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1. Introduction 

Osteoarthritis, the most common joint disease, affecting millions people world-wide, involves 

the degradation of the articular cartilage which provides frictionless contact between the bones 

in a joint during movement. To a first approximation, this tissue is composed of two 

components, a collagen framework and entrapped proteoglycans. The framework consists of 

type II collagen fibrils built on a type XI collagen core, and decorated with type IX collagen 

molecules and small proteoglycans. These composite fibrils give the tissue its integrity, tensile 

strength and ability to retain large proteoglycan aggregates. The extremely large size of the 

proteoglycan aggregates and their high negative charge endows them with an immense 

hydration capacity, giving cartilage the ability to absorb compressive loading by the slow 

displacement of bound water. Partial destruction or loss of the proteoglycans is the first step in 

the deterioration of cartilage as seen in arthritis. Subsequently, irreversible loss of collagen 

occurs leading to permanent cartilage degeneration. While glycosylhydrolases and free 

radicals could also participate, it is believed that proteolytic enzymes are the main agents 

responsible for the degradation of cartilage components in osteoarthritis. Currently two classes 

of proteases are thought to be the major mediators of collagen and proteoglycan cleavage. 

Collagen degradation was thought to be majorly due to the action of MMP (matrix 

metalloproteinase) collagenases while members of both MMP and ADAMTS (a disintegrin 

and metalloproteinase with thrombospondin motifs) families are important mediators of the 

degradation of proteoglycans which due to their extended core protein conformation are 

susceptible to the action of many proteases (Mort and Billington, 2001). Recently however, 

there is increasing evidence for the role of the cysteine protease cathepsin K in collagen 

degradation in articular cartilage (Konttinen et al., 2002). 

The cleavage of cartilage proteins often occurs at specific sites on these molecules depending 

on the particular protease mediating the event. This results in the generation of 

characteristic N- and C-terminal epitopes that can be used for the production of antibodies 

specific for these cleavage products (anti-neoepitope antibodies) (Mort et al., 2003). A series 

of such antibodies has been produced and their specificities validated. These allow 

evaluation of the roles of different proteases in the degradation of collagen and 

proteoglycans in mouse models of osteoarthritis and in human and equine osteoarthritic 

cartilage using immunohistochemical methods and immunoassays. 
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2. Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are a family of functionally and structurally related zinc 

endopeptidases that cleave proteins of the extracellular matrix, including collagens, elastin, 

matrix glycoproteins and proteoglycans (Martel-Pelletier et al., 2001) and are considered to 

be responsible for much of the degeneration of articular cartilage. 

Most MMPs are composed of three distinct domains: an amino-terminal propeptide involved 

in the maintenance of enzyme latency; a catalytic domain that binds zinc and calcium ions and 

a hemopexin-like domain that is located at the carboxy terminal zone of the protease and that 

plays a role in substrate binding (Nagase, 1997). All MMPs are synthesized as preproenzymes 

and most of them are either secreted from the cell or bound to the plasma membrane in an 

inactive or proenzyme state. Several proteolytic cleavages are required to activate them and 

are critical steps leading to extracellular matrix breakdown (Nagase, 1997). Most of the MMPs 

are optimally active at neutral pH (Martel-Pelletier et al., 2001). 

The human genome codes for 24 MMPs which can be classified depending on which 

components of the cartilage matrix they degrade (Birkedal-Hansen et al., 1993; Lee and 

Murphy, 2004). The MMPs that are the most important in cartilage extracellular matrix 

degradation are the collagenases (MMP-1, -8 and -13), the stromelysins (MMP-3, -10 and -11) 

the gelatinases (MMP-2 and –9), matrilysin (MMP-7) and the membrane type MMPs, in 

particular MMP-14 which can also act as a collagenase (Nagase and Woessner, 1999). 

2.1 Collagenases 
Matrix metalloproteinases with collagenolytic abilities are termed collagenases. These 
proteases mediate the initial cleavage of the collagen triple helix, occurring at three quarters 
of the distance from the amino-terminal end of each chain, forming collagen fragments of 
three-quarter and one-quarter length (Harris and Krane, 1974) (Fig.1). This site is susceptible 
to cleavage due to a reduced proline and hydroxyproline content which results in lowering 
of the stability of the triple helix. The collagenases are able to unwind this region of the 
triple helix and cleave all three collagen strands (Chung et al., 2004). This initial cleavage 
allows other MMPs to further degrade these unwound collagen molecules (Burrage et al., 
2006). There are 3 collagenases: collagenase-1 or interstitial collagenase (MMP-1); 
collagenase-2 or neutrophil collagenase (MMP-8); and collagenase-3 (MMP-13). In addition, 
MMP-2 and MMP-14 also have the ability to cleave triple helical collagen. 

2.1.1 Collagenase-1 (MMP-1) 
Collagenase-1, which is primarily produced by synoviocytes (Wassilew et al., 2010), has 

been found in increased concentration in synovial fluid of patients suffering from joint 

injuries and osteoarthritis (Tchetverikov et al., 2005). It can also degrade aggrecan and 

different types of collagen: type I, II, III, VII, X, IX and denatured type II (Martel-Pelletier et 

al., 2001; Poole et al., 2001). This collagenase preferentially degrades type III collagen and its 

expression is mainly found in the superficial zone of articular cartilage in well-established 

osteoarthritis (Freemont et al., 1997). Even though its affinity towards type II collagen is 

lower than for collagenase-3, it is found in higher concentration in osteoarthritic joints 

(Vincenti and Brinckerhoff, 2001). In vitro studies showed that human chondrocytes can 

produce significantly more collagenase-1 than collagenase-3 following stimulation with 

proinflammatory cytokines, namely TNF- and IL-1 (Yoshida et al., 2005). 
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Fig. 1. Cleavage sites on type II collagen. 
The type II collagen triple helix and non-helical telopeptides are indicated schematically. In 
reality there are many more turns in the triple helix. The ¾ / ¼ cleavage site for collagenases 
and the cleavage site for cathepsin K towards the N-terminus (Kafienah et al., 1998) are 
indicated along with the peptide sequences used to produce anti-neoepitope antibodies for 
the cleavage products. Asterisk indicates modification of proline to hydroxyproline. 

2.1.2 Collagenase-2 (MMP-8) 
Collagenase-2, which is mainly the product of neutrophils, degrades type I collagen with 
high specificity, but also cleaves collagen type II, III, VIII, X, aggrecan and link protein 
(Poole, 2001). It has been shown that collagenase-2 protein and mRNA are also produced by 
normal human chondrocytes (Cole et al., 1996), though recent data show that mRNA 
expression is very minor in normal and osteoarthritic chondrocytes (Stremme et al., 2003). 
Collagenase-2 is able to cleave the aggrecan molecule at the aggrecanase-site, between 
Glu373-Ala374, but cleaves preferentially between Asn341-Phe342, the MMP-site (Fosang et al., 
1994) (Fig. 2). 

2.1.3 Collagenase-3 (MMP-13) 
Collagenase-3 was first cloned from human breast carcinoma in 1994 (Freije et al., 1994). It is 
predominantly a product of chondrocytes (Reboul et al., 1996) and has been shown to be 
expressed in human osteoarthritic cartilage (Mitchell et al., 1996), subchondral bone and 
hyperplasic synovial membrane in an osteoarthritis mouse model (Salminen et al., 2002). 
This collagenase is mostly expressed by chondrocytes surrounding osteoarthritic lesions 
(Shlopov et al., 1997) and can be found in superficial (Wu et al., 2002) and deep layers of 
osteoarthritic cartilage (Freemont et al., 1999; Moldovan et al., 1997). Matrix 
metalloproteinase-13 expression is strongly induced by interleukin-1 (IL-1), an important 
proinflammatory cytokine encountered in osteoarthritis (Gebauer et al., 2005; Vincenti and 
Brinckerhoff, 2001). Collagenase-3 degrades type II collagen preferentially, but also cleaves 
collagens type I, III, VII and X, aggrecan and gelatins (Poole et al., 2001). In vitro studies have 
shown that MMP-13 can cleave type II collagen about 5 times faster than type I collagen and 
about 6 times faster than type III collagen (Knäuper et al., 1996). Because type II collagen is 
its preferred substrate and because it can cleave type II collagen a least 5 to10 times faster 
than collagenase-1, collagenase-3 is considered to be one of the most important MMPs in 
osteoarthritis (Mitchell et al., 1996). It is also the collagenase with the most efficient 
gelatinolytic activity (Knäuper et al., 1996). 
Many different in vivo studies have shown the importance of MMP-13 in osteoarthritis. 
Administration of specific MMP-13 inhibitors to animal models of osteoarthritis has shown 
a significant reduction in the severity of the pathology (Baragi et al., 2009; Johnson et al., 
2007; Settle et al., 2010). Its importance in osteoarthritis was demonstrated, in a transgenic 
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mouse line expressing constitutively active human MMP-13 in hyaline cartilage where 
excessive MMP-13 expression resulted in articular cartilage degradation and joint pathology 
similar to osteoarthritis (Neuhold et al., 2001). Recently, MMP-13 knockout mice have been 
developed and surgical induction of osteoarthritis by destabilisation of the medial meniscus 
in these animals demonstrated that structural cartilage damage is dependent on MMP-13 
activity (Little et al., 2009).  
 

 

Fig. 2. Peptides used to generate anti-neoepitope antibodies to metalloproteinase cleavage 
products of aggrecan in the interglobular domain.  
The domain structure of the aggrecan molecule is illustrated. The core protein (green) 
consists of two globular domains (G1 and G2) separated by an interglobular domain. A 
region rich in keratan sulfate (KS) follows along with two extended chondroitin sulfate rich 
regions (CS1 and CS2) which are substituted with glycosaminoglycan chains (blue). The CS1 
region consists of a series of tandem repeats which can vary in number (Doege et al., 1997). 
The interglobular domain is susceptible to proteolytic attach. The sites of cleavage by MMPs 
and aggrecanases are indicated along with the sequences of peptides used to prepare anti-
neoepitope antibodies which recognize the new C-termini of the G1-containing fragments 
that remain in the tissue following cleavage.  

2.2 Gelatinases 
Gelatinases are proteases that can further degrade denatured collagen, once the triple helix 
has been cleaved by collagenases. There are two gelatinases: gelatinase-A also termed 72 
kDa or MMP-2 and gelatinase-B also termed 92 kDa or MMP-9. 
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2.2.1 Gelatinase-A (MMP-2) 
Gelatinase-A degrades FACIT (fibril-associated collagens with interrupted triple helices) 
(Gordon and Hahn, 2010) collagens such as type IV collagen in the basement membrane and 
is a very efficient  gelatinase degrading denatured fibrillar collagens and aggrecan (Poole, 
2001). Gelatinase-A is mostly important in the completion of collagen degradation after 
specific cleavage of the triple helical region of fibrillar collagen molecules by collagenases 
(Nagase, 1997). This enzyme also cleaves the aggrecan molecule at the Asn341-Phe342 site 
close to the G1 domain (Fosang et al., 1992) (Fig.2) and is mostly expressed in late stage 
osteoarthritis (Aigner et al., 2001). 
It has been shown that in the horse, several joint cells, like chondrocytes and synovial 
fibroblasts, can produce gelatinase-A in vitro (Clegg et al., 1997a) and that the enzyme 
activity is increased in synovial fluid of joints of animals suffering from osteoarthritis (Clegg 
et al., 1997b). The activity of gelatinase-A was found to be increased in synovial fluid and 
synoviocytes of dogs with osteoarthritis, but was also detected in healthy joints (Volk et al., 
2003). Recently, it has be shown that gelatinase-A deficiency in humans causes a disorder 
characterized by osteolysis and arthritis termed multicentric osteolysis with arthropathy, a 
disease that can be reproduced in gelatinase-A knockout mice (Mosig et al., 2007). Even if 
this enzyme seems to be implicated in the pathogenesis of osteoarthritis, it also plays a 
direct role in skeletal development. 

2.2.2 Gelatinase-B (MMP-9) 
Gelatinase-B has similar activities to MMP-2 but it can also act as an elastase. Though 
involved in collagen destruction, its collagenase action is at a very much lower level than 
that of gelatinase-A (Soder et al., 2006). Gelatinase-B can also cleave the aggrecan molecule 
at the same site as gelatinase-A, the Asn341-Phe342 site (Fosang et al., 1992) (Fig. 2). This 
enzyme has been found in synovial fluid of humans (Koolwijk et al., 1995) and horses 
(Clegg et al., 1997b) with osteoarthritis, and its activity is increased in synovial fluid and 
synoviocytes of dogs (Volk et al., 2003) suffering from the same disease. Equine 
chondrocytes are also able of producing gelatinase-B in vitro (Clegg et al., 1997a). 

2.3 Stromelysins 
There are three stromelysins: stromelysin-1 or MMP-3, stromelysin-2 or MMP-10 and 
stromelysin-3 or MMP-11. 

2.3.1 Stromelysin-1 (MMP-3) 
Stromelysin-1 can degrade aggrecan, denatured collagens and interhelical collagen domains, as 
well as aggrecan and link protein. Importantly, stomelysin-1 can cleave the aggrecan molecule 
at the MMP site, at the Asn341-Phe342 bond, to liberate the G1 domain from the remainder of the 
molecule (Flannery et al., 1992) (Fig.2). It has been shown that stromelysin-1 can activate the pro 
forms of collagenases and that this activation is a key step in cartilage degradation (Suzuki et al., 
1990). In osteoarthritic cartilage, stromelysin-1 is localized in chondrocytes of the superficial and 
transition zone (Okada et al., 1992) and its strongest mRNA expression is found in early 
degenerative articular cartilage (Bau et al., 2002). In a rabbit model of surgically induced 
osteoarthritis, stromelysin-1 was found to be upregulated in the synovium initially, and in 
chondrocytes in the later phases of the disease (Mehraban et al., 1998), indicating that both cell 
types can produce stromelysin-1. It has been shown that in humans, the plasma level of 
stromelysin-1 was a significant predictor of joint space narrowing in knee osteoarthritis 
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(Lohmander et al., 2005). The concentration of this enzyme in human joint fluid can distinguish 
disease joints form healthy joints (Lohmander et al., 1993a). Another indication of the action of 
stromelysin-1 in the development of osteoarthritis is the significant decrease in severity of joint 
pathology in 2-year-old MMP-3 knockout mice (Blaney Davidson et al., 2007) 

2.3.2 Stromelysins-2 and -3 (MMP-10 and MMP-11) 
Stromelysin-2 has similar activities to MMP-3. This stromelysin can also activate 
procollagenases, and has been identified recently in synovial fluid and tissues from 
osteoarthritis patients, demonstrating the importance of this protease in articular cartilage 
degradation processes (Barksby et al., 2006). 
Stromelysin-3 has been more implicated in general proteolysis, and shown to be up-
regulated in osteoarthritic chondrocytes (Aigner et al., 2001). Unlike other MMPs, 
stromelysin-3 is activated intracellularly by the serine protease, furin, which processes many 
other proteins into their mature/active forms. MMP-11 is then secreted from cells in its 
active form (Pei and Weiss, 1995).  

2.4 Other MMPs 
Matrilysin (MMP-7), the smallest of the MMPs, lacking a hemopexin domain, is a protease that 
degrades aggrecan, gelatin, type IV collagen and link protein. Matrilysin cleaves the aggrecan 
molecule at the MMP-site (Fosang et al., 1992) and is mainly expressed in the superficial and 
transitional zones of osteoarthritic chondrocytes (Ohta et al., 1998). Matrilysin is the MMP with 
the highest specific activity against many extracellular matrix components (Murphy et al., 
1991) and can also activate the zymogens of MMP-1 and MMP-9 (Imai et al., 1997). 
There are six membrane-type matrix metalloproteinases (MT-MMPs) (Nagase and 
Woessner, 1999). Only MT1-MMP and MT3-MMP have been implicated in osteoarthritis 
(Burrage et al., 2006). The most important is MT1-MMP (MMP-14), expressed in human 
articular cartilage (Büttner et al., 1997) and synovial membrane. It degrades aggrecan, but 
also collagen type I, II, III and gelatin. It has been shown that MT1-MMP is highly expressed 
in osteoarthritic cartilage and could be responsible for the activation of progelatinase A in 
the extracellular matrix (Imai et al., 1995). 

3. Aggrecanases 

Aggrecanases are members of the ‘A Disintegrin And Metalloproteinase with 
Thrombospondin motifs’ (ADAMTS) family of proteins. Synthesized as inactive pre-
proenzymes, the ADAMTSs have a catalytic domain containing a zinc binding motif with 3 
histidine residues, HEXXHXXGX-XH, and a critical methionine residue located in a ‘Met-
turn’ downstream of the third zinc-binding histidine (Kuno et al., 1997). The propeptide is 
removed by the action of the proprotein convertase proteases furin (Koo et al., 2007) or 
PACE-4 (Malfait et al., 2008). Currently there are 19 ADAMTS genes known in humans, 
numbered ADAMTS-1 to ADAMTS-20, the same gene product being described as 
ADAMTS-5 and ADAMTS-11 (Porter et al., 2005). 
The degradation of aggrecan leads to articular cartilage softening and loss of fixed charges 
(Maroudas, 1976). Two major cleavage sites of the aggrecan molecule are situated in the IGD 
region of the core protein, allowing aggrecan molecules lacking the G1 domain to freely exit 
the cartilage matrix and so to no longer contribute to cartilage function (Sandy et al., 1991). The 
first cleavage site at the Asn341-Phe342 bond, creating the neoepitope VDIPEN, was found to be 
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generated by MMPs (Flannery et al., 1992; Fosang et al., 1991; Fosang et al., 1992). The second 
site at the Glu373-Ala374 bond, creating the NITEGE neoepitope, was found to result from 
aggrecan cleavage by enzymes that were called aggrecanases (Sandy et al., 1991). There are 4 
other aggrecanase cleavage sites situated in the GAG rich region (CS2) of aggrecan molecules 
between the globular domains G2 and G3 (Glu1545-Gly1546, Glu1714-Gly1715, Glu1819-Ala1820, and 
Glu1919-Leu1920, human sequences) (Tortorella et al., 2000) and a fifth cleavage site closer to the 
G3 domain that has been identified recently in bovine cartilage (Durigova et al., 2008). It was 
shown that aggrecan cleavage at the aggrecanase sites is responsible for cartilage degradation, 
in vitro, (Malfait et al., 2002; Tortorella et al., 2001)  and, in vivo, ((Janusz et al., 2004), and that 
aggrecan neoepitopes generated by aggrecanases are found in synovial fluids of patients 
suffering from osteoarthritis (Lohmander et al., 1993b; Sandy et al., 1992). Moreover, it was 
also shown that contrary to MMP-inhibitors, aggrecanase inhibitors can block aggrecan 
degradation in human osteoarthritic cartilage (Malfait et al., 2002), demonstrating the 
importance of aggrecanases in cartilage matrix destruction. 
The ongoing search for activities responsible for cartilage matrix degradation indicates that 
the ADAMTS family members are the most important aggrecanases. Of all of the ADAMTS 
enzymes, the phylogenetically closely related ADAMTS-1, -4, -5, -8, -9, -15 and -20 (Collins-
Racie et al., 2004) are considered to be potential aggrecanases. All of the ADAMTS 
messenger RNAs except ADAMTS-7 were found to be present normal and/or osteoarthritic 
cartilage from hip or knee joints (Collins-Racie et al., 2004; Kevorkian et al., 2004; Naito et 
al., 2007). They have been shown to be able to cleave the aggrecan molecule at the Glu373-
Ala374 bond, except for ADAMTS-20 for which this cleavage site has not been tested to date 
(Collins-Racie et al., 2004; Rodríguez-Manzaneque et al., 2002; Somerville et al., 2003; 
Tortorella et al., 2000; Tortorella et al., 2002). The only 3 ADAMTSs that have been shown to 
be able to cleave aggrecan at the 4 aggrecanase sites located in the GAG rich region are 
ADAMTS-1, -4 and -5 (Rodríguez-Manzaneque et al., 2002; Tortorella et al., 2002), making 
them potent aggrecanases.  

3.1 Aggrecanase-1 (ADAMTS-4) 
Aggrecanase-1 has been well studied and evidence for its importance in aggrecan catabolism 
in cartilage is becoming stronger. ADAMTS-4 protein has been shown to be co-localized with 
aggrecan degradation products in vitro and in vivo (Naito et al., 2007). Selective inhibition of 
ADAMTS-4 and ADAMTS-5 has been shown to block the degradation of type II collagen by its 
protective effect on aggrecan molecules (Pratta et al., 2003). However, even if ADAMTS-4 has 
been shown to be able to cleave the aggrecan molecule in vitro (Tortorella et al., 2001), studies 
carried out with ADAMTS-4 knockout mice failed to show a protection against aggrecan loss 
after destabilizing knee surgery (Glasson et al., 2005). A similar study by Stanton et al. showed 

that, in vitro, ADAMTS-4 expression is not induced by IL-1 in mice suggesting that 
ADAMTS-4 may not be an important aggrecanase in osteoarthritis in mice (Stanton et al., 
2005). However, in human osteoarthritis, ADAMTS-4 seems to play an important role in 
aggrecan degradation. In fact, this aggrecanase is induced in human cartilage, in vitro, by 
proinflammatory cytokines (Song et al., 2007), and is increased in osteoarthritic cartilage (Naito 
et al., 2007; Roach et al., 2005). 

3.2 Aggrecanase-2 (ADAMTS-5) 
ADAMTS-5 has also been well studied and its importance in aggrecan catabolism in 

cartilage has been shown. As mentioned for ADAMTS-4, selective inhibition of ADAMTS-
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4 and ADAMTS-5 has been shown to have a protective effect on aggrecan molecules 

(Pratta et al., 2003).  Studies carried out with ADAMTS-5 knockout and ADAMTS-4/-5 

double knockout mice showed that these animals are more resistant to cartilage 

degradation after destabilizing knee surgery (Glasson et al., 2005; Majumdar et al., 2007; 

Stanton et al., 2005). In vitro, ADAMTS-5 expression is induced by IL-1 in mice, 

demonstrating its importance in osteoarthritis in that species (Stanton et al., 2005). 

ADAMTS-5 is also important in osteoarthritis in humans, its expression is high in human 

osteoarthritic cartilage and it is responsible for aggrecan degradation in normal and 

diseased cartilage (Bau et al., 2002; Plaas et al., 2007; Song et al., 2007). However, in the 

human, putative damaging polymorphisms in the ADAMTS-5 gene did not show any 

modification in susceptibility to osteoarthritis (Rodriguez-Lopez et al., 2008). The search 

for the most important aggrecanase in human osteoarthritis is still going strong (Fosang 

and Rogerson, 2010).  

3.3 ADAMTS-1 
ADAMTS-1 mRNA and protein are present in normal and OA cartilage (Kevorkian et al., 
2004). This enzyme can cleave aggrecan at the Glu373-Ala374 bond and at 4 additional 
aggrecanase sites between G2 and G3 (Rodríguez-Manzaneque et al., 2002). Concerning the 
expression of ADAMTS-1 in inflammatory conditions, ADAMTS-1 expression in articular 

chondrocytes is downregulated in vitro by human recombinant interleukin-1 (IL-1) 
(Wachsmuth et al., 2004). An ADAMTS-1-KO mouse (Mittaz et al., 2004) showed that 
overall, ADAMTS-1 does not seem to be a key enzyme in normal and diseased cartilage, or 
in bone development and growth (Little et al., 2005). 

4. Cathepsins  

While the triple helical regions of the fibrillar collagens such as types I and II are resistant to 
the action of most proteases except the MMP collagenases (Nagase and Fushimi, 2008) 
which make an initial cleavage at the three quarter point, the cysteine protease, cathepsin K, 
is also able to degrade triple helical collagens (Garnero et al., 1998). Rather, this protease 
appears to erode the collagen fibrils from their termini, gradually reducing the chains to 
peptides with concomitant unwinding of the triple helix. Unlike the MMPs, cathepsins are 
single domain proteases which do not rely on additional modules to bind to their 
extracellular matrix substrates (Turk et al., 2001). However, the collagenolytic activity of 
cathepsin K is dependent on the presence of chondroitin 4-sulfate CS (Li et al., 2000) a major 
component of the aggrecan molecule which forms well-defined complexes with the enzyme 
(Cherney et al., 2011). While it was originally assumed that cathepsin K is unique to the 
osteoclast (and this cell does indeed contain huge amounts of the protease), many other cell 
types are now known to produce the enzyme (Anway et al., 2004; Sukhova et al., 1998). Its 
increasing abundance in chondrocytes close to the articular surface (Konttinen et al., 2002) 
suggests that its action may contribute to cartilage fibrillation seen with aging and joint 
disease. 

5. Anti-neoepitope antibodies 

The anti-cleavage site (anti-neoepitope) antibody approach has proven very productive as a 
means of detecting specific cleavage products in the extracellular matrix, thus demonstrating 
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the action of one or a particular group of proteases (Mort et al., 2003; Mort and Buttle, 1999). In 
addition, since these cleavage products can accumulate in body fluids – synovial fluid, blood 
or urine – their quantitation can represent a measure of disease activity.  
Our work has centered on aggrecan fragments generated by the action of MMPs and 
aggrecanases (ADAMTS family members, particularly ADAMTS-4 and -5) (Hughes et al., 1995; 
Sztrolovics et al., 2002) (Fig. 2) and on collagen cleavage epitopes generated by the action of 
collagenases (Billinghurst et al., 1997; Lee et al., 2009; Song et al., 1999) as well as the degradation 
of collagen in cartilage by cathepsin K (Dejica et al., 2008; Vinardell et al., 2009) (Fig. 1).  

6. Immunohistochemical demonstration of protease action in cartilage 

Anti-neoepitope antibodies can be used to demonstrate the effects of increased MMP activities 
in articular cartilage. This is illustrated in sections of joints of mice lacking the endogenous 
MMP inhibitor, tissue inhibitor of metalloproteinases-3 (TIMP-3). Timp3-/- mice are 
phenotypically normal, although old animals show some lung pathology (Leco et al., 2001) 
(Fig.3). However, detailed examination of the articular cartilage of adult animals demonstrates 
a decrease in glycosaminoglycan content (weaker Safranin O staining) and damage to the 
articular surface. Compared to wild type animals, there is a dramatic increase in the staining of 
the articular cartilage with an anti-VDIPEN antibody (Lee et al., 1998) which recognizes the G1 
domain of aggrecan that remain located in the tissue following cleavage by MMPs.  Although 
the aggrecanase cleavage site in mouse aggrecan generates the G1 terminating in the sequence 
…NVTEGE rather than …NITEGE, the antibody raised to the human epitope is fully 
functional with the mouse epitope and can be used to investigate the role of aggrecanases in 
cartilage degeneration in animal models of arthritis (van Lent et al., 2008). 
 

 

Fig. 3. Effect of increased MMP activity in mouse cartilage. 
Hind joint sections of wild type and Timp3-/- 1-year-old FVB mice. Paraffin embedded samples 
were stained with Safranin O and Fast Green which identifies areas of fixed negative charge, 
or incubated with rabbit antibodies to either VDIPEN or the collagen epitope C1,2C, followed 
by a secondary horse radish peroxidase coupled system. Intense staining of the growth plate is 
visible on the left of the sections for glycosaminoglycans (Safranin O) and for the VDIPEN 
epitope indicating normal turnover of aggrecan. The magnification bar represents 100 μm. 
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Staining for the cleavage product for type II collagen by collagenases (the C1,2C epitope, 
Fig. 1) was also increased in the joints from Timp3-/- animals (Fig. 3) illustrating the broad 
inhibitory potential of TIMP-3.  
Recently we have generated an antibody which is able to recognize and quantitate a 
cleavage product of type II collagen generated on the cleavage of the triple helical region by 
the action of cathepsin K (Dejica et al., 2008). Immunohistochemical studies demonstrated 
regions of cartilage reflecting cathepsin K activity (Fig. 4). Staining was dramatically 
increased in cartilage taken from osteoarthritis patients compared to that obtained from 
individuals with macroscopically normal tissue. The cleavage products are localized 
towards the articular surface in similar sites to those identified as due to the action of MMP 
collagenases as determined using the polyclonal antibody C1,2C which recognizes the C-
terminal neoepitope of the 3/4 cleavage fragment (Wu et al., 2002). These areas of collagen 
degradation co-localize with the sites rich in cathepsin K (Konttinen et al., 2002; Vinardell et 
al., 2009).  
 

 

Fig. 4. Localization of cathepsin K generated type II cleavage products in cartilage from 

normal individuals and osteoarthritis (OA) patients. 

Frozen sections were treated with chondroitinase ABC to remove glycosaminoglycans and 

stained using a rabbit antibody raised against the C2K epitope and a horse radish 

peroxidase labeled second step system. The reaction product was silver enhanced (Gallyas 

and Merchenthaler, 1988). A control section where the first step antibody was absorbed with 

the immunizing peptide is included.  

The C2K epitope can be released from the tissue by digestion with chymotrypsin and 

quantitated using a competitive ELISA. Using this approach we demonstrated increased 

levels of cathepsin K-generated type II collagen fragments in cartilage from osteoarthritis 

patients relative to normal individuals. In addition, when cartilage was maintained in 

organ culture for two weeks in the presence of a specific cathepsin K inhibitor, a 
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reduction in the levels of this epitope was observed, indicating that relatively short 

periods of cathepsin K activity produce detectable levels of this epitope (Dejica et al., 

2008). 

Together these results indicate that in addition to its critical role in bone resorption 
(Brömme and Lecaille, 2009; Tezuka et al., 1994), cathepsin K acts along with the MMPs and 
ADAMTS family members in the destruction of cartilage in osteoarthritis. 
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