
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



5 

The South American Monsoon System: 
Climatology and Variability 

Viviane B. S. Silva and Vernon E. Kousky  
NOAA/National Weather Service 

Climate Services Division 
Climate Prediction Center 

USA 

1. Introduction 

A typical Monsoon System is characterized by a reversal in the low-level wind direction 
between summer and winter seasons, and distinct wet (summer) and dry (winter) periods. 
The changes in low-level atmospheric circulation are related to changes in the thermal 
contrast between oceans and continents. During summer, the air over continents is warmer 
and more convectively unstable than air over adjacent oceanic regions. Consequently, lower 
pressure occurs over land and higher pressure occurs over nearby oceanic areas. This 
pressure pattern causes low-level moist air to converge onto the land, resulting in 
precipitation, especially during the late afternoon and evening hours. During winter the 
temperature contrasts and low-level atmospheric circulation are reversed, resulting in dry 
conditions over continents.  

The regions on the globe that show distinct monsoon characteristics include 1) western 
Sub-Saharan Africa, 2) Asia (India, southern China, Korea and parts of Japan), 3) 
Northern Australia, 4) South America (Brazil, Bolivia, Paraguay) and 4) North America 
(Southern US and Mexico). The focus of this chapter is on the South American Monsoon 
System (SAMS). 

South America has several important geographical features that contribute to the climate of 
the region (Fig. 1). The entire continent is surrounded by water, with the high Andes 
Mountains stretching along the entire west coast. South America also contains the world's 
largest rainforest (the Amazon) and driest Desert (Atacama in Chile). The core of the SAMS 
includes the Brazilian "Planalto" (BP), which contains the headwaters of major rivers flowing 
into the Amazon, La Plata and São Francisco basins. Those basins contain major agricultural 
areas and provide most of Brazil’s hydroelectric energy production.  

The SAMS displays considerable variability on time scales ranging from diurnal to inter-
annual. Prolonged periods of wetter-than-average or drier-than-average conditions can have 
significant impacts on agriculture, energy production, and society in general. Due to the 
accentuated topography near Brazil's east coast, heavy rainfall can result in disastrous 
flooding, with loss of life, property and infrastructure. In many cases, the poorest 
inhabitants suffer the greatest impacts from heavy rainfall events, since they often reside in 
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the most vulnerable areas, such as along streams and on steep unstable slopes. In addition, 
persistent rainfall deficits (droughts) can have negative impacts on agriculture and also on 
Brazil's energy production, leading to restrictions on energy usage affecting large sections of 
Brazil (e.g., Silva et al., 2005).  

 

Fig. 1. South American key topographic features and major river basins [Amazon basin 
(light yellow), Sao Francisco basin (light green) and La Plata basin (light blue)]. The 
Brazilian "Planalto" (BP) is indicated by the red oval. 

The objective of this chapter is to provide an overview of 1) the characteristic features of 

SAMS, including the evolution of precipitation and atmospheric circulation during the 

wet season, 2) the variability of SAMS on time scales ranging from diurnal to inter-annual, 

and 3) extreme rainfall events and their impacts. 

2. Data sets 

Precipitation data used to show the characteristic features of SAMS are derived from 

gridded daily precipitation analyses available from the NOAA/Climate Prediction Center 

(Silva et al., 2007; Chen et al., 2008). Prior to selecting a data set as the basis for an analysis of 

mean circulation features, an inter-comparison among six re-analyses was made for South 

America during the period 1979-2000. The selected re-analyses for comparison are: the 

NCEP/Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010), the NCEP/NCAR 

CDAS-Reanalysis (R1) (Kalnay et al., 1996), the NCEP/Department of Energy-DOE 

Reanalysis (R2) (Kanamitsu et al., 2002), the European Centre for Medium-Range Forecasts 

(ECMWF) Reanalysis (ERA-40) (Uppala et al., 2005), the NASA /Global Modeling and 

Assimilation Office (GMAO) Reanalysis (MERRA) (Rienecker et al., 2011), and the Japanese 

Meteorological Agency Reanalysis (JRA-25) (Onogi, et al., 2005, 2007).  
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Fig. 2. Mean 850-hPa wind direction (vectors) and magnitude (shading, ms-1) taken from six 
reanalysis data sets for December-February 1979-2000. 

The upper-tropospheric circulation (200-hPa wind, not shown) is in good agreement among 
the various re-analyses over the entire region. Therefore, any of the reanalysis data sets 
could be used to qualitatively describe upper-tropospheric circulation features. In contrast, 
the December-February (DJF) mean (1979-2000) lower-tropospheric circulation (850-hPa 
wind) shows considerable variability among the re-analyses in the orientation and strength 
of the low-level flow (low-level jet) east of the Andes within the area 7.5º-20ºS, 45º-65ºW (red 
boxes in Fig. 2). Consequently, there is considerable uncertainty in the analyzed low-level 
flow characteristics in this region and in derived quantities, such as moisture flux, 
convergence, and vertical motion within the core region of the SAMS. 

Comparing the DJF 1979-2000 mean precipitation patterns in the re-analyses to the analyzed 
station-based precipitation (Fig. 3) it is evident that the CFSR pattern is more similar to the 
observation-based pattern [lower right panel - OI (T62)] than any of the other reanalysis 
patterns. CFSR improvements include the proper location of a maximum in precipitation 
over the southern Amazon basin, and an absence of the spurious maximum over 
northeastern Brazil that is evident in the other reanalysis patterns. Silva et al., 2011 found 
that the pattern correlation between the DJF CFSR mean precipitation pattern and the 
observed precipitation pattern is much higher for CFSR than for either R1 or R2. 
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Furthermore, the DJF CFSR 500-hPa mean vertical motion pattern is much better correlated 
with the observed precipitation pattern than are the 500-hPa vertical motion patterns in R1 
and R2 (Silva et al., 2011). Consequently, in the remainder of this chapter we will use the 
CFSR data to describe the mean circulation features related to SAMS. R1 analyses will be 
used in a qualitative manner to describe features related to extreme events.  

 

Fig. 3. Mean precipitation (mm d-1) from five reanalysis data sets, and a station-based 
analysis (OI-T62, lower right panel) for December-February 1979-2000. 

3. Characteristic features of SAMS 

3.1 Major large-scale elements affecting the South American Monsoon System 

The South American Monsoon System (SAMS) has been a major focus of the 
CLIVAR/VAMOS (Variability of the American Monsoon System) program. [CLIVAR is the 
World Climate Research Programme (WCRP) project that addresses Climate Variability and 
Predictability, with a particular focus on the role of ocean-atmosphere interactions in 
climate]. Several studies and reviews on the SAMS have described major features and 
phenomena that affect the behavior of SAMS on various time scales (e.g., Gan et al., 2004; 
Grimm et al., 2005; Vera at al., 2006; Gan et al., 2009; Liebmann & Mechoso, 2010; Marengo 
et al., 2010). The CLIVAR/VAMOS Panel developed a schematic diagram showing the 
major large-scale features related to the South American Monsoon System (Fig. 4). The 
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Andes mountains and Amazon basin play important roles in the South America monsoon. 
The Andes act as a barrier to the low-level easterly flow, which is deflected to the south over 
western Brazil, Bolivia and Paraguay during the austral summer. Intense summertime 
convection and latent heating over the continent contribute to the formation of an upper-
tropospheric anticyclone, often referred to as the "Bolivian High". The rising air motion over 
the continent is compensated by sinking motion over the adjacent Pacific and Atlantic 
Oceans. These oceanic regions feature an absence of deep convection and the presence of 
upper-tropospheric cyclonic circulation (troughs).  

 

Fig. 4. Section across South America displaying schematically the major large-scale elements 
related to the South American Monsoon System. Source: Climate Variability & Predictability 
Program (CLIVAR) 
(http://www.clivar.com/publications/other_pubs/clivar_transp/pdf_files/av_g3_0106.pdf) 

3.2 Life cycle of the SAMS wet season 

The annual cycle of precipitation, over tropical South America, features distinct wet and dry 
seasons between the equator and 25ºS. Portions of central and eastern Brazil and the Andes 
Mountains between 12ºS and 32ºS receive more than 50% of their total observed annual 
precipitation during the austral summer (December-February: DJF) (Fig. 5). These same 
regions receive less than 5% of their total annual precipitation during the austral winter 
(June-August: JJA). The area from the mouth of the Amazon River to northern Northeast 
Brazil experiences a maximum in precipitation during austral fall (March-May: MAM). 

During the wet season an upper-tropospheric anticyclone dominates the circulation over 
tropical and subtropical South America, while cyclonic circulation dominates the upper-
tropospheric circulation over low latitudes of the eastern South Pacific and central South 
Atlantic (Fig. 6, top panel). The position of the upper-level anticyclone (southwest of the 
region of most intense precipitation and latent heating) is consistent with the atmospheric 
circulation response to tropical forcing (heating) (e.g., Webster 1972; Gill 1980). Prominent 
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low-level features (Fig. 6, bottom panel) include: 1) surface high pressure systems and 
anticyclonic circulation over the subtropical oceans (Pacific and Atlantic), 2) a surface low-
pressure system (Chaco Low) centered over northern Argentina, and 3) a low-level 
northwesterly flow (low-level jet) extending from the southwestern Amazon to Paraguay 
and northern Argentina. Throughout the region one notes a reversal of circulation features 
between the lower troposphere and the upper troposphere (Fig. 6, compare bottom and top 
panels), which is typical of the global Tropics.  

 

Fig. 5. Percent of observed mean (1979-2006) annual precipitation for each season.  
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Fig. 6. Mean 200-hPa vector wind/ streamlines and estimated precipitation (mm) (top) and 
925-hPa vector wind/ streamlines and estimated precipitation (bottom). The climatology 
period for the circulation fields is 1979-2010 and for precipitation is 1979-1995 (CAMS OPI). 

The annual cycle of upper-tropospheric circulation features over South America is 
intimately linked to the seasonally varying horizontal temperature gradients, which arise 
from differential heating due to the difference in the thermal capacity between land and 
water. During summer, temperatures over the continent become warmer than the 
neighboring oceanic regions. This results in a direct thermal circulation with low-level 
(upper-level) convergence (divergence), mid-tropospheric rising motion and precipitation 
over the continent, and low-level (upper-level) divergence (convergence), mid-tropospheric 
sinking motion and dry conditions over the neighboring oceanic areas (Fig. 7, top left panel). 
These features are typical of summertime monsoons. During winter, temperatures over the 
continent and nearby oceanic regions are more uniform in the zonal (east-west) direction, 
which gives rise to a more zonally symmetric upper-tropospheric circulation pattern over 
the region (Fig. 7, lower right panel) and little or no evidence of any east-west direct thermal 
circulation (Fig. 7, top right panel).  
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Fig. 7. Height-longitude cross-sections of the mean (1979-2010) divergent circulation 
(vectors) for the latitude band 10º-20ºS (top panels) and mean (1979-2010) 200-hPa vector 
wind, streamlines and OLR (bottom panels) for December-February (left panels) and June-
August (right panels). Units are 10-6 s-1 for divergence (contours and shading in top panels) 
and W m-2 for OLR (shading in bottom panels). 

3.3 Onset, mature and demise phases 

The development of the South American warm season Monsoon System during the austral 
spring is characterized by a rapid southward shift of the region of intense convection from 
northwestern South America to the southern Amazon Basin and Brazilian highlands 
(Altiplano) (Kousky, 1988; Horel et al., 1989; Marengo et al., 2001; Liebmann & Marengo, 
2001; Nogues-Paegle et al., 2002) (Fig. 8). Deep convection increases over the western 
Amazon Basin in September and subsequently expands southward and southeastward, 
reaching central Brazil in October and Southeast Brazil in November. Lower-tropospheric 
(850-hPa) temperatures reach their annual maximum over the southern Amazon and BP 
region in early September, just prior to the onset of the rains (Fig. 9).  

Transient synoptic systems at higher latitudes play an important role in modulating the 
southward shift in convection. Cold fronts that enter northern Argentina and southern 
Brazil are frequently accompanied by enhanced deep convection over the western and 
southern Amazon and an increase in the southward flux of moisture from lower latitudes 
(e.g., Garreaud & Wallace, 1998). These cold fronts are also important in the formation of the 
South Atlantic Convergence Zone (SACZ) (e.g., Garreaud & Wallace, 1998), which becomes 
established in austral spring over Southeast Brazil and the neighboring western Atlantic (see 
Fig. 8, middle column). During spring an upper-tropospheric anticyclone (Bolivian High) 
becomes established near 15ºS, 65ºW (Fig. 8), as the monsoon system develops mature-phase 
characteristics. Upper-level troughs and dry conditions are found over oceanic areas to the 
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east and west of the Bolivian High. The deep convection over central Brazil and the Bolivian 
High reach their peak intensities during December-March. These features shift northward 
and weaken during April and May, as the summer monsoon weakens and a transition to 
drier conditions occurs over subtropical South America.  

 

Fig. 8. Mean (1979-1995) seasonal cycle of OLR and 200-hPa streamlines. Units for OLR are 
W m-2. Low values of OLR indicate cold cloud tops (deep convection) in the Tropics. 
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Fig. 9. Mean (1979-1995) daily precipitation (mm) for central Brazil (12.5º-17.5ºS, 47.5º-
52.5ºW (shaded in green), and 850-hPa temperature (degrees C, red curve). The 850-hPa 
temperature data are taken from the R1 data archive. 

There are many indexes in the literature that define the SAMS onset, each one with its 
unique characteristics (eg., Kousky, 1988; Marengo et al., 2001; Gan et al., 2006; Gonzales et 
al., 2007; Silva & Carvalho, 2007; Raia & Cavalcanti, 2008; Garcia & Kayano, 2009; Nieto-
Ferreira & Rickenbach, 2010). The onset/end dates of the SAMS wet season, based on 
outgoing longwave radiation (OLR, a proxy for deep convection in the Tropics) (Kousky, 
1988), are shown in Fig. 10. The wet season onset occurs in mid-September over the western 
Amazon basin, in mid-October over central Brazil (including the BP region), and in mid-
November in Southeast Brazil. The end of the wet season occurs in early April over central 
Brazil, and in mid- to late May over the southern Amazon basin.  

 

Fig. 10. Time onset and end dates for the wet season in the monsoon core region (Central 
Brazil) based on OLR less than 220 W m-2. 

4. Variability of SAMS 

4.1 Interannual variability  

The phases of the EL Nino Southern Oscillation (ENSO) cycle (moderate to strong El Nino 
and La Nina episodes) have significant impacts on SAMS and the rainfall pattern over 
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tropical South America (e.g. Hastenrath & Heller, 1977; Ropelewski & Halpert, 1987; 
Aceituno, 1988; Kousky & Kayano, 1994; Silva et al., 2007). Mossman (1924) was one of the 
first to notice the relationship between the Southern Oscillation and rainfall over central 
South America. He showed that the Paraná River level increases during the negative (warm) 
phase of the Southern Oscillation (El Niño). Subsequent studies (Streten, 1983; Kousky et al., 
1984; Ropelewski & Halpert, 1987, 1989; Grimm et al., 1998) demonstrated that wetter-than-
average conditions occur over southeast South America during El Niño, consistent with the 
results of Mossman (1924).  

Since the extreme phases of the ENSO cycle tend to peak during the austral summer, Silva et 
al. (2007) elected to use water-year (July–June) rainfall departures to show ENSO-related 
interannual variability over Brazil. The pattern of anomalous precipitation during El Niño 
episodes (Fig. 11) shows considerable event-to-event variability, especially in the magnitude 
of the departures. The strongest El Niño episodes (1982/83, 1991/92, and 1997/98) feature  

 

Fig. 11. Precipitation anomalies for water years (July–June) during El Niño episodes. The 
composite for the seven episodes is shown in the lower right-hand panel. Anomalies (mm) 
are computed with respect to the July 1977–June 2004 base period means. (Figure taken from 
Silva et al., 2007) 

www.intechopen.com



 
Modern Climatology 

 

134 

large precipitation deficits over the Amazon basin. The weaker events tend to have weaker 
precipitation anomalies. Most of the events also feature excess precipitation in southern 
Brazil, a region that sometimes experiences disastrous flooding related to strong El Niño 
episodes such as 1982/83 (Kousky et al., 1984). The composite for the seven El Niño 
episodes shows precipitation deficits in the central and eastern Amazon, and over northeast 
Brazil, and precipitation surpluses in southern Brazil, consistent with previous studies on 
ENSO cycle impacts (e.g., Ropelewski & Halpert, 1987, 1989; Grimm et al., 1998).  

The precipitation anomaly patterns during La Niña episodes (Fig. 12) show more event-to-
event consistency compared to those for El Niño. Above-average precipitation is evident 
over the northern part of Brazil in all six La Niña episodes. There is also a tendency for 
wetter-than-average conditions (four out of six cases) to occur over northeast Brazil. The 
composite pattern for the water-year precipitation anomalies during La Niña episodes does 
not reflect substantial dryness in southern Brazil, which is a feature associated with La Niña 
at certain times of the year (e.g., Ropelewski & Halpert, 1989; Grimm et al., 1998). 

 

Fig. 12. Precipitation anomalies for water years (July–June) during La Niña episodes. The 
composite for the six episodes is shown in the lower right-hand panel. Anomalies (mm) are 
computed with respect to the July 1977–June 2004 base period means. (Figure taken from 
Silva et al., 2007) 
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The Atlantic SST anomaly dipole pattern (e.g., Hastenrath & Heller, 1977; Markham & 
McLain, 1977; Moura & Shukla, 1981; Servain, 1991; Nobre & Shukla, 1996) has a profound 
influence on rainfall over northeastern Brazil (the eastern flank of the SAMS). The dipole 
pattern usually consists of SST anomalies of one sign north of the equator and SST 
anomalies of the other sign south of the equator, which results in an anomalous 
displacement of the equatorial trough and Intertropical Convergence Zone (ITCZ). Rainfall 
deficits and drought over northern Northeast Brazil accompany positive SST anomalies 
north of the equator, negative SST anomalies south of the equator, and an anomalously 
northward displaced ITCZ. In contrast, above-average rainfall in northern Northeast Brazil 
accompanies negative SST anomalies north of the equator, positive SST anomalies south of 
the equator, and an anomalously southward displaced ITCZ (Fig. 13).  

 

 

Fig. 13. Sea surface temperature anomalies (ºC) (left panel) and outgoing longwave radiation 
anomalies (W m-2) for March-May 2009 (right panel). SST anomalies are departures from the 
1971-2000 base period means and OLR anomalies are departures from the 1979-1995 base 
period means. Negative OLR anomalies in the Tropics indicate enhanced convection and 
above-average rainfall. 
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4.2 Intraseasonal variability 

4.2.1 SAMS and the Madden-Julian Oscillation (MJO) 

Several studies have shown that the SAMS can be influenced by the Madden-Julian Oscillation 

(MJO). The MJO is a naturally occurring intraseasonal fluctuation in the global tropics, with a 

typical period of 30-60 days (Madden & Julian, 1971, 1972; Madden & Julian, 1994; Zhang, 

2005). The MJO is a significant cause of weather variability in the Tropics and Subtropics that 

affects several important atmospheric and oceanic parameters, including lower- and upper-

level wind speed and direction, cloudiness, rainfall, sea surface temperature (SST), and ocean 

surface evaporation. The enhanced rainfall phase of the MJO can affect both the timing of a 

monsoon onset and monsoon intensity. Moreover, the suppressed phase of the MJO can 

prematurely end a monsoon and initiate breaks during monsoon wet seasons.  

 

Fig. 14. a) Time longitude section of 200-hPa velocity potential anomalies in the latitude 
band 5ºN-5ºS, and b) the NOAA/Climate Prediction Center version of the Wheeler and 
Hendon (2004) daily MJO index. 

The MJO modulates summer rainfall over northern and northeastern South America. It is very 
important for Northeast Brazil (semi-arid region), which experiences a short (3-4 months) wet 
season. An example of MJO-related heavy rainfall events occurred during March-May 2009. 
From mid-March to early May 2009, eastward propagating velocity potential anomalies (Fig. 
14a) indicate moderate-to-strong MJO activity. The active phase of the MJO was in the South 
American sector (Fig. 14b, phase 8) during the end of March and again in the beginning of 
May, contributing to excessive rainfall and flooding over portions of northeastern Brazil, 
especially in early May (Fig. 15). Another factor contributing to the excessive seasonal rainfall 
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was the presence of the Atlantic SST dipole (discussed in the previous section), which favored 
an anomalously southward displaced ITCZ and enhanced rainfall over Northeast Brazil.  

 

Fig. 15. Precipitation anomalies (mm) for 1-15 May 2009. Anomalies are departures from the 
1979-2010 base period. 

4.2.2 SAMS and the South Atlantic Convergence Zone 

A characteristic feature of anomalous precipitation over South America is the tendency for a 
dipole pattern to occur, with anomalies of one sign located in the region of Southeast Brazil, 
the climatological position of the South Atlantic Convergence Zone (SACZ), and anomalies 
of the other sign situated over southeastern South America (southern Brazil, Uruguay, 
Paraguay and northeastern Argentina (e.g., Casarin & Kousky, 1986; Kousky & Cavalcanti, 
1988; Kayano & Kousky, 1996; Nogues-Paegle & Mo, 1997; Herdies et al., 2002; Nogues-
Paegle et al., 2002; Diaz & Aceituno, 2003; Silva & Berbery, 2005; Marengo et al., 2010). This 
dipole pattern has been shown to be partly related to the phasing of synoptic waves with the 
phase of the MJO (e.g., Casarin and Kousky, 1986; Nogues-Paegle et al., 2002; Liebmann et 
al., 2004; Carvalho et al., 2004; Cunningham & Cavalcanti, 2006).  

Mid-latitude frontal systems (e.g., Kousky 1979, 1985; Garreaud & Wallace 1998) have an 
important effect on the intensity and distribution of deep convection over tropical and 
subtropical South America, and the location of the SACZ. As cold fronts move northward 
over southern Brazil, they organize a band of intense convection stretching along the front, 
often extending from the slopes of the Andes eastward to the western Atlantic. This band of 
intense convection shifts northward accompanying the advance of the front, and may 
eventually reach as far north as the Amazon basin and Northeast Brazil.  

Subtropical upper-level cyclonic vortices (Kousky & Gan, 1981) also affect the distribution 
and intensity of rainfall, particularly over eastern Brazil. These systems typically form 
within the Atlantic mid-oceanic trough, near the coast of Northeast Brazil. Once formed they 
tend to drift slowly westward with time, often moving over Northeast Brazil. These vortices 
are cold core systems characterized by a central region of relatively dry sinking air, while on 
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the western, northern, and sometimes eastern flanks of these systems convection is often 
enhanced, resulting in heavy rainfall. 

4.3 SAMS diurnal variability 

Major features of the summertime diurnal cycle for the South American region, as depicted in 
the NOAA/Climate Prediction Center Morphing technique (CMORPH) precipitation analyses 
(Joyce et al. 2004), include an afternoon (18-21 UTC) maximum in precipitation over the Andes 
and the high terrain in central and eastern Brazil, a nocturnal (06-09 UTC) maximum in 
precipitation over areas just east of the Andes (over western Argentina, central Bolivia, and 
western Paraguay), and an early morning (12-15 UTC) maximum over the Atlantic Ocean  
in the vicinity of the South Atlantic Convergence Zone (Fig. 16, and as described in  

 

Fig. 16. Mean percentage of daily total precipitation for 00-03 UTC (20-23 LST), 06-09 UTC 
(02–05 LST), 12-15 UTC (08–11 LST), and 18-21 UTC (14-17 LST). Local standard time (LST) 
is for the center longitude of the domain. The mean is computed for the combined 
December–February periods for 2002–2003 and 2003–2004. Note: if rainfall were distributed 
equally throughout the 24-hour period, then 12.5% would be the expected percentage of the 
daily total for each 3-hour interval. Percentages have been masked out in regions where 
rainfall average is less than 1 mm day-1.  
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Janowiak et al. 2005). A nocturnal or early morning (12-15 UTC) precipitation maximum 
also occurs along the immediate coast and offshore in the vicinity of the Atlantic ITCZ and 
over the Pacific near the coast of Colombia, consistent with the hypothesis presented by 
Silva Dias et al. (1987) that an out-of-phase relationship exists in the diurnal cycles of 
continental and nearby oceanic regions.  

A remarkable diurnal cycle in precipitation occurs in coastal areas of northern and 
northeastern South America. With daytime heating, precipitation rapidly develops along and 
just inland from the coast (Fig. 16, lower right panel), probably related to the sea breeze 
(Kousky, 1980; Garstang et al., 1994; Negri et al,. 2002). This precipitation advances westward 
and southward with time, producing a nocturnal maximum in areas approximately 500 km 
inland from the coast (Fig. 16, upper right panel). The average diurnal cycle for equatorial 
South America (equator to 5°N) for March–May 2003–2004 (Fig. 17) indicates that sea-breeze-
induced precipitation systems propagate westward (dashed lines), reaching the western 
Amazon Basin in about two days. As these systems propagate inland, they contribute to a 
nocturnal precipitation maximum in some areas and a diurnal precipitation maximum in other 
areas. The nocturnal maximum in precipitation over the central Amazon basin and the inland 
propagation of sea-breeze-induced rainfall systems are most often observed during January-
May (Fig. 18), when the diurnal cycle in the central Amazon basin displays two maxima (one 
nocturnal and the other diurnal). Propagating features can also be found east of the Andes 
Mountains over northern Argentina. Daytime heating initiates convection along the east slopes 
of the Andes, which subsequently propagates eastward over the low lands of northern 
Argentina and Paraguay resulting in a nocturnal maximum in those regions. Similar 
propagating features have been observed over the central Plains east of the Rocky mountains 
of the United States (e.g., Carbone et al. 2002; Janowiak et al. 2005). 

 

Fig. 17. Time-longitude section of the mean (March-May 2003) percentage of daily 
precipitation for the latitude band 0º-5ºN. The mean diurnal cycle is repeated 4 times. The 
dashed line indicates the westward propagation with time associated with sea-breeze-induced 
convection along the northeast coast of South America (vertical dashed line near 50ºW). 
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Fig. 18. The annual cycle of the mean diurnal cycle for the central Amazon basin (0º-13ºS, 

52º-70ºW. Local time is approximately 4 hours less than UTC (Z). 

4.4 Extreme precipitation events 

As mentioned in the introduction, heavy rainfall events near Brazil's heavily populated 

east coast can result in disastrous flooding, with loss of life, property and infrastructure. A 

climatology of intense rainfall events is presented for three regions in eastern Brazil 

shown in Fig. 19. The daily average precipitation in each of the 5x5 degree boxes was 

computed during the 32-year period 1979-2010. Next the daily data were stratified by 

month and the number of cases for precipitation equal to or exceeding selected thresholds 
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(10, 15, 20, 25, 30, 35, 40, 45, and 50 mm) was computed. The results are shown in Tables 1-

3. The greatest number of cases among the three regions and for all thresholds occurs in 

region-3 (Southeast Brazil, Table 1) during the height of the SAMS wet season (December-

January). A similar peak, but with fewer cases is observed in region-2 (Table 2), which 

also has a secondary peak in March. Region-1 (Table 3) has fewer cases than in the other 

two regions for all thresholds, and, as in region-2, features two peaks (January and March) 

for thresholds below 20 mm.  

The daily values for each month were ranked (highest to lowest) and the top 20 cases for 

each region (Table 4) were selected for further analysis. To determine the independent 

events in each region, cases where the dates are close together (within 5 days) are 

considered as a single event. Thus, the number of events in the top 20 cases (Table 4) is 14 

for region-3, 12 for region-2 and 7 for region-1. This indicates a tendency for extreme events 

to persist for longer periods of time at lower latitudes over eastern South America.  

The sea level pressure (SLP) and precipitable water (PW) analyses for the top 12 events in 

region-3 (indicated by the red asterisks in Table 1) are shown in Fig. 20. All of the events 

show high values of PW and a SLP trough in the vicinity of Southeast Brazil. In most cases, 

high PW values and a pressure trough extend in a band eastward/southeastward over the 

Atlantic Ocean. Since PW depends primarily on moisture available in the lowest layers of 

the atmosphere, bands of high PW are usually co-located with regions of low-level 

convergence, which accompany surface cold fronts or remnant pressure troughs. Of the 12 

events shown in Fig. 20, only two events (17 January 1980 and 9 January 2004) do not show 

any apparent relationship with fronts.  

 

Fig. 19. Precipitation Index for selected regions. 
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Region-3 (17.75-22.25S, 42.75, 47.25W) 
 ≥10mm ≥15mm ≥20mm ≥25mm ≥30mm ≥35mm ≥40mm ≥45mm ≥50mm 

JUL 8 3 0 0 0 0 0 0 0 
AUG 6 1 1 1 0 0 0 0 0 
SEP 35 17 5 1 0 0 0 0 0 
OCT 87 35 12 3 1 0 0 0 0 
NOV 229 99 37 10 3 3 3 0 0 
DEC 349 182 77 35 16 4 2 1 0 
JAN 366 190 79 40 14 7 4 3 1 
FEB 207 100 36 14 4 3 2 0 0 

MAR 178 71 31 6 1 0 0 0 0 
APR 43 19 5 3 1 0 0 0 0 
MAY 21 11 7 3 2 0 0 0 0 
JUN 6 4 3 1 0 0 0 0 0 

Table 1. Number of events P ≥ given thresholds for Region-3. 

Region-2 (12.75-17.25S, 40.25, 44.75W)
 ≥10mm ≥15mm ≥20mm ≥25mm ≥30mm ≥35mm ≥40mm ≥45mm ≥50mm 

JUL 0 0 0 0 0 0 0 0 0 
AUG 0 0 0 0 0 0 0 0 0 
SEP 5 1 1 0 0 0 0 0 0 
OCT 40 18 7 4 0 0 0 0 0 
NOV 153 62 24 11 5 2 0 0 0 
DEC 204 97 41 13 4 2 1 0 0 
JAN 162 84 36 12 3 2 0 0 0 
FEB 81 42 21 6 3 2 0 0 0 

MAR 113 50 16 7 0 0 0 0 0 
APR 23 6 0 0 0 0 0 0 0 
MAY 0 0 0 0 0 0 0 0 0 
JUN 1 1 0 0 0 0 0 0 0 

Table 2. Number of events P ≥ given thresholds for Region-2. 

Region-1 (7.75-12.25S, 37.75, 42.25W) 
 ≥10mm ≥15mm ≥20mm ≥25mm ≥30mm ≥35mm ≥40mm ≥45mm ≥50mm 

JUL 0 0 0 0 0 0 0 0 0 
AUG 0 0 0 0 0 0 0 0 0 
SEP 2 0 0 0 0 0 0 0 0 
OCT 11 1 1 0 0 0 0 0 0 
NOV 30 11 5 1 0 0 0 0 0 
DEC 58 22 7 2 1 0 0 0 0 
JAN 67 34 15 7 2 2 0 0 0 
FEB 60 25 7 4 1 0 0 0 0 

MAR 87 26 11 2 0 0 0 0 0 
APR 40 12 4 1 1 0 0 0 0 
MAY 6 3 1 0 0 0 0 0 0 
JUN 2 0 0 0 0 0 0 0 0 

Table 3. Number of events P ≥ given thresholds for Region-1.  
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Region-3 

Precipitation 
(mm)

Region-2
Precipitation 

(mm)
Region-1

Precipitation 
(mm) 

1 3-Jan-97* 52.3 30-Jan-92 38.8 14-Jan-04 38.8 

2 3-Jan-00* 47.3 17-Jan-04 35.1 28-Jan-92 36.2 

3 4-Jan-97 45.7 16-Jan-02 31.9 20-Jan-04 28.2 

4 23-Jan-92* 41.4 13-Jan-92 28.9 17-Jan-04 28.0 

5 24-Jan-92 39.2 9-Jan-79 28.6 3-Jan-02 26.8 

6 2-Jan-00 37.2 10-Jan-79 28.2 30-Jan-92 26.1 

7 9-Jan-85* 35.8 5-Jan-09 26.7 29-Jan-92 25.5 

8 3-Jan-82* 34.5 15-Jan-80 26.6 18-Jan-04 22.9 

9 6-Jan-83* 34.0 28-Jan-92 26.3 24-Jan-04 22.6 

10 25-Jan-85* 33.3 15-Jan-02 26.3 11-Jan-99 22.6 

11 26-Jan-85 32.3 17-Jan-79 25.4 18-Jan-02 22.5 

12 6-Jan-97 31.8 14-Jan-80 25.1 15-Jan-79 21.9 

13 12-Jan-81* 30.2 2-Jan-02 24.7 19-Jan-04 20.7 

14 30-Jan-08* 30.1 11-Jan-85 24.2 17-Jan-79 20.6 

15 17-Jan-80* 29.9 1-Jan-83 24.1 21-Jan-00 20.4 

16 9-Jan-04* 29.4 8-Jan-79 24.1 5-Jan-02 19.9 

17 24-Jan-82* 29.3 1-Jan-81 23.7 7-Jan-02 19.7 

18 12-Jan-91 29.1 27-Jan-92 23.7 26-Jan-92 19.3 

19 16-Jan-91 29.0 25-Jan-92 23.6 21-Jan-04 19.2 

20 28-Jan-91 28.8 6-Jan-09 23.4 8-Jan-02 19.0 

Table 4. Top 20 precipitation cases during January (1979-2010) for the three regions in Fig. 
19. The red asterisks indicate the 12 events used in Fig. 20. 

The austral summer 1999-2000 featured considerable intraseasonal variability in the 

intensity and location of convection over eastern Brazil (Silva & Kousky, 2001). The lowest 

values of OLR (strongest deep convection) during the period were observed over 

Southeast Brazil during 1-5 January 2000 (3 January 2000 is ranked number two for the 

extreme events in region-3, Table 4). During this period, precipitation exceeded 150 mm 

(Fig. 21, left panel) over a large portion of Southeast Brazil, resulting in mudslides, 

flooding and loss of life. The average OLR for this period (Fig. 21, right panel) shows a 

well-defined band of low OLR (intense convection) extending from the Amazon basin 

southeastward over Southeast Brazil and the neighboring western Atlantic. The 

corresponding average vertical motion for this period (Fig. 22, left panel) shows that 

rising motion (negative omega) accompanied the band of low OLR. The average upper-

tropospheric (200-hPa) wind (Fig. 22, right panel) shows a trough over costal sections of 

southern and southeastern Brazil, and a well-defined subtropical jet stream located near 

25ºS. This jet stream has a maximum over the western Atlantic, and its left rear entrance 

region is located near the bands of heavy rainfall, rising motion and low OLR over 

Southeast Brazil. The rising motion, associated with the low OLR is accompanied by 

sinking motion farther southwest over southern Brazil and Paraguay (Fig. 22, left panel). 

These features are consistent with the typical dipole pattern in precipitation, discussed in 

section 4.2.2, and an intense SACZ near its climatological position over Southeast Brazil.  
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Fig. 20. Sea level pressure (contours, hPa-1000) and precipitable water (shading, mm) for 12 

extreme events in region-3 (see Table 4). 

The circulation features for active convection over southeastern Brazil indicate a strong 

coupling between the bands of enhanced convection/rising motion and the left rear 
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entrance region of an upper-tropospheric jet stream (Silva & Kousky, 2001; Carvalho et al., 

2002). Once established, these patterns tend to persist for several days. The possible 

evolution leading to persistence is as follows: 1) the synoptic-scale pattern provides a 

mechanism (surface front and upper-level trough) to enhance convection over the high 

terrain regions of eastern Brazil; 2) this convection is strongly modulated by the diurnal 

cycle and the topography of the region; 3) local thermal contrasts, due to the distribution 

of clouds and precipitation, tend to favor a persistence of convection within the region; 4)  

 

Fig. 21. Total precipitation (mm) (left panel) and average outgoing longwave radiation 
(OLR, W m-2) (right panel) for the period 1-5 January 2000. 

 

Fig. 22. Average vertical motion (omega, hPa d-1) (left panel) and 200-hPa vector wind (m s-1) 
(right panel) for the period 1-5 January 2000. 
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thus, anomalous latent heating in the middle and upper troposphere continues in the 

same area; and 5) this tends to maintain the upper-level jet stream and related low-level 

circulation features, such as a surface pressure trough and baroclinic zone, in 

approximately the same position for several days.  

During December 2000-February 2001 (the peak of the wet season), large rainfall deficits (up 

to 400 mm, Fig. 23, right panel) were observed over Southeast Brazil (region-3 in Fig. 19) and 

the BP region (see Fig. 1), which are important regions for water storage and hydroelectric 

energy generation. As a result, Brazil experienced a major energy crisis in 2001 that led to 

the implementation of restrictions on energy usage throughout the country in order to avoid 

large-scale blackouts. Three major factors contributed to the energy crisis: 1) large rainfall 

deficits (Fig. 23), during the peak of the SAMS wet season, in the upper portions of the 

Tocantins, São Francisco and La Plata/Paraná river basins (BP region in Fig. 1, and 

Southeast Brazil region-3 in Fig. 19), 2) increasing energy demands, and 3) delays in 

implementing new power plants (Kelman et al., 2001). 

The dry conditions during December 2000-February 2001 are remarkable when compared to 

the previous year (December 1999-February 2000, Fig. 23, left panel), which featured near- 

or above-average conditions over Southeast Brazil. The mean daily rainfall rate during DJF 

2000-2001 was only about half the rate observed during DJF 1999-2000 (Fig. 24). The 

differences between the two wet seasons cannot be attributed to the ENSO cycle, since both 

years featured La Niña conditions in the tropical Pacific. Further investigation is necessary 

to identify the causes for the exceptionally dry conditions over the BP region and Southeast 

Brazil during the 2000-2001 wet season. 

 

Fig. 23. Anomalous precipitation for December 1999-February 2000 (left panel) and 
December 2000-February 2001 (right panel). Data are derived from the daily gridded 
analyses of precipitation produced by the NOAA/ Climate Prediction Center. Anomalies 
are departures from the 1979-2010 base period mean. 
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Fig. 24. Time series of daily rainfall (mm), averaged over region-3 (Fig. 19), for December 
1999-February 2000 (left panel) and December 2000-February 2001 (right panel). 

5. Conclusion  

This chapter highlights some of the results presented in previous reviews and studies on the 
South American Monsoon System (SAMS), regarding circulation features, the evolution of 
the wet season and variability on time scales ranging from diurnal to inter-annual. In 
addition, a brief inter-comparison among several re-analyses during December-February 
indicates uncertainties in the low-level circulation features and related derived quantities, 
such as moisture flux, convergence and vertical motion within the core region of SAMS. 
These uncertainties are undoubtedly related to differences in the December-February 
precipitation patterns between the re-analyses and observations, which display large biases 
over many areas in South America. It is extremely important that future re-analyses 
emphasize bias reduction, in order to reduce these uncertainties. 

Examples of extreme events on a variety of time scales illustrate the large range of 
variability associated with the SAMS wet season. Although much progress has been made in 
understanding the phenomena responsible for those events, further research is necessary to 
document their dynamical and thermodynamical causes, frequency of occurrence and 
predictability. Benchmark studies of this type are extremely important for decision makers 
as they develop plans to mitigate present and future impacts of weather and climate 
variability on society. 
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