydroxides with positive surface charges.     

Results for Pb-Mn, Cd-Mn, Cu-Mn and Zn-Mn scatter plots are shown in Fig. 6b. A linear 

correlation between Fe-Cd and Fe-Cu elemental pairs suggest that Cd and Cu were 

naturally occurring heavy metal concentrations (terrigenous) and the outliers would suggest 

anthropogenic sources.  Cadmium and Copper were strongly adsorbed to manganese 

oxides and hydroxides in the clay-silt fractions. However, Pb and Zn were poorly correlated 

with Mn suggesting anthropogenic influence. 

Results for Pb-Fe, Cd-Fe, Cu-Fe and Zn-Fe scatter plots are shown in Fig.7a. A linear 
correlation between Fe-Cu and Fe-Mn elemental pairs suggest that Cu and Mn were 
naturally occurring heavy metal concentrations (terrigenous) and the outliers above the 
threshold would suggest an anthropogenic source. However, Pb, Cd and Zn were poorly 
correlated with Mn suggesting anthropogenic influence in fine-sand fractions. 
Results for Pb-Mn, Cd-Mn, Cu-Mn and Zn-Mn scatter plots are shown in Fig.7b. A linear 

correlation between Fe and Cu elemental pairs suggest that Cu was naturally occurring 

heavy metal concentrations (terrigenous) and the outliers above the threshold would be 

regarded as anthropogenic. Copper showed strong adsorption to manganese oxides and 

hydroxides in the clay-silt fractions. However, Pb, Cd and Zn were poorly correlated with 

Mn suggesting anthropogenic influence in fine-sand fractions. 

Heavy metal concentration data in the sediment fractions were subjected to ANOVA and 

showed no significant variation in the means of clay-silt and fine sand for Pb, Cd and Cu, 
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except for Zn along the Nakivubo Channelized stream (Kruopiene, 2007), Cd and Cu along 

the tributaries. However, the mean values were higher in clay-silt fractions in all the 

samples. Elemental concentrations were within the same order of magnitude as observed by 

Sekabira et al., (2010) along the Nakivubo drainage system except for Cu and Zn which 

showed extreme high elemental concentrations in sediment fractions of clay-silt and fine 

sand. Enrichment Factor values of heavy metals in clay-silt fractions (< 63 µm) for Pb, Cd, 

Cu, Zn and Mn increased gradually downstream, whereas the EF values for fine sand 

fractions showed an irregular decrease. This phenomenon of increasing heavy metal 

concentration downstream may be attributed to the increased pollution downstream and 

adsorption of heavy metals from the water by fine grained sediments with large surface area 

and clay with negative surface charge. Irregular distribution of heavy metals in fine sand 

fractions may indicate a localized source of the pollutants, sink and/or retention 

phenomena (Zanganeh et al., 2008). 

 

 

Fig. 6. a. Scatter plots of heavy metals of Nakivubo Channelized stream in clay-silt fractions 
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Fig. 6. b. Scatter plots of heavy metals of Nakivubo Channelized stream in clay-silt fractions 

3.4 Source apportionment of pollutants 
Inter-metal and sediment property association was also evaluated by using Pearson 

correlation coefficient (r) and the results are presented in Table 5. Results show that 

elemental pairs Cu-c/Pb-c (r = 0.52 at P = 0.05), Zn-c/Pb-c (r = 0.706, P = 0.01), Pb-s/Pb-c 

(r = 0.841, P = 0.01), Zn-s/Pb-c (r = 0.487, P = 0.05), Cd-s/Cd-c (r = 0.767, P = 0.01), Zn-

s/Cd-c (r = 0.521, P = 0.05), Zn-c/Cu-c (r = 0.773, P = 0.01), Pb-s/Cu-c (r = 0.581, P = 0.01), 

Cu-s/Cu-c (r = 0.463, p = 0.05), Zn-s/Cu-c (r = 0.646, P = 0.01), Pb-s/Zn-c (r = 0.714,  

P = 0.01), Cu-s/ Zn-c (r = 0.545, P = 0.05), Zn-s/Zn-c (r = 0.853, P = 0.01), Zn-s/Pb-s  

(r = 0.528, P = 0.05), Cu-s/Cd-s (r = 0.720, P = 0.01), Zn-s/Cd-s (r = 0.686, P = 0.01), Zn-

s/Cu-s (r = 0.693, P = 0.01), Mn-s/Cu-s (r = 0.485, P = 0.05), Fe-s/Cu-s (r = 0.461, P = 0.05), 

Fe-s/Mn-s (r = 0.943, P = 0.01), BOD/pH-s (r = 0.525, P = 0.05), BOD/Pb-c (r = 0.502,  

P = 0.05), BOD/Pb-s (r = 0.514, P = 0.05), BOD/Zn-s (r = 0.564, P = 0.05) and Cd-c/% clay-

silt (r = 0.481, P = 0.05) are significantly correlated with each other. Lead in clay-silt 

fractions (Pb-c), Zn-c, Pb-s, Zn-s and BOD were significantly associated with sediment 

pH, suggesting its influence as a controlling factor. Elemental associations were assessed 

using Pearson correlation coefficient (r) and indicated that each paired elements had an 

identical source, geochemistry, and/or common sink (Nyangababo et al., 2005b; Sekabira 

et al., 2010). Cadmium elemental association with grain size fraction contents may signify 

its influence as a controlling factor. In aquatic sediments, heavy metals are mostly 

enriched in and are associated with the fine grained fractions (Muwanga, 1997; Prego et 

al., 1999; El-Moselhy and Abd El-Azim, 2005). Association of copper in sediments with Mn 

and Fe-oxides/hydroxides may suggest specific adsorption and co-precipitation by 

isomorphic substitution. 
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**Correlation is significant at the 0.01 level (2-tailed); *. Correlation is significant at the 0.05 level (2-
tailed); BOD-biological oxygen demand 
s- silt-clay fractions; s- Fine-sand fractions 

Table 5. Pearson correlation coefficient (r) matrix of heavy metals, sediment property and 
BOD in Nakivubo Channelized stream sediments (n=19) 
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Fig. 7. a. Scatter plots of heavy metals of Nakivubo Channelized stream in fine-sand 
fractions 
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Cluster Analysis (CA) was performed on the data using Ward or Average linkage and 
correlation coefficient distance. Results for CA are shown in Fig. 8. Four clusters of 
elemental associations were identified based on the fusion of the clusters that are similar. 
The dendrogram explains the influence and association of the heavy metal clusters or 
groups by their relative elemental concentrations at each site.  CA showed the association of 
pH and BOD with Pb and Zn in clay-silt and fine-sand fractions as well as Cu in clay-silt 
fraction in the first group (I). This may suggest the association of Pb with organic matter and 
pH as a controlling factor. The second group (II) showed the association of Cd and Cu in 
fine-sand fractions as well as Cd in clay-silt fractions in the Nakivubo stream sediments. 
Elements in group III (Mn and Fe) originate from terrigenous sources (Sekabira et al., 2010) 
in both clay-silt and fine-sand fractions. Group IV contains percentage fractions of clay-silt 
and fine-sand. A biplot of sites and elemental concentrations associated Agakhan High 
School Bridge and Lugogo stream with Cu and Cd (Fig. 9). This may be attributed to car 
washing bay, petrol stations and vehicular emissions. Sludge at National Water and 
Sewerage Corporation contained the highest concentrations of Cu and Zn in both fractions 
followed by Kiseka Market Bridge attributed to car washing bay and garages. Lead and Zinc 
concentrations were highest at DT16 site attributed to Uganda batteries limited factory, 
Uganda Baati limited [galvanised iron sheets] and plastic factory [Uganda house of plastics]. 
Peacock paint factory is a source of Pb in fine-sand and clay-silt fractions. Cadmium in clay-
silt fraction was highest at Nakivubo stadium bridge [US4] attributed to vehicular 
emissions, car park and a petrol station. 

 

 
 

Fig. 7. b. Scatter plots of heavy metals of Nakivubo Channelized stream in fine-sand 
fractions 
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Fig. 8. Dendrogram of urban stream sediment samples along the Nakivubo drainage 
ecosystem and Watindo stream 

 

 
 

 

Fig. 9. Biplot of sites and elemental concentrations in Nakivubo drainage system, industrial 
discharge outfall and Watindo stream; BOD-biological oxygen demand 
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Variable Factor 1 Factor 2 Factor 3 Factor 4 Communality 

pH-s 0.502 0.038 0.045 -0.586 0.598 

Pb-c 0.883 -0.198 -0.111 -0.249 0.894 

Cd-c -0.004 -0.2 0.925 0.029 0.896 

Cu-c 0.748 0.261 0.273 0.094 0.711 

Zn-c 0.868 0.064 0.31 -0.143 0.875 

Mn-c 0.197 0.844 -0.15 -0.112 0.785 

Fe-c -0.005 0.752 0.213 -0.31 0.708 

Pb-s 0.872 -0.004 -0.021 -0.258 0.827 

Cd-s 0.182 0.186 0.891 0.024 0.862 

Cu-s 0.438 0.439 0.586 0.091 0.737 

Zn-s 0.632 0.166 0.647 -0.236 0.901 

Mn-s 0.057 0.935 -0.004 -0.031 0.877 

Fe-s -0.134 0.936 0.082 -0.008 0.901 

% Clay-silt -0.242 -0.176 0.493 0.69 0.809 

% Fine-sand 0.006 -0.213 0.063 0.859 0.787 

BOD 0.371 -0.03 0.341 -0.63 0.652 

Variance 3.9859 3.5124 3.0339 2.2874 12.8197 

% Var. 0.249 0.22 0.19 0.143 0.801 

Table 6. Varimax rotated factor loadings and communalities of the Nakivubo stream, 
tributaries, industrial outfall sediment fractions and Watindo stream (n=15) 

Factor Analysis was carried out to establish the influence of sediment grain size, pH and 

BOD on heavy metal concentrations in clay-silt and fine-sand fractions (Table 6). Four 
factors with eigenvalues > 1 were extracted in the analysis to help explain the data. The 

first four factors account for 80.1 % of the total variance/inertia in the data set. The 

rotated factor matrix is explained by four factors with high communalities of elements 
except pH. The first factor accounts for 24.9 % of the total variance and contains Pb, Cu 

and Zn, as well as BOD in water and pH with high variable loading on this factor and 
corresponds to group I of the cluster analysis. This suggests pH as the controlling factor 

(Muwanga, 1997; Prego et al., 1999; Abílio et al., 2006 and Ho et al., 2010) and the influence 
of organic matter on Pb. At neutral pH, clays possess negative surface charges that attract 

Pb, Cu nd Zn cations into bottom sediments. The second factor accounts for 22.0 % of the 
total inertia and contains Mn and Fe as well as Cu in fine sand fractions with high 

variable loadings and corresponds to group III of cluster analysis. This association may be 
due to their common occurrence in the basic rocks [terrigenous], since their concentrations 

were within background values (EF ≤ 1) (Sekabira et al., 2010).   The Third factor accounts 
for 19.0 % of the total inertia and contains Cd, Cu and Zn in fine-sand fractions as well as 

clay-silt fractions and BOD. The association of Cd and Zn may be attributed to their 
similar geochemistry and may indicate a source of mixed origin and/or sink of vehicular 
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emissions, Katwe metal works and cement stores at Good Shade.  The association of 
heavy metals and BOD may suggest the role of organic matter (OM) in heavy metal 

sequestration and the dual origin of Cu and Zn. This causes the transfer of heavy metals 
into bottom sediments. The Fourth factor accounts for 14.3 % of the total inertia and 

contains percentage clay-silt and fine-sand fractions with high variable loadings and 
corresponds to group IV of the cluster analysis.  

4. Conclusions 

1. Clay-silt fraction sorting increased for zinc concentrations in the Nakivubo stream 
sediments and generally for lead. Heavy metal concentration increased downstream 
with percentage increase in clay-silt fractions and enrichment in the very fine grained 
fractions, probably due to their negative surface charge and higher particulate surface 
area. 

2. The distribution patterns of the heavy metals are controlled by the sorting of fine-
grained fractions, pH and organic matter as indicated by BOD. 

3. This study showed that stream sediments have background concentrations for Fe and 
Mn at most of the sites. 

4.  Factor analysis also indicated three sources of pollutants; (1) mixed origin or retention 
phenomena of Pb, Cu and Zn as well as BOD of industrial and municipal waste 
effluents [NWSC]; (2) industrial and vehicular emissions of Cd, Cu and Zn and 
terrigenous fraction sources characterised by Cu, Mn and Fe. 
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