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and Strategies in the Development  

of Novel Anti-Tubercular Drugs 

Héctor R. Morbidoni 
Cátedra de Microbiología, Facultad de Ciencias Médicas,  

CIUNR, Universidad Nacional de Rosario,  
Argentina 

And, as his strength 
Failed him at length, 

He met a pilgrim shadow -- 
"Shadow," said he, 
"Where can it be -- 

This land of El Dorado?" 
"Over the Mountains 

Of the Moon, 
Down the Valley of the Shadow, 

Ride, boldly ride," 
The shade replied -- 

"If you seek for El Dorado." 
Edgar Allan Poe, “El Dorado” 

1. Introduction 

1.1 The enemy, the battlefield and the death toll 

Mycobacterium tuberculosis, the ethiological agent of human tuberculosis, is still one of the 

most effective human pathogens, and along with the causative agent of malaria, Plasmodium 

falciparum, and the HIV virus, conform a triad of killers that merciless strike the human race. 

Current statistics show that in 2007 these three pathogens took the life of almost 5 million 

people; the majority of the cases (nearly 3 million people) affecting Africa and specially 

children (1,8 million deaths). Of these three agents, the tubercle bacilli is perhaps the one 

that spreads with more efficiency since it infects humans by aerial route, through 

aerosolized drops produced by coughing tuberculosis patients. Measures for intervention 

can be designed in the case of malaria (fighting against the transmission vector and its 

environment) and HIV (proper sex conduct, condom usage) but are much harder to 

elaborate in order to prevent people suffering of tuberculosis from coughing. Having a very 
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low infective dose (1-5 live bacilli), M. tuberculosis is able to infect a person very efficiently, 

overcoming the disadvantage of not having so far, an identified reservoir in nature. 

Once considered an eradicated disease, tuberculosis has been around for centuries; modern 
genetic techniques allowed to follow and understand the evolution of M. tuberculosis, from 
an hypothetical ancestral strain that evolved from being an environmental strain to the 
contemporary human pathogen (Brosch,R. et al., 2002; Mostowy,S., 2002, Gutierrez, M.C, et 

al., 2005; Smith, N. H., 2009). Although more detailed publications in the field of 
mechanisms of pathogenesis and immunology have been published (Kaufmann, S. H. and J. 
Hess. 2000; Collins, H. L. and S. H. Kaufmann. 2001, Ulrichs, T. and S. H. Kaufmann, 2002; 
Kaufmann, S. H. 2006) a brief description of the events taking place after the bacilli are 
inhaled as droplets from the atmosphere is described next. After travelling to the lungs, the 
microorganisms are phagocytosed by alveolar macrophages, triggering a local 
proinflammatory response that in turn causes the recruitment of mononuclear cells from 
adjacent blood vessels. These cells are the basic components of the granuloma, which 
consists of bacilli-infected macrophages surrounded by foamy (lipid loaded) macrophages 
and other mononuclear phagocytes, lymphocytes, collagen and other extracellular matrix 
components that form the periphery of the structure (Russell, D. G., 2009). This description 
corresponds to a phase of the infection in which there is no transmission of the disease 
neither clinical signs. Later on, the granuloma thickens due to a fibrous cover, becoming 
hypoxic. Several natural or disease provoked causes such as age, malnourishment, or 
conditions that impair the normal immune function, lead to major changes in the 
granuloma, that liquifies, loosing structure and releasing the caseum and large numbers of 
viable, infectious bacilli into the airways. By this process, the tubercle bacilli leaves the 
infected host and begin a new journey to the following inhalation victim. 

2. Old meets new: A powerful face-lift of anti-tubercular drugs 

The objective of this section is to describe the features of several anti-tubercular drugs that 

are still or have once been used for clinical treatment of tuberculosis as well as novel 

compounds inspired by research on those drugs. The reader is directed to several reviews in 

which those drugs are described in detail (Zhang, Y. and D. Mitchison. 2003; Vilcheze, C. 

and W. R. Jacobs, Jr. 2007). 

The advent of chemotherapy in the late 19th and early 20th centuries led to the use of 
different chemicals as options to empirically treat infectious diseases; tuberculosis was not 
the exemption and dyes such as trypan red and methylene blue were used for treatment on 
the basis that they could bind the tubercle bacilli in tissues. In the early 1930, the 
introduction of sulfonamides and their antibacterial effect led to the testing of several 
compounds against M. tuberculosis, amongst them thiosemicarbazones and sulfones such as 
Promin and Diasone. The results were discouraging so the discovery of streptomycin by 
Waksman in 1944 and its activity against the tubercle bacilli brought hope that at last an 
efficaceous drug to kill M. tuberculosis had been found. Shortly after the onset of the 
treatment, resistance to streptomycin began to develop, but a new drug, p-aminosalycilic 
acid (PAS), was generated in 1946 on the basis of the known activity of salycilic acid 
derivatives against M. tuberculosis. During those early years of tuberculosis chemotherapy, 
other drugs were added to the armamentarium, all of them found by broad screening; 
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among them we may cite Viomycin, Isoniazid, D-Cycloserine and Pyrazinamide in 1951-52, 
Ethionamide in 1956, Kanamycin in 1957, Ethambutol and Capreomycin in 1962 (Laughon, 
B. 2007). One of those drugs, the flagship of the anti-tubercular treatment, Isoniazid 
(isonicotinic acid hydrazide) displayed excellent activity and was well tolerated alone or in 
combination with Streptomycin and PAS or pyrazinamide. From that point on, only one 
drug, Rifampicin, was added to improve tuberculosis treatment. This event took place in 
1966 and was the last addition of a drug showing the desirable features of high activity, low 
toxicity and oral route of administration. Both Isoniazid and Rifampicin became the pillars 
of the anti-tubercular treatment in spite of the little knowledge on their mode and 
mechanisms of action. Thus, a first-line of defense against M. tuberculosis was built, 
consisting of the so-called first-line drugs: Isoniazid, Rifampicin, Ethambutol, Pyrazinamide 
and Streptomycin. A second group of drugs included several antibacterial drugs with 
activity against M. tuberculosis such as aminoglycosides, fluoroquinolones and D-
Cycloserine, as well as Ethionamide, an Isoniazid analogue with less potency. A third group 
of less frequently used drugs (such as Isoxyl and Thiacetazone) was later on discarded due 
to secondary effects and rapid generation of resistance. All the mentioned drugs had to wait 
over 40 years to have their mechanisms of action partially understood as will be described 
below in this section. 

During the following 30 years there was little interest from the pharmaceutical industry to 

develop novel anti-tubercular drugs, most likely because there was a general belief that 

tuberculosis cases were decreasing every year and infecting strains were in the vast 

majority, susceptible to the available first- and second- line drugs. Along with this 

perception, an important factor to decide whether or not start an anti-tubercular drug 

discovery program resided in the poor knowledge of the mycobacterial physiology and cell 

structure, necessary elements at the moment of deciphering the mechanisms of action of the 

anti-tubercular drugs and the mechanisms of resistance put forward by M. tuberculosis to 

avoid the activity of those drugs. In turn, that deficit was caused by the lack of genetic tools 

needed to manipulate mycobacteria, a situation that radically changed in the late ´90 due to 

the combined efforts of research groups in Europe and USA. The tools devised for the 

analysis of M. tuberculosis (Guilhot et al., 1994; Jackson et al., 2001; Bardarov et al., 2002) and 

the sequencing of its genome started to put the intricacies of this sophisticated pathogen 

under a spotlight (Cole et al., 1998). Part of those sophistications included a highly 

specialized genome with a large number of genes involved in synthesis, modification or 

degradation of fatty acids, underscoring the importance of those components for the 

metabolism, structure and virulence of the tubercle bacilli (Wayne and Lin, 1982, Munoz-

Elias and McKinney, 2005; Russell et al. 2009) (10-12). It was also surprising to detect the 

presence of two fatty acid synthase systems, designated FASI and FASII. FASI is an 

eukaryotic type synthase, producing as end products, fatty acids of 16-24 carbons in length, 

while FASII, is a bacterial type synthase that is in charge of the synthesis of very long chain 

fatty acids known as mycolic acids (Bloch 1975, 1977). The presence of these two systems can 

be interpreted as a sign of the specialization and co-evolution of M. tuberculosis, reflecting 

the long time interaction with humans. Thus, an increasing knowledge of the structure of 

the mycobacterial cell wall envelope accentuated the key role played by mycolic acids, 

involved in cell integrity and responsible in part for the extremely low cell wall permeability 

displayed by mycobacteria.  
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The combined effort of several labs shed light into the mechanism of action of the most 
prominent anti-tubercular drugs in use, namely, Isoniazid (INH), Ethionamide (ETH), 
Ethambutol (EMB) and Pyrazinamide (PZA). In brief, INH and ETH have a common target, 
an Enoyl Acyl Carrier Protein (ACP) Reductase dubbed InhA, part of the FASII cycle that 
synthesizes mycolic acids (Banerjee et al., 1994). Interestingly, although both compounds are 
pro-drugs with chemical similarities their activation step is carried out by two different 
enzymes; while INH is activated by a catalase-peroxidase encoded by the katG gene, a flavin 
monooxygenase -ethA- activates ETH (Zhang et al., 1992; Heym et al., 1995,; Baulard et al., 
2000; Vannelli et al., 2002). Thus, most of the clinical isolates displaying resistance to each of 
those drugs are mutants defective in either KatG or EthA activity (Morlock et al., 2003). 
These reports generated two experimental approaches based on a rational design, leading to 
the design of new drugs affecting InhA. In the case of INH, a series of compounds showed 
promising activity against M. tuberculosis, inhibiting InhA and avoiding the activation step 
(Sullivan et al., 2006; Freundlich et al., 2009). Those compounds, derived from triclosan, a tri-
chlorynated aryl alkyl ether were subjected to a second round of structure improvement 
leading to molecules with the desired features of activity and no longer substrate of efflux 
pump systems (Tonge et al., 2007, am Ende et al., 2008). Similarly, research on the 
mechanism of action of ETH led to a smart way to improve its potency by increasing its rate 
of activation. To this end, the partnership between EthA and its repressor protein EthR, was 
used (Frenois et al., 2004; Weber et al., 2008). Thus, on the grounds that an inhibition of the 
activity of EthR would leave EthA free to act upon ETH, leading to its activation, a set of 
molecules was synthesized. The results demonstrated that by this approach, chemical 
“boosters” of ETH activity were obtained, increasing the therapeutic value of this molecule 
(Frenois et al., 2004; Willand et al., 2009) . 

Likewise, the elucidation of the mechanisms of action of both EMB and PZA, controversial 

in both cases, generated a great deal of interest on the possibility of identifying new drugs 

inhibiting the same targets than the lead compounds. In the case of EMB, an inhibitor of the 

synthesis of arabinogalactan (a key component of the cell envelope to which mycolic acids 

are covalently linked) (Takayama and Kilburn,1989; Khoo et al., 1996; Belanger et al., 1996; 

Telenti et al., 1997), the search for new anti-tubercular agents led to the identification of 

SQ109 (Protopopova et al., 2005; Jia et al., 2005) Unexpectedly, this compound, a diamine 

structurally related to EMB, did not affect arabinogalactan biosynthesis and its true target is 

still unknown. In spite of that, SQ109 is one of the very few compounds that is currently 

being tested in clinical trials. 

PZA, a pro-drug that is converted to the active Pyrazinoic acid (POA) through the action of 
an nicotinamidase/ pyrazinamidase (PncA), is still a very important component of the anti-
tubercular therapeutic scheme. This compound exerts a great activity at low pH, thus 
targeting the phagosomal bacillar population (Zhang et al., 1999). As described for other pro-
drugs, PZA lacks activity if mutations affecting PncA are generated. Similarly to what 
happened in the case of INH, the identification of the mechanism of action of PZA went 
through a period of uncertainty driven by the conflicting point of view of two laboratories, 
one supporting the idea of PZA inhibiting FASI (Zimhony et al., 2000), and the second 
sustaining the hypothesis that PZA acts through “in vivo” generation of Pyrazinoic acid 
(POA), a weak acid that kills M. tuberculosis due to its failure to cope with pH homeostasis 
efficiently Zhang et al., 1999; Zimhony et al., 2000). In agreement to that, while most of the M. 
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tuberculosis strains resistant to pyrazinamide are defective in PncA activity, susceptibility to 
POA is still observed. Although these different points of view did not hold back work on 
compounds that may mimic the activity of PZA, the fact is that only few derivatives have 
been proposed until now. Intriguingly some of those compounds, such as 5-chloro PZA, 
demonstrated a specific inhibition of FASI (Cynamon et al., 1998; Baughn et al., 2010), not 
shown by the parental PZA or by its derivative POA (Boshoff et al., 2002). Thus, the 
structure-activity relationship of those compounds seem to be more complex than firstly 
thought.  

Two more anti-tubercular drugs have been studied recently, both Isoxyl (ISO) and 
Thiacetazone (TAC) are thioureas, sharing the activation mechanism of ETH, thus being in 
fact pro-drugs that are activated by EthA (Kordulakova et al., 2007; Dover et al., 2007; 
Nishida and Ortiz de Montellano, 2011). Therefore their use is jeopardized by resistance to 
ETH since many clinical strains displaying that phenotype showed cross- resistance to the 
three drugs (Debarber et al., 2000). Both drugs alter the synthesis of fatty and mycolic acids 
but have different targets and mechanisms of action, so while ISO inhibits unsaturated fatty 
acid and mycolic acid synthesis, TAC seems to inhibit methyltransferases involved in 
mycolic acids modifications (Alhari et al., 2007). Several compounds have been made on the 
basis of the ISO and TAC scaffolds, with some showing good anti-tubercular activity 
(Bowhurt et al., 2006; Dover et al., 2007). In spite of the new information on these drugs, the 
fact that the molecular target(s) for each one has not been unequivocally identified yet, is 
delaying a rational approach to the design of analogues that would overcome both the need 
for an activator and eliminate the secondary effects of these two compounds. 

In summary, after over 50 years of use of drugs included in the clinical treatment of 

tuberculosis, the research on their mechanisms of actions and the mycobacterial mechanisms 

of resistance, produced the back-ground information needed to start drug development 

programs. Notwithstanding this fact, few programs have produced drugs that reached 

clinical testing, thus keeping a gap between the interest of pharmaceutical companies to 

invest in drug discovery programs and the social need to have new and better drugs to treat 

this devastating disease. 

3. Tug-of-war at the pharmaceutical industry: To discover and produce novel 
anti-tuberculosis agents or not 

The development of new anti-tubercular drugs has been slowed down by several obstacles 
of which we may mention three as the most important ones. In first place, the TB drug 
market is considered by pharmaceutical companies to be characterized by little profit 
opportunity or investment return. As a matter of fact, the cost of development of a new drug 
is estimated at $115 to $240 million US dollars (Gardner et al., 2006), thus to reach a 
reasonable level of profit, market prices of new drugs should be relatively high, contrasting 
with the current cost of the standard regimen, US $11 per patient (O´Brien and Nunn, 2001). 
A very comprehensive analysis of this matter has recently been discussed (Chang Blanc and 
Nunn, 2000). Importantly, government agencies are fully aware of the need to engage in the 
battle for the development of new anti-tubercular drugs. This awareness is shown by the 
several initiatives and programs established since 1994, such as the contracts awarded by the 
Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) to centers of 
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remarkably high scientific level in the tuberculosis field, such as the Southern Research 
Institute, (SRI), the Hansen’s Disease Centers, and Colorado State University (Orme, 2001), 
the creation of the Tuberculosis Structural Genomics Consortium (Goulding, 2002), 
fundamental for the generation of a large set of data on putative mycobacterial targets 
amenable for drug design (Chim et al., 2011). Action TB, a multinational, interdisciplinary 
research initiative, was funded by the pharmaceutical company GlaxoSmithKline (GSK); 
although successful in promoting collaborations and translating research findings into drug 
screens and vaccine development, Action TB ended years ago. Various other research 
consortia are testing new drugs in preclinical and clinical trials, large funding agencies, such 
as the European & Developing Countries Clinical Trials Partnership (EDCTP) and the Bill & 
Melinda Gates Foundation are supporting these initiatives. The Global Alliance for TB Drug 
Development (TB Alliance), created in 2000 with support from the Rockefeller Foundation 
and the Gates Foundation (Pablos-Mendez, 2000; Gardner et al., 2005), has the goal of 
developing drugs that could shorten the treatment of active tuberculosis, being active on 
multi-drug resistant strains and on latent stages of the disease. 

In conclusion, although several major initiatives were launched some 20 years ago, with a 
considerable impact on the gathering of knowledge required to achieve the major goal of 
anti-tubercular drug development, pharmaceutical companies either had relatively low 
involvement or gave up after a few years. 

In second place, besides the profit considerations of drug making, anti-tubercular drug 
development faces a serious difficulty simply by the nature of the pathogen itself; as 
mentioned earlier, M. tuberculosis is present in sub-populations in the infected individual, 
each one in different cellular or extracellular locations . Moreover, not only the tubercle 
bacilli has the ability to enter a dormant state in which its metabolism diminishes to a 
minimum, but also can form biofilms (Wayne, 1994; Ojha, 2008). In both situations, the 
metabolic changes help the pathogen to evade the action of the anti-tubercular drugs. 
Ideally, clinical anti-tubercular regimes should kill both the rapidly growing mycobacteria 
and the persisting mycobacteria in lesions. The major problem is that the molecular 
mechanisms behind dormancy (characterized by a very low metabolic activity of the 
mycobacteria) and tolerance (drug-susceptible M. tuberculosis that survive in spite of 
continuous exposure to anti-tubercular drugs) are not yet fully deciphered (Zhang, 2004). 
Thus, from the point of view of the information available to rationally design new anti-
tubercular drugs, although more essential pathways are identified, they are not understood 
in full.  

The third challenge resides on the fact that there are currently no animal models that can be 
used with accuracy to test new anti-tubercular drugs and predict treatment duration 
(Druilhe et al., 2002; Mitchinson and Chang, 2009). At this point, the guinea pig model 
exceeds the mouse model since it displays pathology characteristics of the disease more 
closely resembling those of the infected human. In spite of that factor, the need to rely on the 
correct extrapolation of results from the animal model to the human led to an interest in 
developing a non-human primate animal model (Flynn et al., 2003; Flynn, 2006). It is not a 
minor point to state that this choice of an animal model to test the new anti-tubercular drugs 
implies a large difference in costs that has an obvious impact on the total investment 
required. All of these problems have already been pointed out by Lenaerts and co-workers 
(Lenaerts et al., 2005), who mention that from over 85,000 compounds tested for their anti-
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tubercular activity at Colorado State University (USA), only about 8% (7,500) showed 
reasonable activity as measured by Minimum Inhibitory Concentration (MIC), 700 had an 
acceptable selectivity index (reflecting the concentration required to inhibit M. tuberculosis 
vs. the concentration having toxicity on cultured eukaryotic cells), 11 showed “in vivo“ 
activity and only 5 compounds were considered potential leads and pursued further. 

Animal studies required 100– 150 mouse each, translating into a cost of US $ 400,000/study. 
Last but not least, the “gold standards” to evaluate efficacy of an anti-tubercular regimen in 
phase II (sputum culture conversion from positive to negative after two months of 
treatment) and III (relapse rate 2 years after completing clinical testing) are either 
controversial or lengthy processes that add to the paucity in the anti-tubercular drug 
development processes (van den Boogaard et al., 2009; Perrin et al., 2010). 

Thus, it is clear that anti-tubercular drug development is hampered by the lack of a small 
animal model that would be cost effective, display the characteristics of a natural infection 
to humans and produce an immune response upon infection comparable to that of humans.  

4. New molecules that may renew hopes of defeating M. tuberculosis 

It has briefly been described above how the information gathered on the mechanisms of 
action of drugs already in use helped to propose new molecules such as ENR inhibitors that 
do not require activation, boosters of ETH activity, and ETH analogues. Although those are 
promising steps forward in the race to prevail over the tubercle bacilli, there are several 
other compounds that are under clinical testing, some of which may reach the key stage of 
human use. As of May 2011, the Global Alliance for tuberculosis drug development shows 
in its webpage (http://www.tballiance.org/home/home.php) that three drugs are in 
clinical stages I and II: moxifloxacin (a fluoroquinolone), PA-824 (a nitropyran) and 
TMC207, a diarylquinolone. A second nitropyran, OPC-67683 is being studied in phase I 
clinical trials. With the exception of fluoroquinolones (since they were generated by 
programs not directed at the development of specific anti-tubercular drugs but aiming at 
general anti-bacterial drugs), these drugs will be briefly described below: 

Diarylquinolones. Diarylquinolines have been identified by broad screening of chemical 
libraries as having anti-tubercular activity (Diacon et al., 2009; Matteelli et al., 2010). The 
most active member of the set (TMC207, also called R 207910) is currently being evaluated in 
phase II clinical trials. The importance of this compound stems from its target, which is the 
essential mycobacterial ATP synthase enzyme (Koul et al., 2007; Haagsma et al., 2009). 
Because of that, it is not surprising that until now, there is no report of cross-resistance with 
available drugs and that the compound is equally efficient on MDR- M. tuberculosis strains. 
However, the fact that resistant mutants were isolated “in vitro”, having mutations in the 
atpE gene (encoding a subunit of ATP synthase) dampens to some extent the expectation of 
having a novel powerful drug (Koul et al., 2008). TCM 207 has a long half-life in plasma and 
so far, no drug-drug interactions with INH or PZA were detected. Unfortunately, plasma 
levels of TCM207 are reduced to 50% by RIF since it strongly induces a cytochrome P-450 
system (CYP3A4) that metabolizes TCM207, although a great deal of activity is still 
maintained. Thus, in this case, drug-drug interaction may not reach a relevance level that 
would avoid the use of these novel drugs. Addition of TCM207 to standard drug regimes 
improved efficacy of the treatment and specifically synergy with PZA was noticed in a 
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mouse model (Ibrahim et al., 2007; Ibrahim et al., 2009). Promising results were also observed 
in a guinea pig model with sterilization after six weeks of TCM207 monotherapy. Studies on 
human patients revealed good activity but due to the interaction with RIF, TCM207 activity 
is currently addressed in treatments not including this drug. 

Nitroimidazopyrans. The nitroimidazopyrans derive from bicyclic nitroimidazofurans that 
were initially developed for cancer chemotherapy (Stover et al., 2000; Denny and Palmer, 
2010). Their anti-tubercular activity against growing and dormant M. tuberculosis put two of 
these compounds (PA-824, a nitroimidazo-oxazine, and OPC-67683, a dihydroimidazo-
oxazole) into clinical testing (Lenaerts et al., 2005). There is a good deal of information on the 
mechanism of action of PA-824, which is -like several other anti-tubercular agents- a pro-
drug; in this case it is activated by the coupled system glucose-6-phosphate dehydrogenase 
(FDG1)- coenzyme F420 (Choi et al., 2001, Bashiri et al., 2008). Thus, mutations affecting the 
mycobacterial genes fbiA, fbiB, and fbiC cause a defect in coenzyme F420 synthesis and 
subsequently, resistance to PA-824 (Choi et al., 2001; Choi et al., 2002). Also, mutations in 
Rv3547, a deaza flavin dependent nitroreductase, have been described and associated to 
resistance to this compound (Manjunatha et al., 2006). Once activated, PA-824 exerts its 
activity shutting down the synthesis of proteins and cell wall lipids, although it seems that 
the main effect on non replicating bacilli is mediated by generation of reactive NO radical by 
reduction (Singh et al., 2008). As expected from its molecular features and activation step, 
PA-824 shows equal activity of drug susceptible and drug resistant strains with MICs in the 
sub-micromolar order. Importantly, there is no cross-resistance with the classical anti-
tubercular agents. The animal and human clinical studies performed recently asigned good 
pharmacokinetic features to PA-824: in mice it reached high serum concentrations rapidly, 
without any detectable undesired interaction with other anti-tubercular drugs 
(Neumrberger et al., 2006; Gisnberg et al., 2009). Its powerful bactericidal activity puts it in 
the same level of efficacy than INH or RIF, thus converting PA-824 in a surrogate candidate 
to replace RIF in those cases where the M. tuberculosis clinical isolate is resistant to RIF. 
Combined with moxifloxacin, PA-824 showed activity on mouse models of latent 
tuberculosis, which makes this compound a very attractive candidate to treat human latent 
tuberculosis (Singh et al., 2008). In spite of those valuable features, PA-824 failed in 
shortening treatment times, and although it did not display any antagonism, it did not show 
any synergy. 

The second nitropyran, OPC-67683 is also a pro-drug that acts by inhibiting the synthesis of 
two families (methoxy- and keto-) of mycolic acids, essential components of the 
mycobacterial cell wall (Sasaki et al., 2006; Matsumoto et al., 2006). Interestingly, the 
mycobaterial mechanism of resistance to PA-824 is also used to confer resistance to OPC-
67683, thus mutations in the M. tuberculosis Rv3547 gene are also behind the resistance to 
this new inhibitor. There is no drug-drug interaction with any of the currently used anti-
tubercular drugs and recent studies indicate that OPC-67683 has good intracellular killing 
ability and high sterilizing activity even on drug tolerant (persistant) sub-populations of  
M. tuberculosis (Saliu et al., 2007). These features, along with its lack of interactions with the 
liver microsomal enzymes (thus not being affected by them) strenghten the chances of this 
molecule to be added to the therapeutic regime. As a disadvantage, its Early Bactericidal 
Activity is low although along the treatment time this compound exerts a high sterilizing 
activity (Saliu et al., 2007). There is still a long way to go to reach that point and clearly, more 
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evaluation of its activity, adverse effects and drug formulation is required. Nonetheless, 
OPC- 67683 remains as a new choice to treat MDRTb and XDR-TB infections, targeting at the 
same time the dormant and persistant sub-populations. 

Other drugs under study. This brief description is by no means complete and it does not 
intend to describe the whole set of compounds that are being studied by different public 
and private ventures. It only presents those compounds which are already part of clinical 
trials and thus, are the most promising candidates to join the therapeutic anti-tubercular 
regimes. Amongst several other molecules which are under vigorous studies now, we may 
cite proposed inhibitors active on the FASII dehydratase (i.e. NAS 91 and derivatives) 
(Bhowrut et al., 2008), inhibitors of FtsZ, a critical protein involved in cell division (Huang et 
al., 2007; Slayden and Belisle, 2009; Kumar et al., 2010), inhibitors of AccD6, an essential 
acetyl-CoA carboxylase necessary for the synthesis of malonyl-CoA required for fatty acid 
biosynthesis (Lin et al., 2006; Kurth et al., 2009), and compounds such as 1,3-benzothiazin-4-

one (inhibitor of the enzyme decaprenylphosphoryl--d-ribose 2'-epimerase involved in cell 
wall arabinans) (Makarov et al., 2009; Manina et al., 2010), a serious contender to reach the 
podium of novel anti-tubercular medicine. Finally, clinical studies on other novel 
compounds displaying anti-mycobacterial activity are being pursued at different pace, there 
is not enough information available to assess their possible impact; like in the case of SQ109 
(Protopopova et al., 2005; Jia et al., 2005), and pyrrol derivatives such as LL-3858 (Ginsberg, 
2010). 

5. Available drugs that deserve an opportunity 

In the current context of drug development, when the quest is so time consuming and so 
demanding in terms of the funds required, it brings a beacon of light and hope the fact that 
there are some drugs with proven activity against M. tuberculosis that have been in clinical 
use for long time. Although those compounds are effective against different non bacterial 
infections and even on non infectious diseases, the strength of the information gathered 
lately, underscoring the potency of their effect on the tubercle bacilli is impossible to ignore. 
The compounds I am referring to are a- the efflux pumps inhibitors, verapamil and 
reserpine; b- the antifungal azoles, and c- the neuroleptics phenothiazines. A brief overview 
of each of these compounds is given below. 

5.1 Efflux pumps in M. tuberculosis, their role in tolerance to drugs and a simple way 
to prevail over them 

The amazing complexity of mycobacteria reveals at least two mechanisms to undermine the 
power of anti-mycobacterial drugs, one is the intrinsic resistance presented by its cell wall 
envelope, characterized by a very low permeability (Nikaido and Jarlier, 1991; Liu et al., 
1996); the second one is the presence of several systems that actively pump out drugs (De 
Rossi et al., 2002; Viveiros et al., 2003).  

Bacterial drug efflux pumps are classified into five groups, two of them, the ATP-binding 
cassette superfamily and the major facilitator superfamily, contain a large number of 
members while the other three (the small multidrug resistance family, the resistance-
nodulation-cell division family and the multidrug and toxic compounds family) although 
increasing, are less populated. It is not the subject of this manuscript to dissect the molecular 
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biology of those families, but it is one of its goals to mention the role of all those families that 
are represented in the M. tuberculosis genome (as well as in other mycobacterial genomes) in 
the drug discovery process. 

The overall resistance to the drugs that have been part of the classical anti-tubercular therapy, 
share a common characteristic, the existence of a variable percentage of resistant M. tuberculosis 
strains that do not contain mutations neither in the genes identified as molecular targets nor in 
the genes encoding the activators in the case of pro-drugs; so, while mutations in katG and 
ethA (encoding the activator enzymes) and inhA (encoding the target enzyme) cover most of 
the strains resistant to INH and ETH described in the literature, there is a percentage of those 
strains that does not show any mutations in the mentioned genes. The body of evidence 
gathered over the last years, uncovering the role of other genes such as ndh (encoding the 
NADH dehydrogenase) (Miesel et al., 1998; Vilcheze et al., 2005) and mshA, mshB and mshC 
(involved in the biosynthesis of mycothiol) in the resistance to INH and ETH in M. tuberculosis 
and M. smegmatis (Vilcheze et al., 2008, 2011; Xhu et al., 2011) cannot account for a fraction of 
resistant strains that do not have any mutation in those genes. A comparable situation is found 
in the case of the resistance to PZA, another pro-drug which has pcnA as its activator. 
Mutations in this gene, encoding the amidase required to produce the active drug, Pyrazinoic 
acid (POA), accounts for a large fraction of the resistance in M. tuberculosis (Jureen et al., 2008). 
In spite of that, PZA resistant strains without mutation in pcnA have been reported (Raynaud 
et al., 1999). Furthermore, the identification of mmpL7, a lipid transporter, as an efflux pump 
capable of mediating resistance to INH puts forth the role of efflux pumps in the resistance to 
drugs in mycobacteria (Pasca et al., 2005). Thus, the resistance to several anti-bacterial 
(including Streptomycin, Aminoglycosides, Fluoroquinolones, Tetracycline, Rifampicin) and 
anti-tubercular drugs (Ethionamide, Isoniazid, Ethambutol) has been associated to the efflux 
pumps encoded in the mycobacterial genome. This is not surprising considering the number of 
genes encoding efflux pumps in mycobacteria, some of them, such as mmpL7, having a 
physiological role unrelated to antibiotic elimination from the cytoplasm. A relevant point is 
that although some efflux pumps have been characterized, there are few publications 
reporting a comprehensive testing of anti-bacterial and anti-tubercular drugs on efflux pump 
gene expression (Jiang et al., 2008; Gupta et al., 2010), so it is possible that any given pump may 
be involved in resistance to drugs that have not been tested. A second important point is that a 
systematic deletion of efflux pump genes in M. tuberculosis along with examination of the level 
of resistance to tubercular inhibitors has not yet been accomplished. This would be the only 
method that would clearly correlate drug resistance to each efflux pump. Finally, in several 
cases, the identification of M. tuberculosis efflux pumps stems from their molecular cloning and 
expression in a surrogate model (M. smegmatis) which, although similar to M. tuberculosis has 
intriguing differences in the number and nature of these pumps (Liu et al., 1996; Li et al., 2004). 
An example of that is the existence of LfrA, that eliminates Fluoroquinolones from the 
M.smegmatis cytoplasm (Sander et al., 2000). The lfrA gene is not present in the M. tuberculosis 
chromosome; in spite of that, two different systems, one encoded by Rv1634 (De Rossi et al., 
2006), and the second by the operon formed by Rv2686c-Rv2687c-Rv2688c, take part in the 
elimination of Fluoroquinolones in this pathogen (Pasca et al., 2004). 

According to recent literature, there are 15 genes (named mmpL and mmpS) present in the M. 

tuberculosis genome, that are classified as members of the RND family (De Rossi et al., 2006). 
In order to assess the role of those proteins in drug resistance, Domenech et al. constructed 
deletion mutants in each one of the 11 mmpL genes present in the M. tuberculosis genome 
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(Domenech et al., 2005) Interestingly, a previous report by Pasca et al. pointed out that over-
expression of mmpL7 conferred INH resistance to M. smegmatis, a phenotype that decreased 
upon addition of the efflux pump inhibitors, carbonyl cyanide m-chlorophenylhydrazone 
(CCCP), ortho-vanadate, reserpine, and verapamil (Choudhuri et al., 1999, Pasca et al., 2005). 
In spite of this evidence, Domenech et al. reported that the deletion of this gene failed to 
increase the susceptibility to this anti-tubercular drug. Moreover, none of the mmpL genes 
seemed to participate in resistance to drugs, as no compelling decrease in the MICs was 
observed in the M. tuberculosis mutants lacking these genes (Domenech et al., 2005). Current 
evidence favours the idea that mmpL proteins are devoted to the transport of complex lipid 
molecules (Camacho et al., 2001; Converse et al., 2003; Jain and Cox, 2005), thus it is possible 
that because of that function, over-expression of some of these genes (such as mmpL7) may 
affect biophysical characteristics of the cell envelope, leading to a secondary phenotype of 
mild resistance to some anti-tubercular drugs. 

Heavily represented in the mycobacterial genome, ABC transporters account for 2,5% of the 
chromosomal genes (Braibant et al., 2000)(7). Bioinformatic analysis revealed 25 complete 
ABC transporters for which potential substrates could be postulated in many cases, leading 
to the prediction of 9 importers and 16 extruders. Comparison to transporter sub-families in 
other bacteria allowed for the finding of nine of them in M. tuberculosis, of those, three were 
linked to drug transport and one of them was postulated to encode three macrolide 
transporters members (Rv1473, Rv2477 and Rv1667c-Rv1668c) (Braibant et al., 2000). A 
second sub-family grouped four transporters similar to multidrug resistance (MDR) 
proteins of eukaryotes and prokaryotes. Three of them are encoded by two genes arranged 
in tandem (Rv1273c-Rv1272c and Rv1348-Rv1349) while the remaining two transporters are 
encoded by single genes (Rv0194 and Rv1819). Lastly, the third sub-family includes six 
transporters with different gene organization, three containing three genes clustered in the 
genome (drrA-drrB-drrC, Rv1458c-Rv1457c-Rv1456c, Rv2688c-Rv2687c-Rv2686c), two 
formed by two genes (Rv1218c- Rv1217c and Rv1687c- Rv1686c) and one by a single gene 
(Rv1747) (Braibant et al., 2000). The identification of an ABC transporter encoded in the Rv 
2686c-2687c-2688 operon that confers resistance to fluoroquinolones led to explore its 
susceptibility to known inhibitors of transporters systems. Three of the compounds that 
have been mostly used in this analysis are CCCP (a Proton Motif Force uncoupler), 
reserpine (an inhibitor of ATP dependent efflux systems) and verapamil (an inhibitor of the 
mammalian P-glycoprotein drug transporter).  

Like the ABC transporter family, the MSF family is also a large one; early work by de Rossi 
et al.. postulated through bioinformatics, the presence of sixteen candidate genes (Rv3239c, 
Rv3728, Rv2846c, Rv1877, Rv2333c, Rv2459, Rv1410c, Rv1250, Rv1258c, Rv0783c, Rv1634, 
Rv0849 Rv0191,Rv0037c, Rv2456c, and Rv2994) (De Rossi et al.,2002), although cloning and 
expression in the surrogate M. smegmatis of ORFs Rv0037c, Rv0783c, Rv0849, Rv1250, 
Rv1877, Rv2333c, Rv2459, Rv2994, and Rv3239c failed to confer significant levels of 
resistance to a panel of drugs. Surprisingly, expression of the Rv2686c-Rv2687c-Rv2688c 
operon, not included in the list mentioned above, conferred resistance to fluoroquinolones 
in M. tuberculosis (Pasca et al., 2004). It is important to mention that a member of this list, 
Rv1410c (also known as P55 (Silva et al., 2001)), confers resistance to gentamicin, tetracyclin 
and streptomycin when over-expressed and that its function is abrogated by the addition of 
the efflux pump inhibitors verapamil and reserpine. In agreement with the proposed role, 
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work carried out by Ramon-García et al. showed that the deletion of Rv1410c caused 
increased susceptibility to rifampicin, novobiocin, vancomycin and econazole (Ramon-
Garcia et al., 2009). Importantly, those authors found out that the M. tuberculosis P55 knock-
out mutant became more susceptible to oxidative stress and failed to form normal size 
colonies, stressing the key role of this protein in the proper assembly of the cell envelope. 
These results were very recently confirmed by Bianco et al.. who demonstrated that the 
LprG-P55 operon is required for proper cell wall assembly (Bianco et al., 2011). 

Intriguingly, only one gene (mmr) belonging to the SMR (Small Multidrug Resistance 
Family) family and related to drug efflux (in this case Erythromicin) has been located in the 
M. tuberculosis chromosome (De Rossi et al., 1998).  

Finally, to add more complexity to the already intricate scenario, Stephan et al. reported that 
the loss of MspA, a major porin of M. smegmatis determined an increase in the resistance to 
large antibiotic molecules such as rifampicin, vancomycin and erythromicin, results that 
support the hypothesis that the loss of this porin reduces the permeability of the 
mycobacterial cell envelope (Stephan et al., 2004). 

Thus, although still partial, the knowledge gathered over the last years on the mycobacterial 
efflux systems points out that even being accessories to the main mechanisms of resistance, 
efflux pumps play a role in resistance to anti-tubercular drugs, several of those pumps are 
inhibited by reserpine and/or verapamil, drugs with an extensive history of use in human 
patients. With that information, novel strategies based on using the mentioned inhibitors 
associated to anti-tubercular drugs would have been a logic continuation at the level of basic 
research as well as of clinical trials. Thus, it is surprising that no studies on this topic were 
carried out until very recently when a paper by Ramakrishnan´s group pointed out that the 
mycobacterial efflux pumps are responsible in part for the drug tolerance in a zebrafish 
model of infection (Adams et al., 2011). One of such efflux pumps, encoded by the gene 
Rv1258c, is induced upon macrophage infection, leading to a RIF tolerance phenotype. A 
mutant strain carrying a transposon insertion in that gene displayed susceptibility to RIF in 
a macrophage infection model. Verapamil and reserpine are anti-hypertensive drugs that 
can destroy the activity of mamalian and bacterial efflux pumps, an unexpected side effect 
(so far without a clear mechanism of action) to their usual clinical use. The treatment of M. 

tuberculosis–infected macrophages with reserpine abolished the tolerance to RIF (Adams et 

al., 2011). Thus even when not every M. tuberculosis efflux pump system is inhibited by 
reserpine or by verapamil, the use of those compounds and/or any other new inhibitor of 
efflux pumps may decrease the tolerance to drugs, and shorten the treatment. Although 
more work is required to study drug-drug interactions and determine the optimal dosage of 
these anti-hypertensive drugs, it seems to be a promising and fresh starting point. 

5.2 Azoles, antifungal drugs with a taste for tuberculosis 

The sequencing of the genome of M. tuberculosis H37Rv was source of numerous surprises: 
one of which was the identification of a set of 20 genes enconding Cytochrome P450 
(CytP450) dehydrogenases (Cole et al., 1998). This large number is not exclusive of  
M. tuberculosis as there is a comparable number both in related slow growers such as M. 
bovis, as well as in the saprophytic fast-grower M. smegmatis that encodes 26 CytP450 genes. 
A similar collection is present in non mycobacterial Actinomycetes such as Streptomyces; 
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interestingly, M. leprae, the pathogenic mycobacterium that excelled in genome decay, has 
only one cyp gene (Cole et al., 2001). Bioinformatic analysis also showed the presence of four 
genes (CYP121A1, CYP128A1, CYP141A1, CYP135A1) that seem to be unique to the  
M. tuberculosis complex.  

The function of these enzymes is complex and versatile. The typical P450 reaction is a mono-
oxygenation in which one of the oxygen atoms of molecular oxygen is inserted into an 
organic substrate while the second oxygen atom undergoes reduction to water. In spite of 
that, there are other P450- catalyzed reactions, including heteroatom oxidation and 
epoxidation. The observation that the M. tuberculosis was unusually rich in genes encoding 
enzymes that would be involved in fatty acid modification and degradation, coexisting with 
the large repertoire of CYP450 dehydrogenases led researchers to hypothesize that at least 
some of these would be involved in fatty acid metabolism. However, only one, CYP51B1, 
could be classified considering its important sequence homology to eukaryotic CYP51 

enzymes as well as because of its sterol 14-demethylase catalytic activity. Curiously, 
excepting CYP135A1 and CYP135B1, which show 40% identity, the remaining  
M. tuberculosis P450 enzymes display much less similarity (around 30%). In agreement with 
the idea explicited above, several of the M. tuberculosis P450 enzymes have similarities with 
isoprenoid and fatty acid hydroxylases although functional assays must be performed to 
confirm the bioinformatics analysis. 

A genomic approach based in the analysis of transposon insertion sites (TRASH) suggested 
that only one gene (cyp128A1) was essential for “in vitro growth” (Sassetti et al., 2003), result 
that was not confirmed by a second independent analysis (Lamichhane et al., 2003). 
However, evaluation of the M. tuberculosis transposon mutants able to replicate in a mouse 
infection model picked cyp125A1 as the only cyp gene needed for a successful mycobacterial 
propagation (Sassetti et al., 2001). Although cyp121A was placed in a list of essential genes 
by specific gene deletion these results were opposed by reports indicating that several 
clinical isolates were mutated in cyp121A (Tsolaki et al., 2004) The controversy on the results 
obtained through those approaches raised again when it was reported that none of the cyp 
genes was essential for growth inside macrophages. Nonetheless, transposon insertions in 
six cyp genes (cyp121A1, cyp123A1, cyp125A1, cyp127A1 cyp128A1 and cyp137A1) have 
variable impact on mycobacterial attenuation. Unfortunately, the substrates for these 
enzymes have been identified in very few cases; in example, the analysis of CYP121A 
revealed that it intervenes in the synthesis of a L-tyrosine-L-tyrosine cyclic dipeptide of 

unknown function. A second case is CYP51B, that shows homology to and activity of 14-
sterol demethylases, an intriguing observation considering that M. tuberculosis does not have 
a complete sterol biosynthetic pathway in which those enzymes are found. Both CYP125A 
and CYP128A1 have also been associated to mycobacterial metabolic processes, the first one 
taking part in the degradation of host cholesterol used by M. tuberculosis during infection, 
and the second one hydroxylating an isoprene unit in the synthesis of a mycobacterial 
sulfolipid (Rengarajan et al., 2005; Holsclaw et al., 2008). Again, opposing results have been 
produced, as this sulfolipid is critical for virulence but not for “in vitro” growth in spite of 
results from TRASH experiments that indicated an essential role for growth under 
laboratory conditions (Sassetti et al., 2003)  

Less characterized, other CYPs such as CYP123A1 seem to be under the control of the PhoP- 
PhoR operon, a two component system which is strongly involved in virulence to the point 
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that a mutation in it is the basis of the lack of virulence of M. tuberculosis strain H37Ra. The 
remaining CYPs have not been studied to a point at which significant conclusions may be 
drawn. Most of the inferences come from analysis of gene location and the nature of nearby 
genes, evaluation of essentiality by TRASH analysis (although for some genes these results 
did not match the ones produced by specific gene knock-out), distribution through the 
mycobacterial genus and other actinomycetes, and biochemical studies.   

Regardless of the level of information on mycobacterial CYPs, there is interest on them after 
the report that azoles, drugs with anti-fungal activity and decades of clinical use, are active 
on M. tuberculosis and other mycobacteria. During analysis of drug able targets in M. 
tuberculosis, six of the top eight genes picked up were the P450 enzymes CYP123A1, 
CYP124A1, CYP125A1, CYP130A1, CYP140A1 and CYP142A1; moreover, CYP126A1, 
CYP128A1 and CYP51B1, were placed within the top candidate enzymes, thus nine out of 20 
M. tuberculosis Cyt P450 enzymes were positioned at the top of a list of drug targets (Aguero 
et al., 2008). It is reasonable to expect that there will be a great deal of research on this 
subject.  

As was mentioned above, the discovery of CYP51B1, a M. tuberculosis enzyme homologous 

to the fungal sterol 14-demethylase led to the tempting hypothesis that antifungal azole 
compounds might also target CYP51B1 and other P450 enzymes with lethal effects for the 
pathogen. In a short time, the anti-mycobacterial activity on M. tuberculosis was 
demonstrated on “in vitro”, “ex-vivo” and “in vivo” assays (Ahmad et al., 2005; Ahmad et 

al., 2006 a,b,c) (3-6). Moreover, azoles were active on M. smegmatis, with loss of 
glycopeptidolipid (GPLs) biosynthesis (Burguiere et al., 2005. Unfortunately there are 
several inconsistent issues in those results: in first place, GLPs are not essential components 
of M. smegmatis as knock-out of the pathway render viable cells with an altered envelope 
(Deshayes et al., 2010). In second place, GPLs are not present in M. tuberculosis suggesting 
different target(s); in last place Fluconazole, an azole with the highest binding to CYP121A1 
is inactive on M. tuberculosis although it is very active on fungi. More conflicting data 
suggesting target(s) other than CYPs for azole drugs stem from microarray analysis 
comparing a wild-type strain to a bifonazole-resistant strain; the study showed no induction 
of any CYP gene upon treatment with bifonazole (Milano et al., 2009). Instead, three genes 
(Rv0678, Rv0677c and Rv0676c), showed higher levels of expression in the Bifonazole 
mutant compared to the wild-type strain. Not surprisingly, Rv0677c and Rv0676c encode 
the membrane proteins MmpS5 and MmpL5, predicted to be RND family of transporters, 
and therefore, very likely involved in mediating resistance to azoles by efflux of the drug 
(Milano et al., 2009). In agreement with those results, Milano et al. confirmed the 
involvement of efflux pumps in the resistance to azoles by selecting and sequencing azole-
resistant mutants of M. tuberculosis and M. bovis var BCG; their results proved that over-
expression of mmpS5-mmpL5 were responsible for the resistance phenotype. This pump was 
susceptible to CCCP, as this treatmente reduced the resistance to azole drugs back to wild-
type levels. Moreover, sequencing of cyp encoding genes failed to show any mutation in a 
M. bovis var BCG mutant resistant to the azole drug bifonazole. In summary, there is no 
proof of a direct link between azole drugs and the inhibition of CYPs as a mechanism of 
action. Nonetheless, it is possible that additive inhibition of those non-essential CYP targets 
may bring the accumulation of growth inhibitory intermediates and /or depletion of cellular 
metabolites of importance. 
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Although azoles have the great advantage of a large body of information in humans, they 
also have the disadvantage of their low oral bioavailability, generating a proposal of their 
use in encapsulated form. They also have a noticeable impact on human metabolism 
through the inhibition of the liver P450 enzymes, thus drug-drug interactions and changes 
in pharmacokinetics and metabolization of drugs are expected. 

In summary, having a relatively high number of azole compounds with therapeutic use in 
humans, the fact that there is no known target(s) and thus mechanism(s) of action for those 
drugs, dims the initially bright possibility of adding them to the anti-tubercular drug 
portfolio. The simplicity and relative low cost of the currently existing whole genome 
sequencing techniques should be used to address those points by analyzing azole-resistant 
M. tuberculosis mutants, most likely selecting them in the presence of efflux pump inhibitors.  

5.3 The thioridazine story (or how perseverance is also an essential tool for  
anti-tubercular drug discovery) 

In the quest for novel drugs with improved killing activity against M. tuberculosis, a number 

of non-antibiotic molecules have been tested; among them, some compounds that displayed 

a surprisingly high killing activity belonged to the family of anti-psychotic drugs. Original 

work carried out by Ehrlich at the end of the 19th. century led to the discovery of the anti-

bacterial and neuroleptic activities of methylene blue, a phenothiazine; later on, its activity 

on the central nervous system was privileged, leading to the synthesis of chlorpromazine as 

reviewed by Kristiansen, 1989. Paradoxically, anti-bacterial activity of this compound was 

again proven over the following years but left aside due to the large number of antibiotic 

options that were marketed at that time as well as due to the strong toxic side effects 

displayed in large treatments. Although the introduction of the less toxic compounds 

thioridazine and promazine decreased the toxicity problem, there was no interest in 

applying these kind of molecules to the treatment of bacterial infections. The emergence of 

multi-drug resistant M. tuberculosis strains triggered an urgent search for new compounds 

that could kill those strains efficiently. Thus, research on phenothiazines was embraced by a 

few investigators that were convinced of the possible uses of that family of drugs (Amaral 

and Kristiansen, 2000; Kristiansen and Amaral, 1997; Viveiros and Amaral, 2001; Amaral et 

al., 2004). Even when the concentration of phenothiazines needed to kill M. tuberculosis “in 

vitro” were several times higher than the one reached in plasma of patients (20 g/ml vs 0.4 

g/ml), the observation that these compounds were concentrated by macrophages, 

suggested that a balance could be obtained between the intracellular concentration reached 

and the concentration required to destroy M. tuberculosis phagocytosed by the macrophages 

(Crowle et al., 1992; Ordway et al., 2003). It was indeed so, as proven by Crowle´s group, and 

that helped to potentiate the research of a few groups that enthusiastically showed 

thioridazine as the phenothiazine with the highest killing effect and the lowest toxicity 

(Amaral et al., 1996, 2008; Viveiros et al., 2005; Crowle et al., 1992). Moreover, it was clearly 

demostrated that this compound was active on MDR-TB and XDR-TB residing inside the 

macrophages, needing to be present at such a low concentration (0.1g/ml) that it was 

devoid of toxicity. The obvious disadvantage of the requirement for a much higher 

concentration of thioridazine to kill extracellular M. tuberculosis when lung damage is 

produced may be easily compensated by the use of other drugs much more active on those 
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extracellular bacilli. Even when the infecting strain is a MDR-TB or a XDR-TB strain, 

thioridazine may be teamed up with some of the novel drugs described in previous sections, 

drugs that either overcome the resistance mechanisms or target totally new targets and 

pathways. It is highly promising that Martins et al. has published an article describing the 

action of several derivatives of thioridazine showing extreme ability to kill intracellular M. 

tuberculosis at low dose and needing only one day to do so, contrasting with the three days 

required for the same level of action by thioridazine (Martins et al., 2007). Almost 

simultaneously, Bate et al. described novel synthetic derivatives of promethazine and 

promazine; those compounds were not only effective on actively growing M. tuberculosis but 

also on latent M. tuberculosis (Bate et al., 2007).  

In terms of the identification of the molecular mechanisms of action and mycobacterial 
components targeted by phenothiazines, its has been shown time ago, that these compounds 
can inhibit efflux pumps at concentrations lower than those required to inhibit 
mycobacterial growth (Amaral et al., 2007, 2008, 2010); one of such inhibited efflux 
mechanisms may lead to the build up of calcium and potassium ions in the phagosome, 
reverting the mycobacterial driven block to the action of hydrolyases and other calcium-
dependent macrophage mechanisms which in turn may destroy the bacilli (Martins et al., 
2008, 2009)). Rubin´s group demonstrated the inhibition of the type II NADH-menaquinone 
oxidoreductase (NDH-2), an essential enzyme of the M. tuberculosis respiratory chain, by 
thioridazine and derivatives; its inhibition leads to a blockade in the electron chain 
transport, thus it is most likely the most important target for these compounds (Weinstein et 
al., 2005). Ndh-2 is the only NADH dehydrogenase enzyme expressed in this pathogen, 
importantly it is absent in humans that rely on the type 1 Ndh enzyme. Biochemical, 
transcriptional and genetic analysis supports the vital role played by Ndh-2 (Yano et al., 
2006). At the light of the published information regarding the multiple targets for 
thioridazine, the synthesis of less toxic derivatives and the fact that these compounds are 
concentrated in the macrophages, it is reasonable to consider these molecules as promising 
compounds that would become not only drugs by themselves but helpers to other drugs 
due to the inhibition of the mycobacterial efflux pumps.  

As has been stated by Amaral et al., early work from Kristiansen (Kristiansen and Amaral, 
1997) postulated that neuroleptics such as thioridazine and chlorpromazine, displayed anti-
bacterial activity by affecting an unknown cell membrane process. Kristiansen went even 
further coining in 1990 the term “non-antibiotic” to define “medicinal compounds that are 
used for the treatment of non-infectious pathologies and which also have anti-microbial 
activity”. With tremendous perseverance, Amaral and co-workers have been supporting 
neuroleptics as drugs that may be used for compasionate reasons in cases of human 
tuberculosis that are of bad prognosis and difficult treatment due to drug resistance. These 
researchers insisted for more than ten years that the neuroleptics described above had 
enough activity per se and as “helpers” to be included in the clinical treatment of 
tuberculosis (Amaral et al., 2004, 2007a, 2007b, 2008, 2010, Martins et al., 2007a,b, 2008; 2009; 
van Ingen et al., 2009, Viveiros and Amaral, 2001; Viveiros et al., 2003, 2005, 2010). 
Notwithstanding the body of evidence gathered by them, there has been little receptiveness 
by the pharmaceutical industry and public health organisms, leading Amaral to put out his 
frustration through a paper bearing a very challenging title: “Thioridazine cures extensively 
drug-resistant tuberculosis (XDR-TB) and the need for global trials is now!” (Amaral et al., 
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2010). Furthermore, their latest work in association with the groups of Dick van Soolingen 
and Rogelio Hernandez- Pando demonstrated the effectiveness of thioridazine in a mouse 
model of multi-drug resistant M. tuberculosis infection (van Soolingen et al., 2010). Since as 
has been put forward by Amaral and co-workers, thioridazine and similar molecules 
already in the market may be described as antipsychotic drugs that are still protected by 
patents as “new use” (Amaral and Molnar, 2010; Dutta et al., 2011), there are good chances 
that the actors involved at both public health organizations and private partners will take 
this matter to a step where these neuroleptics are tested throughout the world. 

6. The choice: Broad screening of chemical libraries or rational design based 
on molecular targets 

Along the sections of this chapter I have briefly described the mechanisms of action of 
several drugs that inhibit growth or kill M. tuberculosis. Two opposite approaches for the 
goal of obtaining new anti-tubercular medicines are based a- on the biological screening of 
large size chemical libraries (Maddry et al., 2009; Anathan et al., 2009) and b- on structure 
based design by means of molecular modelling of chemical compounds on the structure of 
the enzyme under study (Arcus et al., 2006). In between these two options, a third one is to 
produce derivatives of compounds with known activity and mechanisms of action (such as 
ISO) but without having structural information of the target enzyme. From the specific anti-
tubercular compounds currently used in clinical practice, INH, ETH and PZA have been 
used as scaffolds for rational drug design. On the basis of the understanding of the nature of 
the lethal event, different approaches were taken towards that end; i.e. through an increased 
conversion of the pro-drug to the active drug (ETH boosters), through the inhibition of the 
identified target by a different molecule not requiring activation (aryl alkyl ethers inhibitors 
of InhA) or modification of the lead compound (PZA and 5-Cl PZA). The identification of 
essential mycobacterial enzymes and their intensive characterization at the biochemical and 
structural level led to propose compounds with activity in the case of cell division (FtsZ) 
and fatty acid biosynthesis (AccD6). Notwithstanding that, all the compounds that are 
under phase I and II clinical testing (PA-824, TMC207, LL3858, SQ109 and OPC-67683) have 
been identified by broad screening (Spiegelman, 2007), although in the case of one of them, 
OPC-67683, the search was oriented to compounds with a defined mode of action, the 
inhibition of synthesis of mycolic acid. 

So, although logic should have tip the balance towards the utilization of structure-based 
methods, there is a bias towards screening of libraries of chemical compounds by high 
throughput methods looking for whole-cell or “in vitro” enzyme inhibition.  

7. Summary 

There are several reviews in the literature that describe the mechanisms of action of anti-
tubercular drugs currently in clinical use, and also a large number of publications 
summarizing the quest for new drugs and the nature of the novel compounds that may be 
added to the anti-tubercular treatment in short time. The objective of this review is different 
from that, and although I have offered a brief account of the recent developments in the 
field, commenting on the two main approaches (broad screening vs structure-based design) 
for anti-tubercular drug development, I have chosen to focus on few compounds to 
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demonstrate that there are drugs already produced at pharmaceutical industry levels 
(namely azole drugs, verapamil, reserpine, and thioridazine) with a large history of use in 
humans –therefore providing rich information on adverse effects, pharmacokinetics, 
pharmacology, etc- which are effective on M. tuberculosis, not only on pan-susceptible strains 
but also on MDR-TB as well as on XDR-TB strains; moreover, the effect of some of those 
drugs reaches as far as the latent population of this pathogen. The fact that the mentioned 
compounds have already been approved for human use by regulatory agencies shortens the 
time for the evaluation of their new uses as many aspects have already been addressed. 
Thus we have a unique opportunity to seize, concentrating effort at academic laboratories to 
increase our understanding on mechanisms of action of these compounds as well as learning 
about the ensuing mechanisms of resistance in mycobacteria, testing drug –drug interactions 
and generating the comprehensive body of knowledge needed to incorporate these drugs to 
the anti-tubercular portfolio. On a personal basis, I strongly believe that coordinated effort 
on those compounds by research groups may produce at last the addition of the mentioned 
drugs to clinical treatment, helping to stop the spreading of human tuberculosis. It is 
possible that by taking a bold decision on those issues, we will reach our El Dorado: new 
drugs to defeat tuberculosis.  
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