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1. Introduction 

This chapter will not dwell on how mathematical models are built, better covered elsewhere 
(Bailey, 1975; Renshaw, 1991; Scott & Smith, 1994; Coen, 2007). It will focus on the impact of 
mathematical models on the understanding of infections spread in hospitals and their 
control. Hospital Acquired Infections (HAIs) made their first appearance with the invention 
of hospitals, mostly associated with surgical operations carried out when germ theory and 
hand-hygiene were unheard of and post-surgical mortality could be as high as 90% (La 
Force, 1987). The invention of antibiotics reduced mortality, but subsequently led to the 
emergence of infections adapted to survival in the antimicrobial-rich hospital environment. 
An arms race ensued where the bacterium and the pharmacist are to this day fighting to 
outwit each other (Sneader, 2005). Bacteria like Meticillin-resistant Staphylococcus aureus 
(MRSA) and Vancomycin-resistant Enterococci (VRE) were detected in UK hospitals as early 
as the 1960s (Stewart & Holt, 1962), but it was not until the mid 1990s that they ‘took off’ as a 
significant problem for hospital managers and inpatients (Austin & Anderson, 1999). If only 
10% of adult HAI infections could be prevented, £93 million could be saved in England and 
Wales alone (Plowman et al., 1999). 

Hospital inpatients are difficult subjects for study. They are only ‘available’ for a short time 
window, measured in days; too debilitated to all cooperate to the same degree; an extremely 
heterogeneous population; and major ethical issues are met when it comes to 
experimentation, especially when infection is asymptomatic. Their environment is 
heterogeneous and constantly changing, as technologies improve medical practice change. 
Under these circumstances, HAI models have a distinct advantage over uncontrolled 
observational studies (Cooper et al., 2003). This point is illustrated in section 4.2.  

When designing the structure of a model it is necessary to strike a balance between realism 
and generality (Bonten et al., 2001). A model needs to be complex enough to capture all 
those essential features of the process under study, ensuring realism and providing 
sufficient information so that all questions can be addressed using the model framework. 
Yet models must not be too complex lest conclusions are only generalizable to a small 
number of situations of little interest for much of the health care public. As complexity 
increases, providing information for a model may become prohibitive, less tools for analysis 
may be available for checking errors in formulation, and exact solutions may not exist so 
that numerical approximations are needed. Nevertheless HAIs are complex things, and 
modellers are forced to abandon generality; at worst mathematical models may be too 
simple to be realistic. This chapter explores the nature of this complexity (Section 2), review 
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methods used for fitting models to observational data (Section 3), focus on lessons learnt for 
some areas of infection control (Section 4). Finally I give an example of a stochastic model of 
norovirus on a geriatric ward (Section 5). 

2. Essential features of HAI 

This in part depends on the questions addressed and the biological characteristics of the 
HAIs modelled. The general idea is that (susceptible) patients spend time on a ward, they 
have physical contacts with health-care workers ([HCWs] nurses, doctors, cleaners etc.), 
visitors, other patients and with contaminants in the environment. Such exposure can lead 
to colonization with infectious organisms that may sooner or later cause debilitating clinical 
infection. The devil is in the detail. 

2.1 Mechanism of infection 

Some HAIs manifest themselves soon after colonization, regardless of the kind of 
healthcare. This is typical of many viruses, such as varicella, measles, norovirus and 
adenovirus where susceptibles acquire infection and after an incubation period of a few 
days suffer symptoms of infection coincident with infectiousness to others and 
subsequently recover or die (section 5). Such aetiologies are typically associated with 
outbreaks characterized by ‘attack rates’ and outbreak durations.  

In contrast most HAIs are not just about acquiring the organism. Many bacterial infections 
may be carried for months in the absence of clinical symptoms, such as in the nares (MRSA), 
the skin (Coagulase-negative Staphylococci [CNS]), the gastrointestinal tract (Escherichia coli, 
Clostridium difficile). This silent infection may last months to years, makes the patient a 
‘carrier’, more or less infectious to others depending on the organism and other 
circumstances. Only when natural barriers are breached, often as a result of health-care 
intervention (e.g. surgery, line and catheter insertion), bacteria will invade tissues that are 
otherwise sterile, they multiply and cause life-threatening clinical illness. An extreme 
example is Streptococcus pyogenes (or Group A Streptococcus [GAS]), an airborne infection 
that typically causes sore throat, but can be life threatening if allowed to invade 
subcutaneous tissues (necrotizing fasciitis), such as via a stab wound or burn. Untreated it 
can result in multiple organ failure and very high fatality rates (Aziz & Kotb, 2008). 

Hence the epidemiology of most HAIs is the result of a two-step process: the acquisition of 
the organism (acting on susceptibles), and the subsequent invasion of sterile tissues (acting 
on carriers). The slow turn-over of carriage (relative to the average length of stay in hospital) 
means that these HAIs are typically endemic and their burden measured in terms of 
prevalence and incidence. The first step is usually modelled with the rate of infection per 
susceptible-carrier pair, known as the ‘transmission coefficient’, β (Anderson & May, 1991), 
sometimes factorized as β = ab, where a is the contact rate and b is the probability of 
transmission per contact (Austin et al., 1999a). The second step is modelled as a rate per 
carrier. For example, Coello et al., (1997) estimate 0.59% daily probability of MRSA carriers 
developing infection. Cooper and Lipsitch (2004) estimate 35% per day for MRSA in ITU.  

Other HAIs present with mixed aetiologies, such as C difficile, which in one third of 
patients causes life threatening infection of the colon on acquisition, while two thirds 
remain asymptomatic. The latter may yet suffer infection as a result of as poorly understood 
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triggers, such as antimicrobial administration (Johnson et al., 1990). Recent evidence 
suggests that norovirus is carried asymptomatically by 12% of individuals in the community 
(Phillips et al., 2010). Such carriers may well become infectious in hospital when diarrhoea 
sets in, perhaps the result of laxatives and antibiotics. 

2.2 Forms of clinical infection 

At one end of the clinical spectrum organisms enter the bloodstream through a cut in the 
skin, are able to multiply and systemically affect the rest of the body (bacteraemia or 
sepsis). Bacteraemias are relatively rare (1.3% of all HAIs in England; Hospital Infection 
Society & Infection Control Nurses Association, 2007), are expensive to treat and life 
threatening. Other infections are more localized in their effects. Surgical wounds may 
become infected (Surgical Site Infections [SSI]), causing a wide range of problems. Their 
seriousness depends on whether they are peripheral, deep incisional or whether inner 
body spaces and organs are affected (Health Protection Agency [HPA], 2011a). These are 
rarely life threatening, although they make up 16% of all HAIs in England, are expensive 
to treat (Plowman, 1999), may lead to unpleasant consequences (delayed care) and if 
inappropriately treated may lead to bacteraemia, amputation and death. A milder form of 
HAI is the urinary tract infection (UTI) typically caused by insertion of temporary 
indwelling bladder catheters kept long enough for bacteria to move up the urinary tract 
and infect normally sterile sites such as the kidneys. UTIs are very common (21% of all 
HAIs in England), and can lead to pain and distress, general debilitation and occasionally 
bacteraemia (Bryan et al., 1984).  

Many mathematical models distinguish between carriers and clinical infections, but most 
lump all infections into one homogeneous black box, ignoring heterogeneity in frequency 
and consequences. Bacteraemias may be expensive to treat and life threatening, but 
contribute little to infectious spread. SSIs, on the other hand, are not as life-threatening, but 
are more common and more infectious. Treating SSIs and bacteraemias as a uniform entity 
may lead to significant discrepancy between model prediction and reality. 

2.3 The aetiological agent 

Most HAIs are caused by bacteria although viruses and fungi are often involved. Most are 
resistant to some classes of antibiotic. Examples from the Gram-positive bacteria are MRSA 
(penicillins and cephalosporins), VRE (some penicillins and glycopeptides), C difficile 
(fluoroquinolones). Many Gram-negative bacteria cause bacteraemias and UTIs, such as E 
coli, Pseudomonas aeruginosa, Klebsiellas spp., Citrobacter, Enterobacter, and Proteus. Some of 
these produce enzymes known as extended-spectrum beta-lactamases (ESBL), which confer 
resistance to many antibiotic classes (penicillins, cephalosporins, fluoroquinolones and 
aminoglycosides) (Kullik et al., 2010). ESBLs are not a homogeneous group, inheritance may 
be chromosomal or via plasmid, and several genotypes exist (TEM-10, TEM-26, CTX-M etc.; 
Livermore 2001). Resistance to carbapenems, one of the last lines of defence against ESBLs, 
is beginning to emerge (Grundmann et al., 2011). Other bacteria are more sensitive to 
antibiotics but are common enough to cause significant infection (e.g. Meticillin-susceptible 
Staphylococcus aureus [MSSA]). 

The genetic structure of most bacterial populations is clonal (Smith et al., 1993), and 
antibiotic-resistant HAIs are no exception, so that de novo emergence of antibiotic 

www.intechopen.com



 
Infection Control – Updates 

 

42

resistance is rare on the hospital-admission time-scale, and resistant variants may be 
modelled independently of sensitive counterparts. This is the case of MRSA and MSSA 
(Feil et al., 2003), E coli (Milkman & Bridges, 1990), C difficile (Griffiths et al., 2010). In 
contrast, Enterococci (e.g. VRE) and Gram negatives like the Klebsiella exhibit considerable 
inter-strain genomic diversity, mainly linked to the presence of transposable agents such 
as phages and plasmids – often responsible for the resistance phenotype (van Schaik & 
Willems, 2010; Zhao et al., 2010). It is then possible for sensitive variants to become 
resistant in hosts colonized with both variants. 

Regardless of the genetics, there may be important differences between HAI genotypes. One 
example is C difficile which has hundreds of different ‘ribotypes’. Ribotype 027 can produce 
16 to 23-fold higher concentrations of toxin (Warny et al., 2005) and is associated with twice 
the mortality than other strains (HPA, 2011b). Some S aureus variants, known as 
community-acquired MRSA (CA-MRSA), produce the Panton-Valentine Leukocydin (PVL) 
toxin, are abundant in the community, are much more sensitive to antibiotics and are more 
associated with ‘soft-skin’ infections. But they are also known to cause life-threatening 
necrotizing pneumonia. CA-MRSA is on the increase in North America and is making its 
appearance in the hospital (David & Daum, 2010), although relatively unknown in UK 
hospitals (HPA, 2011c). 

Competition for colonization space is an interesting issue when modelling two or more 
variants. MRSA and MSSA, for example share the same ecologic ‘niche’ as they both 
colonize the nares of human beings, as well as many other aspects of infection aetiology and 
a degree of competition may well exist (Dall’Antonia et al., 2005). The problem is that most 
mathematical models of antibiotic resistance make implicit assumptions regarding 
competition with important implications on model dynamics (see section 4.3). These models 
either include two variants (sensitive and resistant), or only consider the resistant one. One-
strain models are consistent with complete coexistence with other variants (e.g. Austin et al., 
1999a). Two-strain models are consistent with complete competition whenever the ‘co-
carrier’ state is ignored (i.e. a resistant strain may not colonize a host that is already 
colonized with the sensitive strain; e.g. Austin et al. 1999b).  

2.4 The nature of infectious spread 

2.4.1 Transmission routes 

Some modellers (Cooper et al., 1999, 2004a; Smith et al., 2004) followed the implicit approach 
of embedding all possible routes of infection within the value of the transmission coefficient β, 
which measures the effective transmission rate between any susceptible-infected pair, 
regardless of the exact route. Bootsma et al. (2007) estimate transmission coefficients for 3rd 
generation cephalosporin-resistant Enterobacteriaceae (CRE) and consider the addition of the 
‘endogenous’ route, whereby the patient’s already present pathogens grow to detectable 
levels. They find this route to be responsible for more acquisitions than the cross-infection 
route, which brings into doubt the definition of ‘hospital acquired’ as infections detected 48 
hours after admission for Enterobacteriaceae like E coli. 

Other modellers are more explicit and usually make the case for the predominance of a 
single transmission route. Examples are models of VRE and MRSA in ITU where patients 
are not free to move and transmission takes place via the HCW (Austin et al., 1999a; 
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Grundmann et al., 2002). Failure of contact precautions is blamed for any transmission. If P 
is the number of patients and W is the number of HCWs, the total number of infectious 
contacts per day is C = aPW (a as defined in section 2.1). Notice that for a given total number 
of contacts C, the number of contacts per patient (= aW) may not necessarily equal the 
number of contacts per HCW (= aP = aP(W/P)). These are only expected to equal when the 
HCW-patient ratio is 1:1 (as maybe the case on the ITU). This is not realistic when some 
HCWs visit more patients than others.  

In wards where patients are mobile, or where transmission can take the airborne route, 
more transmission coefficients are needed. The airborne route is especially relevant to the 
spread of pulmonary tuberculosis (TB), measles and influenza. Models of the airborne 
route require the measurement of parameters like quantum generation rates (a measure of 
infectious material in the air), room volume, room ventilation rates, pulmonary 
ventilation rates (Beggs et al., 2010). It is common practice to isolate patients susceptible to 
infection (e.g. immunocompromised cases) in isolation rooms with positive pressure (to 
keep infectious quanta out), and infectious cases with negative pressure (to keep 
infectious quanta within the confines of the isolation room). The implicit approach may 
still enable the analysis of the success of isolation, when different transmission coefficients 
are used, for isolated and non-isolated patients (Forrester et al., 2007).  

2.4.2 Quantifying transmission 

It is possible to follow a cohort of inpatients and measure the acquisition rate of infection 
(Jernigan et al., 1996). This is the ‘force of infection’, λ, and is equivalent to β.I, where I is the 
average number of infectious patients per unit time on the ward. It is possible to use this 
number to calculate β from the expected number of daily visits to infectious patients. 
Raboud et al. (2005) estimate βs for patient-HCW contact ranging from 0.017% to 6.7%, 
depending on whether the patient was in isolation and whether HCWs complied with hand-
washing. Forrester et al. (2007) estimated 1.03% acquisitions per day (background rate, β0) 
and transmission coefficients β1 = 1.31% (not isolated), and β2 = 0.45% (isolated). Cooper & 
Lipsitch (2004) estimate transmission coefficients 33% (MRSA), 26% (VRE) for patients in 
ITU. Ong et al. (2008) used transmission coefficients for influenza stratified by 5 categories 
of staff, ambulant and non-ambulant inpatients and visitors. 

Other modellers use the “basic case reproduction number”, R0, as a summary measure of 
infectious spread (Anderson & May, 1991). This is defined as “the average number of 
secondary infections produced when one infectious individual is introduced into [an 
infinite] host population in which every host is susceptible”. It follows that the infection can 
persist in the population only when R0 > 1. Real life populations are finite and seldom 
completely susceptible so that we are more likely to observe effective basic case reproduction 
numbers, Re = R0.s* where R0 is discounted by the proportion of susceptibles in the 
population (s*). Cooper et al. introduced the refinement of having R0 = RA.ξ, where RA is the 
effective basic reproduction number observed within a single admission, and ξ is a constant 
that accounts for the probability of re-admission while still infectious (Cooper et al., 2004a). 
The implication is that even when good infection control practice reduces RA to values less 
than 1, the infection will establish itself as a result of re-admission if ξ is large enough. 
Cooper et al. chose transmission coefficients for MRSA consistent with R0 ranging between 
1.1 (self-limiting clusters of secondary cases) to 1.3 (endemic pattern).  
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2.4.3 The role of the environment 

The hospital environment, as a source of infection, is an extremely complex entity and difficult 
to model explicitly. Hospital surfaces can harbour live HAI agents (e.g. Staphylococci, 
Enterobacteriaceae, C difficile spores etc). The problem is that even where it is possible to 
establish associations between bacterial flora on patients and their immediate environment 
(Asoh et al., 2005), the direction of the causal arrow is not known. Wards are also extremely 
heterogeneous places. Bacterial counts sampled from sites most likely associated with direct 
patient contact (e.g. hand-rails, soap dispensers, bedding, curtains) are much lower than other 
sites (e.g. floor) (Hamilton et al., 2010), and porous surfaces are more difficult to clean (Oie et 
al., 2005). To explicitly model these environmental sites it is necessary to choose the 
appropriate site, sample for organisms at appropriate intervals, and follow up patients for 
contact rates with the site as well as their carriage status. An alternative is to model the 
environment as a black box and set its ‘colonization’ and ‘turnover’ rates, tweaking them so as 
to obtain a model output close to observation (Kouyos et al., 2011). 

2.5 The patient 

Many inpatients have co-morbidities that put them at special risk of infection: HIV cases, 
diabetics, bone-marrow transplant patients, those on chemotherapy, in elderly care wards, 
those undergoing surgery, to mention a few. There are behavioural differences: some 
patients are more likely to be re-hospitalized, and those with a history of hospitalization 
are more likely to carry HAIs. Cooper et al. (2004a) stratified patients into two categories 
of re-admission frequency (see section 2.7), while Bootsma et al. (2006) allowed 1% of 
inpatients colonized with MRSA to be ‘super-spreaders’ (10 times more infectious than 
other carriers). 

In the UK patients rarely stay on the same ward for the duration of their admission. There are 
at least two distinct patterns of patient flow (Figure 1): elective admissions, planned weeks or  
 

 

Fig. 1. Schematic description of patient flow in a UK hospital. 
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months in advance, are usually taken directly to specialist wards. In contrast, emergency 

admissions present to A&E and are subsequently moved to a temporary unit, known in the 

UK as the Acute Admissions Unit (AAU) and stay there for 1-3 days prior to being admitted 

to specialist wards. Patients may also be taken to ITU, infectious diseases wards, or may be 

moved to theatre to undergo surgery, to then recover in a different ward. The role of ITU is 

thought to be important in the seeding and spread of certain antimicrobial resistant HAIs to 

other wards (Edgeworth, 2011). Bootsma et al. (2006) and Hubben et al. (2011) modelled 

patients admitted to one of three hospitals with 36 wards each and 5 ITUs, whose inpatient 

population had differing lengths of ward stay depending on whether patients were in ITU 

(mean of 3 days) or other wards (7 days). 

2.6 The staff 

Some modellers assume all transmission between inpatients to take place via the medium of 
the ward environment – HCWs being part of it (Cooper et al., 2004a). Others explicitly 
model HCWs and are seen as the most responsible transmission component (Austin et al., 
1999a). Because staff members work on on the ward for much longer than the average 
patient length of stay, they have a huge potential to spread infection. Hence they cannot 
play as large a role in transmission as inpatients lest we expect every inpatient to become 
infected (Beggs et al., 2008). HCWs are a heterogeneous group. Ong et al. (2008) stratified 
HCWs into cleaners, clerks, doctors, health-attendants, and nurses for an influenza model. 
Their “Who-Acquires-Infection-From-Whom” (WAIFW) matrix suggest heterogeneous 
contact rates with patients and each other: cleaners, health-care attendants and clerks mostly 
contacted nurses; doctors had them mostly with nurses, patients and their visitors; nurses 
had them mostly with other nurses, patients and visitors. Bootsma et al. (2006) stratified 
staff into those that have contact with patients on a single ward (1:1 staff patient ratios in 
ITU, and 5:18 ratios on other wards), and staff with unrestricted contact across wards and 
hospitals. Some have greater hand-hygiene compliance than others (Pittet et al., 1999). 
Raboud et al. (2005) stratified them into daytime and night-time staff and went as far as 
including the detail of staff looking after the patients of other staff during coffee breaks! 

2.7 The community 

Early HAI models ignored the impact of the population outside hospital walls (the 
“extramural” population), and patients admitted into hospital were either assumed 
uncolonized or came with a fixed probability of acquiring infection (Austin et al., 1999a; 
Lipsitch et al., 2000). Cooper et al. (2004a) broke this tradition and modelled the 
extramural population, stratifying it into those with a high vs. low rate of readmission 
(0.57% vs. 0.06% readmissions per day). Hubben et al. (2011) stratify patients by ward 
within three hospitals and by risk of readmission with 22,000 ‘high-risk’ patients who are 
10 times more likely to be readmitted, out of a catchment population of 220,000 – resulting 
in 50% high risk patients within the hospital population. This kind of HAI model predicts 
low extramural MRSA prevalence, which matches observation (Lu et al., 2005). Austin & 
Anderson (1999) modelled the spread of MRSA across 400 NHS hospitals in England and 
conclude that the largest hospitals are responsible for most ‘transmission’ events, and 
make the case in favour of active surveillance.  
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2.8 Infection control 

No hospital applies exactly the same infection control strategy as any another at any one 
time. Several interventions are invariably applied simultaneously. Many of the decisions 
taken by hospital managers are based on quasi-experimental and observational data at best. 
This point is illustrated in the review of the evidence in favour of inpatient isolation for the 
control of MRSA infection (Cooper et al., 2003; Cooper et al., 2004b). This is an area where 
mathematical models can contribute. As it is not possible to manipulate the real world of 
patients in hospitals, we can resort to manipulating a simulated hypothesis of it, and draw 
some conclusions, aware of all the assumptions made in its design. One approach is to fit the 
model to infection data and estimate unknown parameters (see section 3), and subsequently 
to use it to run simulations and test infection control strategies (Section 4). 

Some infection control methods are easier to model because they directly affect the 
transmission cycle: cohorting (Austin et al., 1999a), hand-hygiene (Austin et al., 1999a; Beggs 
et al., 2008, 2009), isolation (Cooper et al., 1999, 2003). Cohorting, the neutralization of 
transmission routes into 1:1 HCW:patient contacts, is only possible in settings where staff 
numbers exceed patient numbers, such as on the ITU. On other wards patients can exceed 
staff numbers by at least 5:1, and only degrees of cohorting are possible, especially when 
patients are mobile (see section 5; Raboud et al., 2005). Hand-hygiene, the cleaning of staff 
hands before and after patient contact, has two dimensions (Beggs et al., 2008): compliance 
(the proportion of staff that actually clean their hands) and effectiveness (the probability of 
effective removal of contaminants during hand-cleaning). The problem with most hand-
hygiene models is their assumption of a linear relationship between hand-washing 
compliance and the reduction of the transmission coefficient, β – for which there is no 
evidence. If effectiveness is inversely proportional to compliance non linear effects are 
expected (Coen, 2007). Isolation, the removal of patients into secluded areas so as to prevent 
contacts with other patients, does not eliminate transmission completely (Forrester et al., 
2007; Cepeda et al., 2005), and moving patients to isolation facilities comes with a risk of 
death on the ITU (section 4.2). Modelling isolation is achieved by adding isolated 
‘categories’ of patients in the model structure (e.g. Cooper et al., 1999). More difficult is to 
include the realism of true isolation which is the result of competition with a range of other 
priorities, such as privacy, dignity, avoiding disturbance from difficult patients, and 
infections caused by other organisms (Jeanes et al., 2011). 

Other interventions are the control of hospital demography (closing wards to admissions; 
sending affected staff home; Section 5), environmental cleaning whose effectiveness is 
difficult to measure; surveillance and feedback, such as the health-care bundle audits and 
screening of patients on admission (Raboud et al., 2005; Hubben et al., 2011; section 4.1); 
antibiotic usage (section 4.3). The practice of training staff to minimize infection risk, such as 
in the safe taking of blood, the insertion of central lines and catheters, has never been 
modelled and requires the colonization vs. infection stratification (section 2.1). Rare are the 
models where several infection control method are compared simultaneously (Austin et al., 
1999a; Raboud et al., 2005; Hubben et al., 2011). 

2.9 Small population sizes and the role of chance 

Even the largest hospitals are broken up into wards which are small enough to make chance 
events of significant importance. Observing zero cases in a particular month does not mean 
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absence of transmission, and in doing surveillance it is necessary to gather infection data 
over a wide time period in order to obtain a reliable average incidence rate. For this reason 
stochastic models (which approximate the probability distribution of model behaviour) are 
preferable to deterministic models (which approximate average model behaviour). The 
advantage of stochastic models – also known as Markov Chain Monte Carlo (MCMC) 
models – is that they give an indication of the variability in the expected trends (Renshaw, 
1991). This variability can be so significant that control measures expected to be successful 
on average can fail “catastrophically” as a result of chance alone (Cooper et al., 2004a). Their 
disadvantage is that when parameters are unknown, computer-intensive statistical methods 
are needed to obtain estimates (section 3). There are many examples of HAI stochastic 
models: MRSA (Cooper et al., 2004a; Raboud et al., 2005; Hubben et al., 2011), VRE (Austin 
et al., 1999a), influenza (Ong et al., 2008), Severe Acute Respiratory Syndrome ([SARS]; 
Fukutome et al., 2007) and norovirus (section 5). 

2.10 The finance 

Treating infections costs money, so that spending money to implement infection control can 
save money. Hence, it is important to show that infection control interventions are cost 
effective. Mathematical models can help provide estimates of the number of cases 
prevented, N, as a result of intervention. This was done for MRSA screening (Raboud et al., 
2005; Hubben et al., 2011). If CT is the cost of treating one infection, CI the overall cost of 
intervention then the cost per case averted (or the ‘average Cost Effectiveness Ratio’ 
[aCER]), is CI / N. The net benefit of an intervention is given by (N x CT) - CI. The aCER is an 
indication of the return to the health-care system for each £ spent. A positive net benefit 
indicates that the intervention will save money. It follows that it does not pay to prevent a 
rare infection (low N) unless treatment costs are sufficiently high (large CT), and 
intervention costs, CI, are low. Estimates of CT for MRSA infections are $10,000-$16,000 
(Raboud et al., 2005). In the mid 1990s Plowman et al. (1999) estimated CTs of £5397 
(bloodstream infections), £2398 (lower respiratory tract infections), £1618 (SSIs), £1237 
(UTIs) and £9152 (multiple infections). Lopman et al. (2004) estimate costs per norovirus 
inpatient bed-day of £145 (elderly care ward). 

3. Dealing with unknown parameters 

The design of a mathematical model should be informed by observation. There are 
numerous ways to achieve this. Some parameters can be ‘fixed’ by using estimates from 
direct measurement possibly from the literature (e.g. the mean duration of infection). 
WAIFW matrices were estimated from conversations (surrogates of infectious contacts) for 
varicella (Zagheni et al., 2008), and from direct observations of HCW and patients the wards 
(Ong et al., 2008). Overlapping stay on the same ward (available from hospital computer 
records) can be used as surrogate measures of exposure to HAI cases. Alternatively 
sensitivity analysis uses a range of plausible values and the outcomes compared. Examples 
are screening costs (Hubben et al., 2011), contact rates (Beggs et al., 2008), days from 
detection of the index case to isolation of SARS cases (Fukutome et al., 2007).  

Another approach is to identify the range of parameter values that minimize the 
discrepancy between model and data. This is usually done via numerical minimization 
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algorithms such as Powell’s direction set methods (Press et al., 1994; Chapter 10). Maximum 

likelihood uses the probability of observing some body of data, y, when the model θ is ‘true’, 
and is usually presented as l = p(y|θ), where y are the data and θ the unknown model 
parameters (Edwards, 1972). Confidence intervals may be achieved by means of profile 
likelihood methods (Aitkin, 1998; Press et al., 1994; Chapter 15). This was applied to time-
series data of the inpatient ‘admission experience’ (dates of admission and discharge, swab 
test dates and results, dates of isolation). The unknown part of the model was kept to a 
minimum (e.g. transmission coefficients and dates of acquisition of carriage) (Pelupessy et 
al., 2002; Cooper & Lipsitch, 2004; Bootsma et al., 2007). Cooper and Lipsitch (2004) applied 
a hidden MCMC model to time-series of MRSA, VRE and resistant Gram-negative rods (R-
GNR) clinical infection in order to estimate parameters such as the patient-patient 
transmission coefficient (β) and the probability of colonization on admission (ǖ). A ‘hidden’ 
MCMC model (based on β and ǖ) described colonization and a Poisson process of rate ǌ 
described infection rates per carrier. Their model gave superior fits to HAI data compared 
with quality control processes based on the Poisson distribution (Grigg et al., 2003). The 
latter are nevertheless useful to the local ward manager as null models, the lack of fit 
indicating the existence of infectious spread (and infection control breakdown), than the 
estimate of transmission parameters whose confidence intervals may be wide. 

Bayesian methods have been applied to iterative MCMC models (Forrester et al., 2007; 
Kypraios et al., 2010). These are based on sampling algorithms known as the Gibbs’ sampler 
and Hastings-Metropolis, which are based on Bayes’ Theorem (Carlin & Louis, 2000). This 
states that the probability of the model is proportional to the likelihood multiplied by the 
‘prior’ probability of the model, Ǒ(θ), or 

       1
| |     p y p y

D
 (1) 

where D is the marginal probability of the data, across all possible models: D = 
∫p(y|θ)Ǒ(θ)dθ. The probability density function p(θ|y) is the ‘posterior’ density of the 
unknowns. It is the weighted average of the ‘prior’ probability and the weights are the 
likelihoods. When prior knowledge is unavailable, Ǒ(θ) is set equal for the entire parameter 
space θ (a ‘non-informative’ prior). 

When D is known the posterior probability density is said to be available in ‘closed form’ 
and the Gibbs sampler makes use of standard density functions (e.g. Gamma, Beta etc.) 
where the same algebraic form exists for the prior, the likelihood and the posterior. An 
example is the Beta distribution for proportion data y/n, used by Forrester et al. (2007) to 
estimate MRSA test sensitivity. The Gamma distribution is used for count data, the Inverse 
Gamma for variances (Carlin & Louis, 2000). 

For more complex models D may be impossible to compute, and the Hastings-Metropolis 
approach can be used instead (Metropolis et al., 1953). A likelihood function is considered 
for each unknown parameter in turn, conditional on the data and the other unknown 
parameters. This is equivalent to the full likelihood with all other unknown parameters 
fixed, e.g. p(y,θ1|θ2, θ3). The algorithm works by iteratively sampling a ‘candidate’ 
parameter value, say θ1*, from a ‘proposal distribution’ which may be the prior density 
function, Ǒ(θ), or a multivariate normal density with means Ǎ = (θ1, θ2, θ3) and some 
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variance-covariance matrix Σ (Carlin & Louis, 2000). The candidate density is then 
accepted with probability r where 

    
   

* *
1 2 3

1 2 3

, | , .
min ,1

, | , .

   

   

 
 
 
 

p y p
r

p y p
 (2) 

The list of accepted parameter values makes up the Markov chain. No matter what starting 
values for θ, the chain converges to the posterior distribution. When discarding the first 500 
iterates or so we obtain an ‘ergodic’ chain whose distribution can be used to measure 
confidence intervals for the estimates. 

Forrester et al. (2007) applied a mixture of MCMC approaches to MRSA carriage data from a 
patient cohort admitted to a 12-bed ITU with 2 isolation rooms. Their parameter space, θ = 
(β0, β1, β2, Ǘ, ǒ) is represented by a background infection rate (β0) and transmission 
coefficients β1 (from other patients) and β2 (from patients in isolation rooms), as well as the 
probability of colonization on admission to the ITU (Ǘ) the sensitivity of the MRSA 
screening test (ǒ), the time of MRSA colonization, ci, for patient i. The data were dates of 
admission (ai), first positive swab (vi), isolation (qi) and discharge (ri). For a discussion of 
results see Section 4. Similar approaches have been used for Stapylococcus aureus (McBryde et 
al., 2007), VRE (Cooper et al., 2008) and swine flu (Hohle et al., 2005). 

There is a philosophical problem with more realistic (and complex) models. The model may 
never fit the precise circumstances of the data, and estimated parameters may not be truly 
representative of the target situation. This is the case of norovirus outbreaks (section 5), with 
rare epidemics involving small numbers of cases, each on different wards with their own 
idiosyncratic sets of infection control approaches and patient management. Even when 
epidemic data are available for such a specific settings it is by no means certain that they are 
representative of a common ‘true’ underlying model. A pragmatic approach is to illustrate a 
point by using a set of parameter values vaguely consistent with observation. 

4. Some conclusions from the literature 

4.1 Screening and surveillance 

The advantage of screening is three-fold: 1) detection protects the positive case when 
measures are taken to clear carriage; 2) isolation of positives prevents transmission to other 
inpatients; 3) removal of carriage from the community means less imported cases in future 
re-admissions. Bootsma et al. (2006) used a stochastic model to compare six infection control 
components that are part of what is known as the “search and destroy” approach, including 
the passive treatment and isolation of known MRSA carriers, the screening of all patients 
and health-care staff in affected wards, and the eradication of colonization at discharge. 
They find that treatment of known carriers and screening of contact patients can bring down 
prevalence from 15% and maintain low endemicity (<1%), but additional screening (such as 
of staff in affected wards) does not offer additional benefit. 

The paradox is that when HAI screening is successful it becomes less cost effective (Raboud 
et al., 2005; Hubben et al., 2011). Raboud et al. modelled a Canadian hospital ward with 1.3% 
MRSA prevalence and showed that culture-based MRSA screening is cost-effective so long 
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as there is at least 1 case for every 2 to 3 years, but MRSA infection is too infrequent to 
justify a more expensive molecular test. Hubben et al. compared two settings: high 
prevalence (15%) vs. medium prevalence (5%) of MRSA carriage. The molecular test was 
more cost effective at high prevalence, whereas the culture based chromatogenic test was 
more cost effective at medium prevalence, in spite of the advantages of molecular tests (high 
sensitivity, result in hours). 

Robotham et al. (2007) use a stochastic model and find random screening (at rate Ǘ per 
patient per day) more effective at detecting MRSA carriers than screening a proportion ω of 
all admissions. While this is a more realistic model as it assumes limited isolation capacity 
(20 rooms), the bizarre result is more likely the result of the unrealistic assumption of a 
homogeneous inpatient population and randomly distributed MRSA carriers within it. Their 
baseline 40% prevalence is an extreme exaggeration (5 to 10% would be more likely) and the 
assumption of no infection control other than isolation is unrealistic. Ultimately admission 
screening is reputed successful, partly because it targets prevalence in the fraction of the 
catchment population re-admission risk and partly because it targets patients in ITU, an 
important reservoir “for generating and then seeding the rest of the hospital with MRSA-
colonized patients” (Edgeworth, 2011). 

4.2 Isolation 

The practice of isolation originates at least from the 1600s, when those affected by the plague 
were isolated in secluded buildings (Cipolla, 1973). The evidence in favour of isolation on 
the hospital ward may depend on the type of ward. Cooper et al. (2003, 2004b) carried out a 
Cochrane review and identified 46 studies that addressed the issue. Not one study was fully 
clear of methodological shortcomings. The authors subsequently designed and carried out a 
new study to address such study design problems (Cepeda et al., 2005). They chose ITU 
inpatients, a study population with special issues around the act of switching off life 
support machinery in order to move patients to isolation facilities and measured acquisition 
of MRSA carriage and infection over a period of 12 months as outcome. They applied a 
quasi-experimental cross-over design comparing isolation with no isolation, and controlled 
for numerous potential confounders such as nursing hours per patient, severity of 
underlying disease and antibiotic usage. No beneficial effect of isolation was detected 
(multivariate relative risk of infection for non-isolation: 0.73, 95% confidence intervals: 0.49-
1.10). Unfortunately their design lacked adequate temporal controls leaving conclusions 
open to uncertainty. Hand-hygiene compliance in staff was also low (21%) and isolation was 
not expected to work anyway (Huskins & Goldmann, 2005). 

By contrast, Cooper et al. (2004a) used a stochastic model of MRSA in a homogeneous 1000 
bed-hospital and showed that 20-bed isolation units are successful in controlling and 
eradicating MRSA from hospital inpatients, so long as R0 < 1.3, although this can take as 
much as 15 years to achieve. This is consistent with “search and destroy” being effective 
only in low-prevalence situations such as in Denmark and the Netherlands (Wertheim et al., 
2004). In high endemic countries (e.g. USA and UK), isolation alone is not sufficient, 
especially if isolation is not 100% efficient. Forrester et al. (2007), estimate non-zero 
transmission rates from isolated inpatients (β2=0.0045), although smaller than for non-
isolated patients (β1 = 0.0131). 

www.intechopen.com



 
Models of Hospital Acquired Infections 

 

51 

4.3 Antimicrobial resistance 

Early models of antibiotic resistance were deterministic and concerned large host 
populations (Levin, 2002). Austin et al. (1999b) modelled bacterial carriage, where 
individuals may be colonized with one of two possible variants (one susceptible and one 
resistant to antibiotics) and may or not be treated with antibiotics. The absence of a co-
carrier state means the two variants compete for colonization space. In the absence of 
antibiotics the sensitive variant has a selective advantage (greater transmission coefficient). 
They fitted the model to β-lactam resistance in Moraxella catarrhalis from Finland (where 
cephalosporin usage increased), and to penicillin-resistance in pneumococci from Iceland 
(where antibiotic usage declined) and found that significant reductions in resistance require 
equally significant reductions in drug consumption.  

Lipsitch et al. (2000) used a similar deterministic model for antibiotic resistance in the 
hospital, with the addition of categories of ‘history of past usage’. They found that when 
reductions in antibiotic usage are implemented, the response is rapid—weeks to months—
the dynamics being driven by replacement of resistant variants by sensitive admissions. 
Unfortunately this prediction is not always consistent with observation (Enne et al., 2001; 
Sundqvist et al., 2010; Cook et al., 2004), possibly due to compensatory mutations that 
counter genetic costs of resistance (Wijngaarden et al., 2004; Besier et al., 2005) or because 
resistance to one antibiotic is genetically linked to resistance to other antibiotics that are still 
in use (Enne et al., 2004; Fraser et al., 2005). The expectation of a ‘rapid’ response may also 
be explained by the implicit assumption of 100% competition for ‘susceptible space’ between 
variants. The inclusion of a co-carrier state in the model would allow for milder forms of 
competition, and slower responses to changes in antibiotic usage. 

Similar work focused on optimal empirical treatment strategy, when sensitivity knowledge 
is absent or delayed. Haber et al. (2010) used a stochastic, model and concluded that 
antimicrobial resistance should drop within months (rather than years) when a switch to 
second-line drugs is made. Kouyos et al. (2011) modelled MRSA carriers and infections on a 
20-bed ward assuming clinicians can choose between two broad spectrum antibiotics (A and 
B) while they wait for antibiotic sensitivity results from the laboratory (so that a narrow-
spectrum drug can be given). They compared the performance of a number of empirical 
treatment strategies: mixing (simultaneous use of different drugs in different patients), 
cycling (sequential use of different drugs), and informed switching strategies (ISS) which 
can take many forms. Sensitivity analyses showed the optimal strategy to be ISS with 
deployment of drugs at frequencies inversely proportional to their respective resistance 
frequencies, especially if historical data are used (their ISS7). 

4.4 Barrier precautions and cohorting 

Sebillé et al. (1997) used a deterministic model of S aureus, and showed that it takes >60% 
hand hygiene compliance to reduce prevalence from 30% to below 20%. Austin et al. (1999a) 
used a deterministic model of VRE where patients and staff infect each other by direct 
contact. They find the role of barrier precautions (gowns, gloves and hand-hygiene) and 
cohorting of major importance in controlling VRE infection. This is probably because they 
ignore the effect of environmental contamination on transmission, a choice based on pulse 
field gel electrophoresis of bacteria isolated from patients, HCWs and the environment 
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(Bonten et al., 1996). Raboud et al. (2005) used a similar model and made compliance 
dependent on the type of contact: with non-isolated patients (low-risk visits, 34% vs. high-
risk visits, 74%), and isolated patients (low-risk visits, 75% vs. high-risk visits, 85%). They 
show that increasing hand-hygiene compliance by just 10% can result in a 50% reduction in 
the number of MRSA cases. Grundmann et al. (2002) applied the same model of Austin et al. 
to MRSA, and conclude that a 10% increase in hand-hygiene compliance might compensate 
the ill effects of staff shortage, though very difficult to achieve because above a certain level 
of compliance hand-hygiene gets in the way of life-saving action. 

Beggs et al. (2008) use a modified version of an earlier model used by Cooper et al. (1999) 
where the patient-staff contact structure is explicitly modelled (as in Austin et al. 1999a), 
except that they distinguish between hand-hygiene compliance from hand-hygiene efficacy. 
They argue that a low hand-hygiene rate (20-40%) is enough to control S aureus infections, 
and additional improvements in compliance yield diminishing returns. Their 
deterministic model is however not ideal for a population of 20 inpatients and 3 staff 
members. The assumption of equal patient-staff and staff-patient contact rates is 
unrealistic (Ong et al., 2008). Beggs et al. (2009) reach similar conclusions with a stochastic 
approach. In each simulation the HCW makes 100 journeys from patient A (the source of 
MRSA) to patient B. MRSA is transmitted from A to HCW (with probability p’) and from 
HCW to patient B (with probability p). The integer of a normally distributed random 
number gives the number of hand hygiene events out of 100 journeys. Each batch of 
journeys is repeated 1000 times. Should transmission occur between A and B, the risk of 
infection is 1 if no hand hygiene event takes place, and 1-ǌ otherwise (ǌ is hand-hygiene 
efficacy). They use p’ = 0.4 and p = 0.1 as estimated for VRE in the intensive care unit 
(Austin et al., 1999a), an odd choice given that it is meant for MRSA (supposedly 0.15 and 
0.01 respectively; Grundmann et al., 2002). The hand-hygiene efficacy was either ǌ = 0.58 
(antibacterial soap) or ǌ = 0.83 (alcohol-based solution). No indication is given as to how 
the standard deviations were chosen. They suggest that when hand hygiene compliance is 
low the alcohol-based solution confers little advantage. Their model seems unrealistic as 
infection is only allowed in one direction, there are only 4 patients at most, and the HCW 
is not allowed to infect multiple patients. 

5. Norovirus on a UCLH elderly care ward 

In January 2009 a 63-bed ward in a UCLH hospital had an outbreak of norovirus affecting 
39 cases (only 19 of which were laboratory confirmed). The time-line of the outbreak is 
shown in Figure 2. 

5.1 The model 

In collaboration with the HPA work began to gather data to inform a MCMC model of 
norovirus spread among inpatients and staff on a ward stratified into bays. The idea was to 
build an outbreak simulator flexible enough to help members of the infection control office 
make decisions during an outbreak. On a day-to-day basis, they would alter the settings so 
as to match the ward ‘state’, as well as specifying the infection control strategy of interest. 
Figure 3 illustrates in more detail the spatial structure of the ward affected by the outbreak: 
13 bays (3-4 beds each), and 7 isolation rooms. Users could then run batches of simulations 
and learn from the outcome.  
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Fig. 2. Time-line of UCLH outbreak. IR = isolation room, each column represents one bay 
(beds numbered in brackets); numbers are cases (laboratory confirmed if in a bold square). 
Bays were closed to admission (grey squares), turned into isolation wards (blue squares) 
and deep cleaned (black squares). 

The model concerns the infectious status of individuals (inpatients and staff) and inpatients 
are mapped on beds nested within bays. Patient and HCW movements are implicitly 
modelled via transmission coefficients stratified so as to distinguish between contacts within 
a bay (β0), across bays (β1) and with HCWs (β2). Transmission from isolation rooms is 
assumed nil. The βs were chosen so as to match the known distribution of outbreak sizes, 
and attack rates in inpatients and staff from UK hospitals (Lopman et al., 2004; Harris et al., 
2010), matching interquartile ranges for outbreak sizes (6 to 92 days) and attack rates (6% to 
65% for inpatients and 18% to 43% for staff). Each Member of staff is assigned a selection of 
bays. Bed occupancy may be under 100% and discharged patients are immediately replaced 
with a new admission (not necessarily to the same bed as the dischargee). Cases may not be 
discharged until they have recovered. Staff members ‘rotate’ shifts of 5 working days each 
and 2 days leave in between. Diarrhoea caused by agents other than norovirus (e.g. 
antibiotics, other viruses) affects 5% of inpatients.  
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Fig. 3. Layout of the UCLH geriatric ward affected by the norovirus outbreak (blue squares 
indicate bays, and red rectangles are isolation rooms). 

A 60 day simulation period is split into ‘time steps’ of width Δt (starting with Δt = 3 hours). 
For some events (acquisition of norovirus, detection of norovirus in the laboratory, 
acquisition and recovery of norovirus-unrelated diarrhoea) we used exponentially 
distributed waiting-time probability methods, equivalent to Poisson distributed numbers of 
events per time step (Ross, 2006). When the probability of two or more events per time step 
exceeded 0.01, we halved Δt. For other events, we sampled from exact distributions. Times 
to discharge are sampled from the observed distribution of length of stay on this ward for 
January 2008 (mean 7.2 days), in the absence of an outbreak. Times to onset of symptoms 
come from experimental studies on US convicts (mean 36 hours, Wyatt et al., 1974) and 
times to recovery come from observational work from the Avon region, UK (Lopman et al., 
2004). Immunity to norovirus was initially set to 30% in patients and 60% in staff members. 

Each simulation begins with the introduction of an infectious individual admitted to a 
random bed. Not all seeding events result in an outbreak. Most outcome measures (attack 
rates, outbreak durations, bed days lost to closing bays or wards to new admissions) are 
obtained from the subset of 200 simulations where an outbreak did take place. On 
acquisition individuals incubate norovirus, then become infectious and finally recover into 
the immune category. Two definitions of a norovirus ‘case’ were investigated: a) laboratory 
confirmed positives with 50% sensitivity (Vinjé et al., 2003; de Bruin et al., 2006) and a 1 day 
average delay to laboratory result, or b) acquisition symptoms (diarrhoea and/or vomiting).  

Infection control measures take place 3 days after an outbreak is declared (two cases within 
seven days of each other) and include i) isolation of ‘cases’ into one of the isolation rooms, 
depending on availability (initially assumed fully occupied); ii) closure of affected bays to 
admissions until the last bay patient has recovered; iii) closure of the whole ward to 
readmission until the last case of the outbreak has recovered; iv) affected staff are sent home 
and may not return to work until 48 hours after recovery; v) restriction of patient-staff 

www.intechopen.com



 
Models of Hospital Acquired Infections 

 

55 

assortment (baseline: 6 staff members look after beds 1-31, the other 6 look after beds 32-63, 
as observed on the UCLH ward). 

5.2 Results and discussion 

The outcomes of three control strategies are shown in Fig. 4. In comparing strategies, 
medians are not as meaningful as ranges. Waiting for laboratory confirmation is equivalent 
to no control, because of the delay to the laboratory results, and low test sensitivity (half the 
cases missed). Acting on symptoms works best, except that in wards with non-specific 
symptoms it leads to unnecessary bay closures (Fig. 4b). Closing the ward leads to short 
term losses in patient-days, but control is swift and the outbreak is soon over, with little 
variability in outbreak sizes. These strategies are extremes and serve only for illustration. In 
real life managers are more likely to adopt mixed strategies: closing the ward for a few days 
using laboratory confirmation, and as cases become rare switching to closing only affected  
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Fig. 4. Output of the stochastic model. Lines and error bars represent the median, 10th and 

90th centiles. 

bays (Fig. 2). The model could be made more realistic, allowing for mixed strategies. 
Transmission could be made dependent on actual distance between bays. This may not be 
necessary when patients do not move (e.g. ITU) and when they move ‘too much’ (physical 
distance being no distance). Environmental contamination could be added, allowing 
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investigation of the impact of deep cleaning. Another aspect is building design. In our case 
we had an open ward where patients could infect other patients (β0 > β1 > 0). Some wards 
have physical barriers (rooms rather than bays), and HCWs become the main transmission 
vectors, allowing barrier precautions as well as relative cohorting to be much more effective. 

6. Conclusions 

The ideal HAI model is stochastic, simulates patient movement between wards of a set of 
hospitals, stratifies model parameters according to ward location (ITU, AAU, surgical, 
geriatric, infectious diseases wards etc.), stratifies the extramural population by re-
admission rate, stratifies by different categories of HCW, accounts for surveillance and 
delays in diagnosis, includes antibiotic usage, contaminated environment, and allows for all 
possible forms of infection control. In reality this level of complexity is not necessary to 
address questions for a specific setting. Most HAI models deal with MRSA in ITU, a mere 
fraction of all HAIs. The main lesson is there is no universal answer. Success depends on 
local conditions (e.g. epidemic/endemic setting, patient mobility, aetiological agent, 
treatment and intervention costs). 
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