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1. Introduction 

Chemotherapeutic cure for about 40,000 years old lethal disease – TB (Callaway, 2008), was 
started mere ~65 years ago, with the discovery of antibiotic- streptomycin. A few effective 
drugs against TB have been developed since then and have been classified mainly as first-
line (viz. rifampicin, isoniazid, pyrazinamide and ethambutol) and second-line drugs (e.g. 
ciprofloxacin, levofloxacin, cycloserine, clofazimine etc.). Drugs like rifambutin, 
clarithromycin and linezolid may be considered as “third line” drugs. The current course of 
therapy with the first-line TB drugs is more than 40 years old and is slowly becoming 
outdated due to emergence of multidrug-resistant tuberculosis (MDR-TB, resistant to the 
two first line drugs) and extensively drug-resistant tuberculosis (XDR-TB, an MDR-TB that 
is resistant to fluoroquinolones and also to any one of the three injectable second- line drugs: 
amikacin, capreomycin or kanamycin) (World Health Organisation, [WHO], 2011). 
Treatment with the second line drugs is limited due to the associated toxicity which halts 
therapy prior to cure in more than half of the patients suffering from serious side effects. 
The “third line” drugs have issues of proven efficacy/effectiveness and impractical cost. 
Longer duration of treatment, usually for six months, with complex regimens leads to poor 
compliance. Although poor compliance can be managed to great extent by Directly 
Observed Treatment, Short course (DOTS) launched by World Health Organization (WHO); 
but that is possible practically in developed countries only where manpower along with 
financial needs are met adequately. Apart from these problems, during this long treatment 
period, the patient and one’s family suffer from socioeconomic problems, whereby 
psychological issues such as risk of depression come in picture. Side effect(s) of drugs, due 
to long treatment, is another major concern.  

Researchers have been trying to find out the answer for why the TB treatment is so long and 
complex. McCune et al found considerable difference in the efficacy of drugs against 
Mycobacterium tuberculosis (Mtb) in vitro and in vivo (McCune & Tompsett, 1956; McCune et 
al 1956). However, other researchers (Barclay et al. 1953; Clark, 1985) showed that 
bioavailability is not a concern. It was proposed that this persistence of Mtb might be due to 
physiologic heterogeneity of bacteria in the tissues (Mitchison, 1979; Handwerger & 
Tomasz, 1985). 
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Mitchison found that the lesions have at least four different populations of Mtb: 

a. Actively growing bacilli: can be killed by isoniazid  
b. Bacilli with spurts of metabolism: can be killed by rifampicin 
c. Bacilli with low metabolic activity (reside in acidic pH environment): can be killed by 

pyrazinamide 
d. Dormant bacilli: not killed by any existing drug/regimen. 

The actively multiplying bacilli are killed in the first 2 days, the remaining are dormant, 
which are sterilized very slowly by the existing drugs and thus the treatment period is 
stretched so long (Jindani et al., 2003).  

Bacillus Calmette Guerin (BCG), the only approved vaccine for TB in humans, contains 
attenuated strain of M. bovis. It is generally considered safe; however this vaccination may 
lead to TB infection in immunocompromised individuals. Moreover, BCG only reliably 
protects against tuberculosis in newborns and fails in adult pulmonary tuberculosis, the 
most prevalent form (Kaufmann, 2011). 

Due to the associated global health and socioeconomic concerns, the increasing rates of 
MDR-, XDR-TB, and TB-HIV coinfection, the discovery and development of potent new 
anti-TB agent(s), without cross-resistance with current antimycobacterial drugs, is urgently 
needed. 

This chapter includes brief discussion on existing TB drugs and covers a comprehensive 
picture of the anti-TB drug discovery status heading to achieve a goal of better 
drugs/regimen in terms of the desired properties stated above. 

2. Existing TB drugs 

After the discovery of Streptomycin in 1944, 15-20 antimycobacterial drugs have been 
approved and used for TB therapy according to the need, availability, cost and safety 
profile. These existing TB drugs can be classified into first line, second line and third line 
drugs (also summarized in Tables 1-3). 

2.1 First line drugs  

2.1.1 Rifampicin, RMP or R 

Rifampicin was discovered in 1966. It is a semisynthetic, intensely red coloured bactericidal 
antibiotic (MIC 0.05-0.5 g/mL) derived from Amycolatopsis rifamycinica. Its penetration to 
cerebrospinal fluid makes it useful to treat tuberculosis meningitis (Nan et al, 1992). RMP, 
should be used in combination with other antibiotics as resistance develops quickly during 
monotherapy. RMP may be excreted in breast milk, therefore breast feeding may be avoided 
during treatment. However no serious side effects have been observed in breastfed infants 
during RMP therapy (Peters & Nienhaus, 2008; Drobac et al 2005). 

2.1.1.1 Mode of action  

RMP inhibits DNA-dependent RNA polymerase in bacterial cells by binding its ǃ-subunit, 
thus preventing transcription to RNA and subsequent translation to proteins (Aristoff et al, 
2010; Tomioka, 2006). RMP-resistant bacteria produce RNA polymerases with subtly 
different ǃ subunits which resists drug-inhibition (O'Sullivan et al, 2005)  
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2.1.1.2 Dosing 

Daily regimen 10 mg/kg (up to 600 mg/day) orally or intermittent regimen 10 mg/kg (up 
to 600 mg/day) orally, are prescribed. (The American Thoracic Society [ATS], 2006).  

2.1.1.3 Adverse effects 

The main target organs for side effects of RMP are the liver and the gastrointestinal system. 
Adverse effects include hepatitis with elevation of bile and bilirubin concentrations, 
anaemia, leucopenia, thrombocytopenia, bleeding, febrile reaction, eosinophilia, leucopenia, 
thrombocytopenia, purpura, haemolysis and shock, and nephrotoxicity (International 
Programme on Chemical Safety [INCHEM] a). 

2.1.1.4 Pharmacokinetics  

The half-life of RMP is generally 2 h (Acocella, 1978). Its absorption is not affected by 
antacids (Peloquin et al., 1999 a). RMP ester function is hydrolyzed in the bile by esterase 
catalyzed high pH. The deacetylated form of RMP can not be absorbed by the intestine and 
thus eliminated from the body.  

2.1.1.5 Interactions 

Absorption of RMP is considerably hindered when it is combined with another anti-TB 
drug, 4-aminosalicylic acid (PAS). Therefore, these two anti-TB drugs must be administered 
separately (8 to 12 hours interval). RMP affects metabolism of several known drugs, viz. 
warfarin, oral contraceptives, cyclosporine, itraconazole, digoxin, verapamil, nifedipine, 
simvastatin, midazolam and HIV protease inhibitors. Other drugs for possible interactions 
include clarithromycin, lorazepam atorvastatin, antiretroviral agents, 
rosiglitazone/pioglitazone, celecoxib, caspofungin (Baciewicz et al., 2008). 

2.1.2 Isoniazid, INH or H 

INH (isonicotinylhydrazine) was discovered in 1952. It is bactericidal (MIC 0.01-0.2 g/mL) 
to fast replicating mycobacteria (Singh & Mitchison, 1954) but is bacteriostatic to slow-
growing mycobacteria. Since the bacteria may exist in a non growing state (latent) for long 
periods, therapy for latent tuberculosis with INH is continued for a longer duration (6-12 
months). However, INH monotherapy is never recommended to treat active tuberculosis 
due to the development of resistance.  
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2.1.2.1 Mode of action  

INH itself is a prodrug and is activated by mycobacterial catalase-peroxidase enzyme KatG 

which catalyzes the formation of isonicotinic acyl-NADH complex from isonicotinic acyl 

and NADH. This complex then binds to the enoyl-acyl carrier protein reductase known as 

InhA, consequently blocking the natural substrate enoyl-AcpM and fatty acid synthase. This 

results in inhibition of mycolic acid synthesis which is essential for the mycobacterial cell 

wall formation. A direct role for some INH-derived reactive species, such as nitric oxide, in 

inhibiting mycobacterial metabolic enzymes has also been shown (Timmins & Deretic, 2006; 

Suarez et al., 2009). 

2.1.2.2 Metabolism 

INH is metabolized in liver and its metabolites are excreted in the urine with 75 to 95% of 

the dose excreted in 24 hours (Ellard & Gammon, 1976). 

2.1.2.3 Dosing 

In adults, the recommended dose is 5 mg/kg/day (max 300 mg daily). For intermittent 

dosing (twice or thrice/week), 19-15 mg/kg/day (max 900 mg/day) is a standard dose. For 

patients with slow clearance of INH are put on reduced dosages. The recommended dose 

for children is 8 to 12 mg/kg/day (McIlleron et al., 2009; [ATS], 2006). 

2.1.2.4 Adverse effects 

INH causes acute toxicity in the CNS. It induces generalized convulsions, coma and 
metabolic acidosis. Death may occur from acute respiratory failure or hypotension. Liver, 
peripheral nervous and haematologic systems are the main target organs of INH chronic 
toxicity resulting in acute hepatitis, peripheral neuropathy, haemolytic anaemia (INCHEM, 
b). Vitamin B6 (10–50 mg/day) supplements are suggested to compensate its (Vitamin B6) 
depletion during treatment which may lead to peripheral neuropathy and CNS related side 
effects (Yamamoto et al., 2011).  

2.1.3 Pyrazinamide, PZA or Z 

PZA was discovered in 1952. It acts mainly as bacteriostatic agent but can be bactericidal for 

replicating Mtb. Its MIC is 20-100 g/mL at pH 5.5 or 6.0. This drug is used in the first two 
months of treatment to shorten the duration of treatment, since regimens not containing 
PZA must be taken for nine months or more (Hong Kong Chest Service [HKCS]/ British 
Medical Research Council [BMRC], 1981). PZA crosses meninges and thus is effective for the 
treatment of tuberculous meningitis (Donald & Seifart, 1988). 
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Pyrazinamide 

2.1.3.1 Dosing  

20–25 mg/kg daily or 30–40 mg/kg thrice a week is a recommended dose. ([ATS], 2006). 

2.1.3.2 Pharmacokinetics 

PZA is well absorbed orally. It is metabolised by liver and the metabolic products are 

excreted by kidneys (Lacroix et al, 1989). The overall pharmacokinetics may differ in 

childrens (Arya et al., 2008). 

2.1.3.3 Mode of action 

PZA is actually a prodrug. In acidic conditions, the enzyme pyrazinamidase (present in 

Mtb), converts it to the active form, pyrazinoic acid which consequently inhibits the enzyme 

fatty acid synthase (FAS) I, required by the bacterium to synthesise fatty acids (Zhang & 

Mitchison, 2003; Zimhony et al., 2007). Mutations of the pyrazinamidase gene (pncA) are 

responsible for PZA resistance in Mtb (Scorpio & Zhang, 1996) 

2.1.3.4 Adverse effects 

Some common adverse effects of PZA treatment include hepatotoxicity, joint pains 

(arthralgia), nausea, vomiting, anorexia, sideroblastic anemia, skin rash, hyperuricemia, 

dysuria, urticaria, pruritus, interstitial nephritis, malaise, porphyria and fever (rare) (Forget 

& Menzies, 2006). 

2.1.4 Ethambutol, EMB or E 

EMB was discovered in 1961 by Lederle Laboratories. It is a bacteriostatic drug. In spite of a 

relatively modest MIC of 10 M like PZA, it is a useful drug for tuberculosis chemotherapy, 

partly because of very low toxicity and relatively few side-effects (Wilkinson et al., 1961; 

Thomas et al., 1961). 

 

 

 

 

Ethambutol 

2.1.4.1 Adverse effects 

Adverse effects may include peripheral neuropathy, red-green color blindness, arthralgia, 
hyperuricaemia, vertical nystagmus and optic neuritis (Lim, 2006).  

N
H

H
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2.1.4.2 Mode of action 

It blocks formation of Mtb cell wall by interfering in the synthesis of arabinogalactan (an 

essential component for the formation of mycolyl-arabinogalactan-peptidoglycan complex 

of the Mtb cell wall) via inhibiting the enzyme arabinosyl transferase (Belanger et al., 1996; 

Wiles & Jacobs Jr, 1997).  

2.1.4.3 Pharmacokinetics 

It is well absorbed in the gastrointestinal tract, and well distributed in body tissues and 
fluids. 50% of the given dose is excreted unchanged in urine (Peloquin et al., 1999 b). 

 

Drug Mode of 
Action 

Target  Daily Dose 
(Max. Dose) 

Possible adverse reactions 

Rifampicin 

NH

O
OH

N
O

OH

O

N

O

HO

H

O

NOH
O

O
OH

 

Inhibits 
RNA 
synthesis 

RNA 
polymerase 
beta subunit

10mg/kg 
(600 mg/day)

Pruritus, rash, flushing, 
redness and watering of eyes, 
breathlessness, nausea, 
vomiting, abdominal cramps, 
diarrhea, jaundice, hepatitis, 
liver failure (rare and in severe 
cases), chills, fever, headache, 
arthralgia, and malaise 

Isoniazid 

N

H
N

NH2

O

 

Inhibition 
of cell wall 
formation 

Acyl carrier 
protein 
reductase 

5 mg/kg/ 
day (300 mg 
daily) 

Rash, hepatitis, sideroblastic 
anemia, metabolic acidosis, 
peripheral neuropathy, mild 
central nervous system (CNS) 
effects, intractable seizures 
(status epilepticus), headache, 
poor concentration, weight-
gain, poor memory, and 
depression 

Pyrazinamide 

N

N
NH2

O

 

Disruption 
of 
membrane 
transport 
and energy 
depletion 

Membrane 
energy 
metabolism 

20–25 mg/kg 
daily 
(30 mg/kg) 

Hepatotoxicity, joint pains 
(arthralgia), nausea, vomiting, 
anorexia, sideroblastic anemia, 
skin rash, hyperuricemia, 
dysuria, urticaria, pruritus, 
interstitial nephritis, malaise; 
porphyria 

Ethambutol 

N
H

H
N

OH

 

Inhibition 
of cell wall 
formation 

Arabinosyl 
transferase 

15 mg/kg 
daily 
(25 mg/kg) 

Peripheral neuropathy, color 
blindness, arthralgia, 
hyperuricaemia, vertical 
nystagmus and optic neuritis. 

Table 1. First Line Drugs 

2.2 Second Line Drugs (SLDs) 

A drug may be categorized as second (or as third) line if it includes one or more of the 
following: i. it has side-effects beyond a tolerance threshold (e.g., cycloserine), ii. its 
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administration is not oral and at the same time (sub)equivalent/better affordable oral 
medications are available, iii. it is less effective than the first-line drugs (e.g., p-
aminosalicylic acid); iv. its cost is impractical for routine treatment. 

2.2.1 Classification of SLDs 

The available second-line TB drugs (SLDs) can be classified as: 

1. Aminoglycosides: e.g. amikacin (AMK), kanamycin (KM), gentamicin etc; 
2. Polypeptides: e.g., capreomycin, viomycin, enviomycin; 
3. Fluoroquinolones: e.g., ciprofloxacin (CIP), levofloxacin, moxifloxacin (MXF); 
4. Thioamides: e.g. ethionamide, prothionamide 
5. Oxazolidinone: (Cycloserine, the only antibiotic in its class); 
6. p-Aminosalicylic acid (PAS or P). 

Details of some of these SLDs are provided in the table 2. 

2.3 Third line drugs 

Apart from the reasons listed under second line drugs, a drug may be considered as a third 

line if it is useful but lacks sufficient efficacy proofs. Rifabutin, macrolides: (e.g., 

clarithromycin), linezolid, thioacetazone, thioridazine, arginine, vitamin D may be 

considered as third line antituberculosis drugs. 

 

Drug 
(Discovery) 
Route 

Structure Mode of Action 
 

 Daily Dose 
(Max. Dose) 

Adverse effects 

Amikacin 
(1972) 
 
IM or IV 

O

O

NH2

OH
H
N

OH

O

O

HO OH

OH

OH

NH2

OH

H2N

H2N

O

OH

Inhibits protein 
synthesis by (binds 
to the bacterial 30S 
ribosome) 

15 - 30 mg/kg  
(1 g) 

MIC 4-8 g/mL 
(CDC, 1994) a 

Auditory, 
vestibular, and 
renal toxicity, 
dizziness 

Kanamycin 
(1957) 
 
IM or IV 

 

OHO
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OHO O

O
HO

H2N
NH2

HO

OH

OH

NH2

 

Inhibitions protein 
synthesis via S12 
ribosomal protein & 
16 S RNA. 

15 - 30 mg/kg 
(1 g) 
 

MIC 1-8 g/mL 

Auditory, 
vestibular, and 
renal toxicity 
 

Capreomycin 
(1963) 
 
IM or IV 
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Inhibits protein 
synthesis (binds to 
ribosomal subunit 
16S and 23S rRNA 
(Johansen  
et al., 2006) 

15 - 30 mg/kg 
(1 g) 
MIC 1.25–2.5 
μg/mL (Heifets, 
1988; Heifets & 
Lindholm-Levy 
1989) 

Auditory, 
vestibular, and 
renal toxicity 
 
 

Streptomycin 
(1944) 
IM 

O

O

CH3

HO

O
O

HO

N

N

OH

OH
HO

HO HN CH3

H2N

NH2

NH2

H2N

HO
H

O

 

Same as Kanamycin
 

15-40 mg/kg 
(1 g) 

MIC 2-8 g/mL 

Renal, 
ophthalmic and 
respiratory 
toxicity 
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Drug 
(Discovery) 
Route 

Structure Mode of Action 
 

 Daily Dose 
(Max. Dose) 

Adverse effects 

Cycloserine 
(1952)  
Oral O

NH

OH2N

 

Inhibition of 
peptidoglycan 
synthesis 
(D-alanine 
racemase) 

15 - 20 mg/kg 
(1 g) 

MIC 5-20 g/mL

Psychosis, Rashes, 
Convulsions 
Depression 

Ethionamide 
(1956) 
Oral 

N

NH2S

CH3 

Inhibition of mycolic 
acid synthesis 
 

15 - 20 mg/kg 
(1 g) 
MIC 0.6-2.5 

g/mL 

GI upset 
Hepatotoxicity 
Hypersensitivity 
Metallic taste 

PAS (1946) 
Oral 

H2N OH

OH

O

 

Inhibition of folic 
acid and iron 
metabolism 
(unknown target) 

150 mg/kg 
(16 g) 

MIC 1-8 g/mL 

GI upset 
Hypersensitivity 
Hepatotoxicity 
Sodium load 

Clofazimine 
(1954) Oral 
 N

N N

NH

Cl

Cl  

Inhibits bacterial 
proliferation by 
binding to the 
guanine bases of 
bacterial DNA  

100 - 300 mg/day
MIC 0.12 - 0.24 

g/mL 
(Lu et al. 2008) 

Eosinophilic 
enteritis, GI 
irritation, 
discoloration of 
the skin (upon sun 
exposure) 

Ciprofloxacin 
(1960s) 
Oral 
 

N

OH

OO

F

N

HN  

Inhibition of DNA 
replication and 
transcription by 
inhibiting DNA 
gyrase 

750 - 1500 
mg/day 
MIC 0.4 to 6.2 

g/mL  
(Trimble  
et al., 1987) 

GI upset 
Dizziness 
Headache 
Hypersensitivity 
Restlessness 

Levofloxacin 
(1992) Oral 
 
 

N

OH

OO

F

N

N
H3C

O CH3

H  

Same to 
Ciprofloxacin 

500 mg/day 
MIC 0.50 to 0.75 

g/mL  
(Rastogi  
et al., 1996) 

Same as for 
Ciprofloxacin 

Ofloxacin 
(1980) Oral 
 

N

OH

OO

F

N

N
H3C

O
CH3  

Same to 
Levofloxacin 
 
 

600 - 800 mg/day
MIC 0.12-2  

g/mL 
(Vacher  
et al, 1999) 

Same as for 
Ciprofloxacin 

MIC (wherever not referenced) is based on Inderlied & Salfinger, 1999. 
IM - intramuscular, IV – intravenous 
aCentre for Disease Control and Prevention 

Table 2. Some Second Line Drugs (Source partly from North Dakota Department of Health, 
2011).  
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3. Drug discovery programme 

3.1 Early stage drug discovery  

Tuberculosis is not only a health threat in Asian or European countries, but a serious 

problem globally. There is an ever increasing threat of drug-resistant TB appearing as an 

epidemic in many countries, particularly because no new classes of drugs have been 

specifically developed for the treatment of tuberculosis since the introduction of RMP in 

1967. To tackle this devastating disease, continued high priority research and great efforts 

are being made to investigate new classes of drugs all over the world. Bill and Melinda 

Gates foundation has made a major financial philanthropic contribution in this regard 

worldwide. Governments and private sectors are also opening new avenues with significant 

funds to fight this disease. Apart from big industries, great roles are being played behind the 

curtains by basic and semi-applied researchers who start from scratch and work within 

financial constraints. Following are such examples of different classes of compounds from 

early stage screening studies.  

Since research in this field gained momentum after the year 2000, selected reports published 

from the year 2000 onwards are included here. In view of the scope and timelines of this 

chapter, the focus of the literature cited is medicinal chemistry. 

3.1.1 Nucleosides  

Nucleosides have been of great interest as antiviral agents since decades back. Soon after the 

emergence of Mtb thymidine monophosphate kinase (TMPKmt) as a potentially attractive 

target for the design of a novel class of antituberculosis agents in year 2001 (Munier-

Lehmann et al., 2001), several series of 2’-, 3’-, and 5-modified nucleosides and nucleotides 

were synthesized and evaluated for their affinities with respect to TMPKmt. Vanheusden et 

al, in 2002, reported monophosphates of AZT (1) and 2’-chloro-2’-deoxythymidine (2), as 

potent inhibitors of TMPKmt with Ki values of 10 and 19 M, respectively.  

HN
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O
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HN
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O

O

O

P

O

O

O

HO Cl
 

1                                                                   2 

These authors in the following year (Vanheusden et al, 2003) further reported a series of 3’-

C-branched-chain-substituted nucleosides and nucleotides for the same target. The 

compounds 3, 4, and 5 were reported to exhibit Ki values of 10.5, 12, and 15 M, 

respectively, for TMPKmt.  
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                                3                                               4                                                  5 

In the year 2003, another series was reported by the same authors (Vanheusden et al., 2003) 

where 5-substituted-2’,3’,5’-trideoxyuridines (6-8) exhibited Ki values of 5, 7 and 12 M, 
respectively, for TMPKmt.  

HN

N

O

Br

O

H3C

O

       

HN

N

O

Br

O

H3C

O

       

HN

N

O

CH3

O

H2N

O

OH  

                                 6                                        7                                          8 

Vanheusden et al. (Vanheusden et al., 2004) also reported a series of bicyclic analogues of 

thymidine where compound 9 demonstrated Ki of 3.5 M for TMPKmt with good selectivity 
index (SI 200) over TMPKh. 

HN

N

O

CH3

O

HO

O

O
HN

S  

9 

In all these reports, however, only enzyme inhibition was described and inhibition of 
mycobacterial replication was not demonstrated.  
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A nucleoside antibiotic (CPZEN-45) produced by Streptomyces sp., first described in 2003 
by the Microbial Chemistry Research Foundation (MCRF) and Meiji Seika Kaisa Ltd. of 
Japan, is now undergoing preclinical studies as an anti-TB agent. Details of CPZEN-45 are 
provided in the preclinical section. 

O

HO OH

O O
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N

H
N

N

N

COOH

CH3

H3C O

O

H2N

  

CPZEN-45 

The complete genome sequence of Mtb has been deciphered (Cole et al., 1998). It encodes 

many of the enzymes required for DNA and RNA synthesis, and pyrimidine and purine 

biosynthesis. Our group (Johar et al, 2005) therefore hypothesized that modified nucleoside 

analogs could target several enzymes involved in nucleic acid metabolism. We were first to 

investigate and demonstrate potent antimycobacterial activity of 5-substituted pyrimidine 

nucleoside analogs (Johar et al., 2005). The antimycobacterial activity of test nucleosides was 

examined by mycobacterial growth inhibition using microplate alamar blue assay (MABA) 

(Franzblau et al., 1998). We observed that the most potent TMPKmt inhibitors reported 

earlier (Pochet et al., 2003; Vanheusden et al., 2002; Vanheusden et al., 2003) did not show 

antituberculosis activity in whole cell based assays. Thus the ability of a compound to 

function as a selective inhibitor of TMPKmt may not correlate well with its 

antimycobacterial activity. A cell based assay includes the steps of entry into bacterial cells 

and metabolism which could otherwise limit the efficacy of test molecules (Johar et al., 

2005). 

Since the initial report in 2005, our group (Kumar, R. and colleagues) has made a 
significant contribution in the evaluation of pyrimidine nucleosides as anti-tuberculosis 
agents. During our studies, we initially investigated the effect of a number of known 
antiviral and anticancer nucleosides modified in the base and/or sugar moiety against 

Mtb, M. bovis and M. avium. At concentrations upto 100 g/ml, none of these agents 
showed potent inhibition of mycobacterial growth. In our subsequent studies, we 
designed, synthesized and examined a variety of 2-, 4-, 5- and/or 6-
substituted/unsubstituted pyrimidine nucleosides containing various deoxyribose, 
ribose, arabinose, dideoxyribose and acyclic moieties. During our continued search of 
novel anti-TB agents, we found that 5-alkynyl substituted pyrimidine nucleosides were 
very potent inhibitors of mycobacteria (Rai et al., 2005). We (Johar et al, 2007), reported 

that pyrimidine nucleoside analogs 1--D-2’-arabinofuranosyl-5-dodecynyluracil  

(10), 1-(2’-deoxy-2’-fluoro--D-ribofuranosyl)-5-dodecynyluracil (11), and 1-(2’-deoxy-2’-

fluoro--D-ribofuranosyl)-5-tetradecynyluracil (12) exhibited potent antimycobacterial 
potency in the series against M. bovis and Mtb. The MIC90 exhibited by compounds 10, 11, 
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and 12 (1-5 g/mL) against Mtb H37Ra was close to that of the reference drug RMP (0.5-1 

g/mL). These compounds were also found to retain sensitivity against a RMP-resistant 
strain of Mtb H37Rv (American Type Culture Collection [ATCC] 35838, resistant to RMP 

at 2 g/mL) at similar concentrations. No significant toxicity for these compounds was 
observed in MTT test in vitro against Vero cells and human foreskin fibroblast (HFF cells) 

up to a concentration of 100 g/mL (CC50 >100 g/mL). 
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10         11     12 

In the same year, we (Rai et al, 2007) further reported syntheses and evaluation of a series 

of 5-acetylenic derivatives of 2’,3- dideoxyuridine, and 3’-fluoro-2’,3’-dideoxyuridine for 

their antimycobacterial activity against M. bovis, Mtb, and M. avium. Compound 13 

(among 2’,3’-dideoxyuridine series) and compound 14 (among 3’-fluoro-2’,3’-

dideoxyuridine series) demonstrated excellent antimycobacterial activity (MIC 1-2 

g/mL) against Mtb H37Ra. The compounds 13 and 14, were also subjected to determine 

their antimycobacterial activity against a RMP-resistant H37Rv strain (ATCC 35838, 

resistant to RMP at 2 g/mL) of Mtb using the radiometric-BACTEC assay. The drug-

resistant Mtb strain was susceptible to the compounds 13 and 14 (MIC90 1-2 g/mL). No 

toxicity was observed in vitro against Vero cells (MTT test) up to the highest 

concentrations tested (CC50 > 100 g/mL). 
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In a subsequent article in the same year by our group (Srivastav et al, 2007), in vitro anti-
mycobacterial activities of several 5-substituted acyclic pyrimidine nucleosides containing 1-
(2-hydroxyethoxy)methyl and 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl] acyclic 
moieties were investigated against Mtb H37Ra, M. bovis, and M. avium. In this study, 1-(2-
hydroxyethoxy)methyl-5-(1-azido-2-haloethyl (15a), 1-azidovinyl) analog (15b), 1-[(2-
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hydroxy-1-(hydroxymethyl)ethoxy)methyl]-5-decynyluracil (16a), and 1-[(2-hydroxy-1-
(hydroxymethyl)ethoxy)methyl]-5-dodecynyluracil (16b) exhibited moderate in vitro anti-

tubercular activity (100% inhibition @ 50 g/mL) against these mycobacteria. These 
compounds did not show any toxicity in vitro against Vero cells and HepG2 cells up to a 

concentration of 100 g/mL.  
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In continued efforts in drug design and discovery for anti-tuberculosis agents, our group 

(Shakya et al, 2010) investigated various 2’- or 3’-halogeno derivatives of pyrimidine 

nucleosides containing uracil, 5-fluorouracil, and thymine bases. Among the compounds 

tested, 3’-bromo-3’-deoxy-arabinofuranosylthymine (17) was the most effective 

antituberculosis agent in the in vitro assays against wild-type Mtb strain (H37Ra) which 

displayed MIC50 = 1 μg/mL by the MABA assay. Further, it displayed MIC50 = 1-2 μg/mL 

against drug-resistant (H37Rv) (RMP-resistant and INH-resistant) strains of Mtb using 

BACTEC assay (Collins & Franzblau, 1997). The antimycobacterial effect of potent 

compounds was also determined against intracellular mycobacteria in a human 

monocytic cell-line (THP-1) infected with Mtb H37Ra strain using the colony-forming 

units (CFU) assay (Bermudez et al., 2001). Interestingly, the compound 17 demonstrated 

slightly better activity against intramacrophagic mycobacteria (80% reduction at 10 

μg/mL concentration) than extracellular mycobacteria (75% reduction at 10 μg/mL 

concentration). In contrast, pyrimidine nucleosides possessing 5-fluorouracil base were 

weak inhibitors of Mtb H37Ra. The XTT and 3H incorporation assays were performed to 

evaluate the toxicity of the investigated compounds in vitro against a human hepatoma 

cell line (Huh7). No cytotoxicity was found up to the highest concentration of compounds 

tested (CC50> 100-200 μg/mL).  
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Our group in the same year (Srivastav et al., 2010) reported investigation of 

antimycobacterial activities of several 5-alkyl, 5-alkynyl, furanopyrimidines and related 

2’-deoxynucleosides against Mtb. Compounds with 5-arylalkynyl substituents displayed 

potent in vitro antitubercular activity against M. bovis and Mtb (MIC 0.5-5 g/mL). We 

found that 5-(2-pyridynylehynyl)-2'-deoxycytidine (18) exhibited potent activity against 

Mtb and showed no cytotoxicity Huh-7 cells up to a concentration of >200 μg/mL using 

XTT and 3H-thymidine uptake assays. Therefore it was selected to test its potency in a 

mouse model (BALB/c) of Mtb (H37Ra) infection. At a dose of 50 mg/kg for 5 weeks, 

compound 18 showed promising in vivo efficacy in this mouse model. Statistically 

significant reduction in mycobacterial load was observed in lungs, livers and spleens of 

the treated mice. Our work provides first evidence of antimycobacterial potential of  

5-substituted pyrimidine nucleosides in an animal model as a potential new class of 

antituberculosis agents. 
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Recently, Kogler et al (Kogler et al., 2011) reported a series of 5-substituted -2'-deoxyuridine 

monophosphate analogs as potential inhibitors of mycobacterial flavin-dependent 

thymidylate synthase (ThyX). Compound N-(3-(5-(2'-deoxyuridine-5'-monophosphate)) 

prop-2-ynyl)-octanamide displayed selective potent inhibition of ThyX with an IC50 value of 

0.91 M. This derivative was found to lack activity against the classical mycobacterial 

thymidylate synthase (ThyA, IC50 >50 M). 
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Somu et al (Somu et al., 2006) reported a purine nucleoside compound 19 (MIC99 = 0.19 

M) inhibiting siderophore biosynthesis of Mtb in H37Rv strain under iron-limiting 

conditions (Domenech et al., 2005, as cited in Somu et al., 2006). The activity of 19, 

according to the authors, was due to inhibition of the adenylate-forming enzyme MbtA, 

which is involved in biosynthesis of the mycobactins. The cytotoxicity of the potent 

compounds in the series was evaluated against the P388 murine leukemia cell line. None 

of the inhibitors displayed any toxicity up to the maximum concentration tested (ED50 > 

100 g/mL). 
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Gupte et al (Gupte et al., 2008) demonstrated 2-triazole derivatives of 5′-O-[N-

(salicyl)sulfamoyl]adenosine as inhibitors of aryl acid adenylating enzymes (AAAE) 

involved in siderophore biosynthesis by Mtb H37Rv. Enzyme assays were performed at  

37 °C with recombinant MbtA expressed in E. coli. On the basis of observed potency (MIC 

3.13 M), selectivity, lack of cytotoxicity, and enhanced lipophilicity, compound 20 was 

reported as the best candidate. No inhibition of cell growth was observed upto 100 μM 

when this class of compounds were evaluated for inhibition of cell viability against Vero 

cells using the MTT assay. The compound 20 was also evaluated against MEL, OCL-3,  

and REH human cancer cell lines. Cell proliferation of OCL-3 and REH lines were not 

affected at 100 μM, while in the MEL line approximately 25% inhibition was shown at  

100 M. 
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Adenosine (Ado) kinase is a purine salvage enzyme that phosphorylates adenosine to 

adenosine-monophosphate. A large number of adenine modified nucleosides were 

evaluated as substrates and inhibitors of Ado kinase from Mtb (Long & Parker, 2006) The 

best substrates were 2-aza-adenosine, 8-aza-9-deazaadenosine and 2-fluoroadenosine and 

the most potent inhibitors were N-1-benzyladenosine (Ki = 0.19 M), 2-fluoroadenosine  

(Ki = 0.5 M), 6-cyclopentyloxy purine riboside (Ki = 0.15 M) and 7-iodo-7-deazaadenosine 

(Ki = 0.21 M). Several of these adenosine analogs showed promising antitubercular activity 

when MIC studies were performed.  
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In an extension of their work (Long et al, 2008) modifications to the base and ribofuranosyl 

moiety or modifications to the glycosidic bond positions of adenosine were analyzed against 

Mtb Ado kinase. In this study, the best substrates identified were carbocyclic adenosine, 8-

aza-carbocyclic adenosine and 9-[a-L-lyxofuranosyl]-adenine. 

3.1.2 Carbohydrates 

Sugar derivatives have also been examined as antimycobacterial agents. Although many 

reports have been published, most of them did not include toxicity data. Some 

representative examples of this class are summarized here. 
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Pathak et al (Pathak et al, 2003) synthesized several octyl 5-O-(-D-arabinofuranosyl)--D-
arabinofuranoside disaccharide analogs substituted at the 5-position of the non-reducing 
end of sugar and tested in vitro (Suling et al., 1998, as cited in Pathak et al, 2003) against Mtb 
(H37Ra, ATCC 25177), M. avium complex (MAC) as well as in a cell free assay system for 
arabinosyltransferase acceptor/inhibitor activity (Lee et al., 1997, as cited in Pathak et al, 

2003). Compound 21 displayed IC50 of 1.56 mM in cell free assay and MIC 8 g/mL against 
Mtb. No toxicity data was reported. 
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21 

Tripathi et al (Tripathi et al., 2005) reported bis-glycosylated diamino alcohols with the most 

active compound 22a showing MIC of 3.12 g/mL against Mtb H37Ra as determined by 

MABA assay. But this compound displayed MIC > 50 g/mL against Mtb H37Rv by Agar 

microdilution method (Saito et al., 19991, as cited in Tripathi et al., 2005). In this series, they 

discovered the next active compound 22, exhibiting activity against Mtb H37Ra (MIC 12.5 

g/mL by MABA assay) and against Mtb H37Rv (MIC 6.25 g/mL by Agar microdilution 

method) that was considered to test further. The compound 22 was also found to be active 

against MDR strain and showed mild protection in mice. According to the report, this 

compound seems to possess efficacy against Mtb infection in mice at non-toxic concentration 

(25 mg/Kg). However, at higher doses it caused toxicity. 
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22a, n=10, 22b, n=12 

Chiba et al (Chiba et al., 2007) synthesized sugar derivatives of stachyose, and evaluated 

them for antibacterial activity against Mtb, M. avium, and S. aureus using broth dilution 

methods (Takii et al., 2002, as cited in Chiba et al., 2007) in MiddleBrook 7H9 broth. The 

compound 23 (OCT359) was identified as the most active compound in the series with 

MIC 3.13 g/mL against Mtb H37Rv. OCT359 was also tested against various drug-

sensitive and -resistant clinical isolates of Mtb. Among them 25 clinical isolates of drug-

resistant Mtb and 19 drug-sensitive Mtb were sensitive to OCT359. The MICs of OCT359 

for these clinical isolates ranged from 3.13 to 25 g/mL. No toxicity data was reported on 

any host cell lines. 
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Liav et al (Liav et al., 2008) prepared derivatives of thiocarlide (THC), a previously known 

antitubercular drug, for their evaluation against Mtb H37Rv using MABA assay. The most 

active compound reported was 24 having MIC in the range of 1.56-3.12 g/mL. No toxicity 

data for this compound was presented on any host cell line. 
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In a recent report, Horita (Horita et al, 2011) described modification of their previously 

reported lead compound OCT313 (Glc-N-Ac -DMDTCB) (MIC 25 g/mL against Mtb 

H37Rv by Broth dilution method). The resultant compound Glc-NAc-pyrrolidine 

dithiocarbamate (25, OCT313HK, Glc-NAc-PDTC) exhibited potent anti-tubercular activity 

with MIC of 6.25 g/mL. OCT313HK was also effective against Mtb clinical isolates, 

including MDR and XDR strains at similar concentrations (MIC 6.25-12.5 g/mL). No 

toxicity data was reported on mammalian cell lines. 
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3.1.3 Heterocyclic compounds 

3.1.3.1 Quinolines and quinoxalines 

Quinolines have also been of interest for evaluation as antibacterial agents since 

fluoroquinolones are already used as antibiotics (e.g. ciprofloxacin, laevofloxacin, ofloxacin). 

Moxifloxacin and Gatifloxacin from this class are in Phase III clinical trial for tuberculosis 

treatment (see details in the section describing drugs in Phase III). Many research articles are 

available in literature on quinoline as anti-TB agents.  

Sriram (Sriram et al, 2006) reported a series of 7-substituted derivatives of gatifloxacin and 

evaluated them for antimycobacterial activity in vitro and in vivo against Mtb H37Rv and 

MDR-TB. The compounds were also tested for their ability to inhibit the supercoiling 

activity of DNA gyrase from Mtb. Among this series, compound 26 was found to be equally 

active (IC50 of 3.0 g/mL) as gatifloxacin in the inhibition of the supercoiling activity of 

wild-type Mtb DNA gyrase. The compound 26 was also found to be the most active in vitro 

with an MIC of 0.0125 g/mL against Mtb and MDR-TB. Activity evaluation in animal 

model showed that this compound decreased the bacterial loads in lung and spleen tissues 

by 3.62- and 3.76-log10, respectively. After 72 h exposure with the test compounds, viability 

of Vero cells was assessed using MTT assay to determine their cytotoxicity. The compounds 

were found to be non-toxic up to a concentration of 62.5 g/mL. The compound 26 showed 

selectivity index (IC50/MIC) of >1250. 
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Sriram and coworkers (Dinakaran et al, 2008 a) also synthesized novel ofloxacin (OFX) 

derivatives and evaluated them for in vitro and in vivo antimycobacterial activities against 

Mtb H37Rv , MDR-TB, and M. smegmatis using agar dilution method. These compounds 

were also tested for their ability to inhibit the supercoiling activity of DNA gyrase from 

mycobacteria. Among the synthesized compounds, 27 exhibited most potent activity (MIC99 

of 0.19 M and 0.09 M against Mtb and MDR-TB, respectively). The compound 27 

decreased bacterial loads (strain ATCC 35801) in lung and spleen tissues by 1.91 and 2.91 - 

log10, respectively, at 50 mg/kg dose when evaluated in a mouse model. This compound 

was reported to possess a selectivity index (IC50/MIC) of >1467.  
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Another publication by the same group (Dinakaran et al, 2008 b) described various 2-(sub)-3-

fluoro/nitro-5,12-dihydro-5-oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid derivatives. 

Among the reported compounds, 28 displayed the most potent activity in vitro with MICs of 

0.18 and 0.08 M against Mtb and MDR-TB, respectively. In a mouse model of Mtb infection, 

28 decreased bacterial loads in lung and spleen tissues with 2.78 and 3.12 _ log10, 

respectively, at the dose of 50 mg/kg. The selectivity indices (IC50/MIC) of the compound 

28 were reported to be 1576 against MDR-TB and 700 against Mtb. Phototoxicity evaluation 

was also performed (Mayne et al., 1997, as cited in Dinakaran et al, 2008 b) and no 

significant phototoxicity was recorded. 
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Senthilkumar et al, 2009, published synthesis of various 1-(substituted)-1,4-dihydro-6-nitro-

4-oxo-7-(sub-secondary amino)-quinoline-3-carboxylic acids. Among the compounds 

investigated, 29 was found to be the most potent compound in vitro with MIC values of 0.08 

and 0.16 M against Mtb and MDR-TB, respectively. In the in vivo studies, 29 significantly 

decreased bacterial load in lung and spleen tissues, at 50 mg/kg dose. The SI (IC50/MIC) of 

29 was stated to be 793 against MDR-TB and 1586 against Mtb. No significant phototoxicity 

was described for 29. 
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Other groups have also been exploring quinoline derivatives as anti-TB agents. Vicente et al 
(Vicente et al., 2009) published a series of 3-phenylquinoxaline 1,4-di-N-oxide against Mtb 
H37Rv using MABA assay. The compounds exhibiting fluorescence were tested in the 
BACTEC 460-radiometric system. The compounds affecting <90% inhibition in the primary 

screen (MIC >6.25 g/mL) were not evaluated further. Thirty-four of the seventy tested 

compounds showed MIC values less than 0.2 g/mL. The most active compound reported 

was 30 (MIC <0.2 g/mL) with an IC50 >100 (SI >500). 
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Ancizu et al (Ancizu et al., 2010) described a series of 3-methylquinoxaline-2-carboxamide 

1,4-di-N-oxide derivatives. Many of the tested compounds showed MIC values less than 1 

g/mL. In this report, compounds 31 and 32 displayed most significant inhibition of Mtb 

H37Rv (MIC <0.2 g/mL). Cytotoxicity evaluation indicated that 31 and 32 were non-toxic 

with IC50 value of >100 and SI >500. 
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31, R=Cl, n=1; 32, R=H, n=2 

Carta et al (Carta et al., 2007) reported antimycobacterial evaluation of 3-methyl-9-
substituted-6-oxo-6,9-dihydro-3H-[1,2,3]-triazolo [4,5-h]quinolone-carboxylic acids and their 
esters against wild-type H37Rv and 11 clinically isolated strains of Mtb. Several derivatives 

inhibited mycobacterial replication with MIC90 in the range of 0.5–3.2 g/mL. The most 
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potent compound 33 (MIC90 = 0.5 g/mL) showed no cytotoxicity (CC50 > 50 g/mL), when 
tested against human macrophages and Hep-2 cells.  
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Upadhayaya et al (Upadhayaya et al., 2011) identified indeno[2,1-c]quinoline derivatives 
which were considerably active (MIC 0.39-0.78 g/mL) but had solubility problems. Ester 
derivatives of the lead compound indeno[2,1-c]quinolines were synthesized, which showed 
2- to 4-fold improved anti-TB activities, with increased solubility and superior selectivity 
index (SI) over their respective parent compounds. In this study, compound 34 was 
described to be the most potent agent with MIC of <0.39 g/mL. In general, no cytotoxicity 
was observed in Vero cells.  

N

Br

N

N

N
OH

 

34 

Jaso et al (Jaso et al., 2005) evaluated a series of 6(7)-substituted quinoxaline-2-carboxylate 
1,4-dioxide derivatives against Mtb H37Rv. Fourteen compounds were selected to test for 
their activity against intramacrophagic mycobacteria. It was found that ethyl and benzyl 3-
methylquinoxaline-2-carboxylate 1,4-dioxide derivatives with a chlorine group at position 7 

of the benzene moiety (compound 35, MIC 0.1 g/mL, SI 470) and the unsubstituted 
derivative (36, MIC 0.1 g/mL, SI 76) have good antitubercular activity, including activity in 
macrophages (EC90 0.15 g/mL and 0.0005 g/mL, respectively). The compounds 37 and 38 
of the series were also active against drug-resistant strains of Mtb H37Rv with MIC 0.39-1.56 
and 3.13-12.5, respectively.  
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35, R1= H, R2 =H, R3 = Ph; 36, R1= Cl, R2 =H, R3 = Ph; 
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37, R1= R2 = R3 = CH3; 38, R1= Cl, R2 =Cl, R3 = Ph 

Lilienkampf et al (Lilienkampf et al., 2009) revealed several potent quinolines bearing an 
isoxazole containing side-chain as anti-TB compounds. These compounds were first tested 
for their activity against the Mtb strain H37Rv using MABA assay. The compounds showing 
good anti-TB activity were further evaluated for their potency against non replicating 
persistent TB (NRPTB) in a low oxygen recovery assay (LORA). The most active 
compounds, 39 and 40, exhibited MICs of 0.77 μM and 0.95 μM, respectively against the 
replicating bacteria. These compounds, in general, also had good potency against the 
nonreplicating persistent bacteria without toxicity on Vero cells up to 128 μM. The 
compounds 39 and 40 also retained anti-TB activity against RMP-, INH-, and streptomycin 
resistant Mtb strains.  
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39, R=CF3, X=CH2; 40, R=H, X= m-Ph 

3.1.3.2 Pyrimidine and purines  

Khoje et al (Khoje et al, 2010) synthesized various purine analogs and evaluated them in 
vitro against Mtb H37Rv using MABA assay. The 8-aza-, 7-deaza- and 8-aza-7-deazapurine 
analogs displayed good antimycobacterial activities. The 7-deazapurine analogs exhibited 

MIC values between 0.08 and 0.35 M; comparable or better than the reference drugs (RMP, 

MIC 0.09 M; INH, MIC 0.28 M and PA-824, MIC 0.44 M). The most active compound 

among 7-deaza purines was 41 with MIC 0.11 M and SI 1063. The 7-deazapurines were 
slightly more toxic towards mammalian cells, but still had good selectivity indices. In this 
study, five most active compounds were also evaluated against a panel of drug-resistant 
Mtb strains, where they all were found to retain activity. However, these compounds were 
significantly less active when tested against non-replicating persistent Mtb.  
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Trivedi et al (Trivedi et al., 2010) examined a series of dihydropyrimidines for their in vitro 
activity against Mtb H37Rv. All compounds were initially screened for their in vitro activity 
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at 6.25 g/mL. The compounds exhibiting 90% inhibition in the initial screen were re-

examined at and below 6.25 g/mL using two-fold dilutions to determine the actual MIC. 
Two compounds, 42 and 43 were found to be the most active agents with MIC of 0.02 

g/mL. These compounds were more potent than the reference drug INH. In Vero cells, 

they exhibited IC50 >10 g/mL (SI >500). 
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42, R=F, 43, R=NO2 

3.1.3.3 Pyrrole derivatives 

Biava et al (Biava et al., 2006) reported design and synthesis of pyrrole analogues of BM212. 

The compounds were preliminarily screened for their activity toward Mtb B814 and M. 

fortuitum CA10. Compounds showing MIC values of 16 g/mL or lower were further tested 

against Mtb CIP 103471 and a panel of atypical mycobacteria, such as M. marinum CIP 6423, 

M. avium CIP 103317, and M. smegmatis CIP 10359. Cytotoxicity was examined in Vero cells 

to determine the maximum nontoxic dose (MNTD50) defined as the drug concentration that 

decreased cell multiplication to less than 50% of the control. The best compound reported in 

this series was 44 with MIC of 0.4 g/mL, MNTD50 of 64 g/mL and a high protection index 

(MNTD/MIC, 160) that was better than BM212, INH, and streptomycin (6, 128, and 128, 

respectively).  
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BM 212          44 
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In the year 2009, the same group (Biava et al., 2009) further investigated new diarylpyrroles 

on the basis of SAR analysis of pyrroles, reported by them previously. The compound 45 

emerged as the most potent agent (MIC 0.25 g/mL) with protective index (maximum non 

toxic dose in Vero cells/ MIC) > 512. 

N

F

H3C

N

S

C2H5

 

45 

Biava et al (Biava et al., 2010) also identified 4-((1-(4-fluorophenyl)-2-methyl-5-(4-

(methylthio)phenyl)-1H-pyrrol-3-yl)methyl)thiomorpholine (46) as a potent 

antimycobacterial agent against Mtb 103471 and H37Rv strains (MIC values of 0.125 g/mL 

comparable to streptomycin and RMP), with a cytotoxicity (CC50 ) value of >128 g/mL and 

protection index of >1000. 

N CH3

N

S

F
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46 

3.1.3.4 Furan 

5-Nitrofuran-2-yl derivatives (Sriram et al. 2009) were investigated against tubercular 
(H37Rv) and various non-tubercular mycobacterial species in log-phase and 6-week-

starved cultures. The compound 47 exhibited MIC of 0.22 M. This compound showed  
3 times more activity than INH and equal activity as RMP in log-phase culture of Mtb 
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H37Rv. It inhibited starved Mtb H37Rv with MIC of 13.9 M and was 50 times more 

active than INH and slightly more active than RMP. It displayed an IC50 of 139 M in Vero 
cells.  

N
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N
H
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S O

NO2

Br

Br

 

47 

3.1.3.5 Azoles 

Azoles are one of the major classes of compounds which have been probed for anti-TB 

activity, but unfortunately, many of the publications emerging on azoles did not provide 

toxicity data, making it difficult to analyze their potential. Following are some of the 

representatives studies found worthy to summarize here. 

Shiradkar et al (Shiradkar et al, 2007) published synthesis and antituberculosis activity of 

a series of N-{4-[(4-amino-5-sulfanyl-4H-1,2,4-triazol-3-yl)methyl]-1,3-thiazol-2-yl}-2-

substituted amide derivatives against Mtb H37Rv (ATCC 27294) using MABA and 

BACTEC 460 assays where compounds 48 and 49 demonstrated MICs of 0.78 and 0.39 M, 

respectively. The cytotoxicity analysis by neutral red uptake assay in Vero-C-1008 cell  

line showed that none of this class of compounds was toxic up to a concentration of  

50 g/mL. 

N

S

NN

N

HN

NO2

O

SCH2CONHN=CHC6H5

ROCHN

 

48, R = CH3; 49, R = Ph 

Velaparthi et al (Velaparthi et al., 2008) reported 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-

tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel and potent inhibitors of 

Mtb pantothenate synthetase (PS). Pantothenate is a key precursor of coenzyme A and acyl 

carrier protein, essential for many intracellular processes including fatty acid metabolism, 

cell signaling, and synthesis of polyketides and nonribosomal peptides. The PS pathway is 

not present in humans. Compounds 50 and 51 displayed the best inhibition in terms of IC50 

of < 100 nM. 
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ONH
NN

N
OR

  

50, R = Ph; 51, R = 2-naphthyl 

N-Aryl-C-nitroazoles were investigated by Walczak et al (Walczak et al., 2004) against 

H37Rv (ATCC 27294) using MABA assay. Compound 52 exhibited MIC 0.39 g/mL with SI 

>160. 

N

N
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Cl

CH3

 

52 

Lee et al (Lee et al., 2011) synthesized econazole-derived nitroimidazoles and reported their 

antitubercular activity against H37Rv by MABA assay. The MIC against non-replicating Mtb 

was determined by using the green fluorescent protein (GFP) expressing Mtb strain in the 

Wayne hypoxia model (anaerobic conditions) (Wayne et al. 1996, as cited in Lee at al., 2011). 

The MICs of the most active azoles 53 and 54 was found to be 0.5 g/mL under aerobic 

conditions and 4 and 1 g/mL, respectively, under anaerobic conditions against H37Rv. The 

IC50s in Vero cell noted for 53 and 54 were 100 and >100, respectively. 

N

N

O2N

OH

OMe

R
  

53, R=2,4-dichloro; 54, R= 4-Ph 

In the year 2009, a series of 2-methylbenzothiazole derivatives was described by Huang et al 

(Huang et al, 2009). The most potent compounds found in this series were 55 and 56 with 

MIC values of 1.4 and 1.9 μM, respectively, against replicating Mtb H37Rv. All the active 

compounds in this series were nontoxic toward Vero cells (IC50 > 128 μM).  
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 55     56 

3.1.3.6 Azines  

Palmer et al (Palmer et al., 2010) reported antitubercular activity of biphenyl analogs of PA-

824, which is currently under phase II clinical trial (pl. see Phase II section), using MABA 

and LORA assays. Among these, several of the compounds showed potent in vitro activity 

with MIC values of <1 M. The most active compound 57 had MICs of 0.015 and 1.4 M in 

MABA and LORA assays, respectively. All the compounds investigated were relatively 

nontoxic to mammalian Vero cells, with IC50 >125 μM. In a mouse model of acute Mtb 

infection, seven of the compounds showed substantially (>10-fold) improved efficacies over 

PA-824, while three of them were >200-fold more effective than PA-824.  
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57 

3.1.3.7 Pyridine hydrazides (INH analogs) 

Several INH derived Schiff bases were investigated by Hearn et al (Hearn et al, 2009). 
These compounds showed high in vitro activity against Mtb and mycobacteria-infected 
macrophages. They provided strong protection in tuberculosis-infected mice with low 
toxicity. The mean of the MIC values determined against Mtb H37Rv strain Erdman for 
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the forty-four compounds tested was 1 g/mL. A representative cyclohexanone 

derivative 58 displayed MIC of 0.03 g/mL (SI >40,000) and exhibited log CFU 
reduction/lung of 4.65. 

N

H
N

N
O

 

58 

Lourenco et al (Lourenco et al., 2008) prepared a series of (E)-N’-(monosubstituted-

benzylidene) isonicotinohydrazide derivatives and evaluated their antibacterial activity 

against Mtb H37Rv (ATCC 27294, susceptible both to rifampin and INH) in vitro using 

Alamar Blue assay. Compound 59 exhibited significant activity (MIC 0.31 g/mL). Cellular 

viability of murine macrophage cells in the presence and absence of test compounds was 

determined by Mosmanns’s MTT(3-(4,5-dimethylthylthiazol-2yl)-2,5-dimethyl tetrazolium 

bromide; Merck) microculture tetrazolium assay (Souza et al., 2003, as cited in Lourenco et 

al., 2008) and 100% cell viability was found for the compound 59 @ 100 g/mL. 
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3.1.4 Metal complexes 

Not very many reports are available on metal complexes since metal complexes are 

generally found to be toxic. A few representatives are summarized here.  

Eiter et al (Eiter et al, 2009) described Gold(I) analogues of a platinum-acridine. Compound 

60 exhibited an IC50 of 0.652 M and IC90 of 1.141 M against Mtb H37Rv in a high-

throughput screen. It also demonstrated inhibition of non-small-cell lung cancer cell line 

(IC50 of 3.940 0.38) with a selectivity index of 23.66. The compound 60 was selected to test 

its efficacy in vivo but serum samples collected from mice treated at a maximum tolerated 

dose (MTD) of 300 mg/kg orally did not inhibit Mtb. This indicated limited oral 

bioavailability of the complex. 
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Melnic et al (Melnic et al., 2010) investigated new hetero(Mn, Co, Ni)trinuclear iron(III) 

furoates where compound 61 [Fe2CoO(fur)6(THF)(H2O)2].H2O displayed potent in vitro 

inhibition (MIC = 0.827 g/mL) of Mtb H37Rv (ATCC 27294) with an SI of >36.2 

(cytotoxicity assay was performed using Vero cell lines). 

In a series of Ruthenium (II) phosphine/picolinate complexes, Pavan et al (Pavan et  

al, 2010) reported MIC values of 0.78 and 0.26 g/mL for compounds 62 and 63, 

respectively, against H37Rv ATCC 27294 using REMA (Resazurin Microtiter Assay) 

method (Palomino et al., as cited in Pavan et al., 2010). No toxicity data, however, was 

reported in the article. 
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62, x=1; 63, x=2. 

3.1.5 Natural products 

Natural product research is a tedious, labour-intensive and difficult process. Only a few 

publications have emerged describing significant anti-mycobacterial activity in this field. 

Selected reports are presented here. 

Torres-Romero et al (Torres-Romero et al., 2011) evaluated new dihydro--agarofuran 

sesquiterpenes, isolated from the leaves of Celastrus vulcanicola, and their derivatives 

against H37Rv ATCC 27294 and multidrug-resistant (clinical isolate, strain 

02TBDM039EP097) using the tetrazolium microplate assay (TEMA) method. (Rojas et al., 

2006, as cited in Torres-Romero et al., 2011). All of the 25 compounds reported showed 

MIC values of >25 g/mL against the sensitive H37Rv strain whereas 1a-acetoxy-6b,9b-

dibenzoyloxy-dihydro-b-agarofuran (64) had MIC value of 11.9 M against MDR TB 

strain, which was comparable to or better than INH or RMP. No toxicity data was 

included in this article. 
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Nicholas et al (Nicholas et al., 2003) screened 1500 extracts derived from marine plants, 

invertebrates and terrestrial fungi for their ability to inhibit a newly described mycobacterial 

detoxification enzyme mycothiol-S-conjugate amidase (MCA) using a fluorescence-based 

assay that measures the extent of cleavage of the substrate mycothiol bimane by MCA 

(Newton et al., 2000, as cited in Nicholas et al., 2003). Only compound 65 showed inhibition 

of MCA (IC50 0.1 M). 
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Three new aminolipopeptide, trichoderins were isolated by Pruksakorn et al (Pruksakorn et 

al., 2010) from a culture of marine sponge-derived fungus of Trichoderma sp. as anti-

mycobacterial substances. Trichoderins showed potent activity against M. smegmatis,  

M. bovis BCG, and Mtb H37Rv under standard aerobic growth conditions as well as 

dormancy-inducing hypoxic conditions using the established methods, (Sobou et al., 2008; 

Arai et al., 2009, as cited in Pruksakorn et al., 2010) with MIC values in the range of 0.02–2.0 

g/mL. The best compounds 66 and 67 displayed MICs of 0.12 and 0.13 g/mL, 

respectively, for aerobic and hypoxic Mtb. No toxicity data was included in this report. 
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66, R=CH3; 67, R=H 
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Mahapatra et al (Mahapatra et al., 2007) reported a series of synthetic and plant-derived 
naphthoquinone derivates of the 7-methyljuglone scaffold and their evaluation against Mtb 
H37Rv (ATCC 27294). Several of these compounds have been shown to operate as subversive 
substrates with mycothiol disulfide reductase. The synthesized compound 68 exhibited MIC of 
0.5 g/mL as determined by radiometric respiratory technique using the BACTEC system. 
The SI obtained for 68 was 30.22 (cytotoxicity evaluation was done using Vero cells).  

O
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H3C

 

 68 

3.1.6 Miscellaneous 

3.1.6.1 Artemisinin analog 

Artemisinin also called qinghaosu, is a natural peroxide containing sesquiterpene based on 
1,2,4-trioxane, and is a highly active and relatively nontoxic antimalarial agent (Devdutt, C. 
et al., 2010, as reported by Miller et al., 2011). Miller et al (Miller et al., 2011) reported 
Mycobactin-Artemisinin Conjugate 69 that had submicromolar activity against different 
clinical strains of tuberculosis. In H37Rv, it displayed MIC 0.338 μM, and in one XDR strain 
(HREPKOTh) it exhibited MIC of 0.078 g/mL. No toxicity data was mentioned, however. 
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3.1.6.2 Macrolides  

Falzari et al (Falzari et al., 2005) reported macrolides and ketolides (descladinose) with 

substitutions at positions 9, 11, 12, and 6, which were assessed for activity against Mtb. 

Several compounds with 9-oxime substitutions or aryl substitutions at position 6 or on 11, 12 

carbamates or carbazates demonstrated submicromolar MICs. Four compounds possessing 

low MICs also effected significant reductions in CFU in infected macrophages. The active 

compounds were assessed for tolerance and the ability to reduce CFU in the lungs of 

BALB/c mice in an aerosol infection model. A substituted 11,12 carbazate macrolide 

demonstrated significant dose-dependent inhibition of Mtb growth in mice, with a 10- to 20-

fold reduction of CFU in lung tissue. The compound 70 (RU66252) was found to be a 

promising compound having MIC of 0.25 M with SI 99.52. 
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3.1.6.3 Peptides 

Jiang et al (Jiang et al, 2011) reported evaluation of a series of ǂ-helical peptides consisting of 

all D-amino acid residues and synthetic human L-LL37 (L-enantiomer) and D-LL37 (D-

enantiomer), against Mtb H37Rv and a clinical MDR strain. Not very good activity was 

observed. The most active analog had MIC of 11.2 and 15.6 μM, against H37Rv and MDR 

strains, respectively.  

3.2 Molecules in pipeline  

(Source: Working Group on New Drugs [WGND] and TB Alliance, and Tuberculosis Trial 
Consortium [TBTC])   

After years of vacuum, TB drug development pipeline has begun to enrich during the past 

decade. The major credit goes to the Global Alliance for TB Drug Development (TB Alliance) 

which is largely funded by Bill & Melinda Gates Foundation as a philanthropic effort and 

Working Group on New Drugs (WGND). It is also to be noted in regard of this pipeline that 

many of the compounds here are either derivatives of existing drugs or are working on the 

same target as existing drugs. This is obviously a shorter and a quicker method for new 

drug development, however, this approach may pose a risk of cross-resistance in these 

future drugs. This risk may be neglected, however, in view of urgent need of effective drugs 
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to halt TB associated mortalities. Following are the compounds that are at various stages of 

preclinical and clinical development (summarized in tables 3-5).  

3.2.1 Hit to lead 

 

Sponsor/Developer Compounds Target Remarks 

The Lilly TB Drug 
Discovery 

Novel synthetic compounds Unknown Not much 
information is 
available 

FAPESP/Brazil 
 

Ruthenium(II)phosphine/picolinat
e complexes, synthetic (>100). 
 

Unknown MIC less than 1 
μM against 
H37Rv and 
resistant strains. 
In vivo assays are 
underway 

AstraZeneca R & D 
Bangalore 

200,000 Synthetic, novel 
compounds 

Not 
mentioned 

Target against 
H37Rv strain 

GlaxoSmithKline, TB 
Alliance: 

Synthetic compounds Not 
mentioned 

Whole cell 
microorganism 
screen 

University of Illinois, 
TB Alliance 

Total 1,21,0000 compounds. 66,000 
synthetic and semisynthetic 

Whole cell Approximately 
1500 hits have 
been identified 
and confirmed 

Shaw Environmental 
and University of 
Illinois at Chicago  
 

30 Indole-based combinatorial 
biosynthetic compounds (Several 
compounds showed activity 
comparable to first line drugs). 

Under 
investigation 

Whole cell 
microorganism 
screening 
against 
replicating and 
nonreplicating 
Mtb.  
 

Mycosynthetix, 

University of Illinois 

at Chicago 

15,000 Natural product extracts as 

fungal metabolites  

 

Not 

mentioned 

Not much 

information is 

available 

University of Illinois 

at Chicago, Myongji 

University 

Actinomycete metabolites purified 

and derived from 70,000 natural 

products extract 

Not 

mentioned 

Several samples 

showing MIC of 

less than  

0.5 g/mL. 

 

Vertex 

Pharmaceuticals, 

Incorporated 

315,000+ Compounds Mtb Protein 

Kinase 

Inhibitors  

The screening 

assay uses a 

basic protein 

kinase assay. 
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Sponsor/Developer Compounds Target Remarks 

AstraZeneca R & D 
Bangalore, India 

500,000 Synthetic compounds. Enzyme(s) 
involved in 
DNA synthesis

Not much 
information is 
available 

AstraZeneca, TB 
Alliance 

Synthetic compounds are under 
screening via high throughput 
assay

Folate 
Biosynthesis 
Inhibitors

Not much 
information is 
available 

GlaxoSmithKline, 
Texas A & M 
University, TB 
Alliance  

Library of 1.4 million synthetic 
compounds has been screened via 
High throughput screening 

Malate 
Synthase 
Inhibitors 

Hits have been 
identified. 
 

Colorado State 
University, TB 
Alliance 

Synthetic, known already and 
evaluated as cholesterol synthesis 
inhibitors. 

Menaquinone 
Synthase 
(MenA) 
Inhibitors  

Project aims to 
"retro-design" 
and evaluate 
derivatives of 
the known 
compounds  

UPenn and TB 
Alliance 

110,000 Synthetic compounds 
derived from natural products 

Inhibitors of 
Mtb energy 
metabolism, 
electron 
transport 
chain

About 100 hits 
have been 
identified 

Table 3. Various Compounds at Lead Identification stage 

3.2.2 Lead optimization 

 

Sponsor/Developer Compounds Target Remarks 

TB Alliance, Institute of 
Materia Medica, The 
Beijing Tuberculosis and 
Thoracic Tumor Research 
Institute and University 
of Illinois. 

Riminophenazine 
(clofazimine) 
derivatives >500 
synthetic compounds

Considered to 
inhibit energy 
metabolism in 
Mtb (Mtb 

Riminophenazines 
(clofazimine) have been 
employed to treat 
leprosy. In vivo studies 
are underway 

GlaxoSmithKline, TB 
Alliance 

>2 Million synthetic 
compounds.

InhA Inhibitors ------

Anacor Pharmaceuticals  >1000 Synthetic 
boron-containing 
compounds 

LeuRS inhibitors, 
Protein synthesis

------

TB Alliance, 
GlaxoSmithKline 

>1 Million synthetic 
compounds 

Mycobacterial 
Gyrase Inhibitors

Several lead 
compounds have been 
identified and are being 
evaluated further. 

AstraZeneca, TB Alliance Synthetic Mycobacterial 
Gyrase Inhibitors

------

Table 4. Various Compounds at Lead Optimization stage 
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3.2.3 Pre clinical 

3.2.3.1 CPZEN-45 

Sponsor/developer: Microbial Chemistry Research Foundation, Tokyo, Japan Lilly TB Drug 
Discovery Initiative NIAID, IDRI, Lilly, YourEncore. 

O

HO OH

O O

HO OH

N

H
N

N

N

COOH

CH3

H3C O

O

H2N

  

CPZEN-45 

Synonyms: Caprazene, caprazamycin, nucleoside antibiotic  

Summary: CPZEN-45 is a nucleoside antibiotic produced by Streptomyces sp. first described 
in 2003 by investigators at the Microbial Chemistry Research Foundation (MCRF) and Meiji 
Seika Kaisa, Ltd of Japan. CPZEN-45 possesses MIC of 1.56 μg/mL against Mtb H37Rv and 
6.25 μg/mL against a MDR strain of Mtb. This compound is active against both replicating 
and non-replicating Mtb in vitro, suggesting it could be efficacious against latent organisms 
in vivo. CPZEN-45 has shown efficacy against both drug sensitive and XDR Mtb in a mouse 
model of acute tuberculosis (TB). Recent data by NIAID using the gamma interferon gene-
disrupted (GKO) mouse model of acute tuberculosis in which infection was achieved by 
aerosol exposure to Mtb (Erdman) also demonstrated efficacy of CPZEN-45 with 1-1.5 log 
CFU reduction in lungs of infected mice. Its mode of action is not specified (Hirano et al., 
2008; WGND) 

3.2.3.2 Quinolone DC-159a   

Sponsor or developer: Japan Anti-Tuberculosis Association, JATA Daiichi-Sankyo 
Pharmaceutical Co. 
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DC-159a 

Summary: DC-159a exhibited the highest activity against drug-susceptible (MIC = 0.03 

g/mL), quinolone-resistant (QR) MDR-TB and non-tuberculous mycobacteria isolates 
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compared to that of moxifloxacin, gatifloxacin, levofloxacin and RMP. The potent activity of 
DC-159a is ascribed to the inhibition of DNA gyrase from wild-type and MDR-Mtb. In the 
drug-susceptible-Mtb infection model, it exhibited better early bactericidal activity (EBA) 
and higher log reduction of CFU in lungs, compared to moxifloxacin, levofloxacin, INH and 
RMP. In the QR MDR-TB infection model, it showed 2~3 times longer “mean survival days” 
which was superior to moxifloxacin, levofloxacin, INH and RMP. Pharmacokinetic study of 
DC-159a in a monkey model after an oral dose of 5 mg/kg of body weight, showed that it 

achieved a higher peak concentration (Cmax; 2.20 g/ml) and area under the concentration-

time curve from 0 to 24 h (AUC 0–24; 16.9 g.h/ml) than the MIC against Mtb, and showed 

better pharmacokinetic properties than levofloxacin (Cmax, 1.68 g/ml; AUC 0–24, 15.3 

g.h/ml). DC159a lacked interaction with cytochrome P450 3A4 (WGND; Disratthakit, & 
Doi, 2010; Sekiguchi et al., 2011), suggesting a better safety profile.  

3.2.3.3 SQ-609  

Sponsor/developer: Sequella 

N
NHO

  

SQ-609 

Summary: Sequella screened >100,000 molecules for anti-mycobacterial activity and 

identified SQ609 as the most potent (MIC = 4 g/mL) and promising candidate among a 

new series of potential cell-wall inhibiting dipiperidines that are structurally different than 

any existing antitubercular drugs/candidates. Precise mode of action of SQ 609 is unknown 

(WGND; Bogatcheva et al., 2011). 

3.2.3.4 SQ-641  

Sponsor/developer: Sequella  

Target: Translocase 1 (TL1) enzyme Inhibitors 

Compounds: >7000 compounds synthetic compounds derived from natural products 
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SQ-641 
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Summary: Translocase 1 (TL1) enzyme, which is absent in eukaryotic cells, is an essential 
enzyme in bacteria for the biosynthesis of the peptidoglycan layer of the cell wall. The semi-
synthetic nucleoside Capuramycin has been studied as inhibitor of TL1 enzyme. The lead 

candidate SQ-641 (MIC = 0.5 g/mL) is under preclinical development for the treatment of 
TB. Its mycobactericidal rate is faster than any existing TB drugs. SQ-641 possesses activity 
against MDR clinical strains of Mtb. It has shown efficacy in a mouse model of chronic TB by 
reducing CFU in lungs of infected mice by 1.0 to 1.5 log (WGND; Bogatcheva et al., 2011).  

3.2.3.5 Benzothiazinone (BTZ-043) 
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BTZ-043 

Summary: BTZ-043 belongs to a new class of antimycobacterial agents. It is highly active 

against Mtb (MIC = 1-10 ng/mL) and other actinobacteria. It also possesses activity against 

MDR- and XDR-TB strains. It showed in vitro bactericidal activity comparable to INH. It is 

non-mutagenic and has good oral bioavailability. BTZ-043 inhibits cell wall biosynthesis, 

and targets the DprE1 (Rv3790) subunit of the enzyme decaprenylphosphoryl-beta-D-ribose 

2'-epimerase.  

3.2.3.6 Q-201  

Sponsor/developer: Quro Science, Inc. 

It is an imidazopyridine compound. Not much detail is available about this compound. 

 

Phase Compound Sponsor/developer Mode of action 

I AZD5847 Astrazeneca   Protein synthesis inhibitor 

II PNU-100480 Pfizer Protein synthesis inhibitor 

LL3858 Lupin Pharmaceuticals Inc. Not yet known 

SQ-109 Sequella, NIH Not yet known 

PA-824  
 

TB Alliance Protein synthesis and cell 
wall lipids inhibitor 

OPC67683 Otsuka Pharmaceutical Co. 
Ltd. 

Protein synthesis and cell 
wall lipids inhibitor 

TMC 207 Tibotec Affects proton pump of 
ATP synthase 

Linezolid Tuberculosis Trials 
Consortium (TBTC), Pfizer  

Protein synthesis inhibitor 
Novel unique 

II/III Rifapentine CDC, Sanofi-aventis Inhibits DNA dependent 
RNA polymerase 
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Phase Compound Sponsor/developer Mode of action 

III Moxifloxacin  
 

University College London Inhibits bacterial 
replication 
 

Gatifloxacin Institut de Recherche pour 
le Développement, WHO, 
European Commission 
(primary developers) 
 

Inhibits bacterial 
replication 

Table 5. Compounds in phase I-III clinical trials 

3.2.4 Phase I 

3.2.4.1 AZD-5847  

Sponsor/developer: Astrazeneca   

Summary: AZD-5847, an oxazolidinone antibiotic (structure is not disclosed), originally 

developed for staphylococcal infections, is currently in Phase 1 clinical trials. It possesses 

MIC90 of 1 g/mL against laboratory Mtb strains and clinical isolates resistant to INH, RMP, 

streptomycin, EMB or OFX (Abstract Balasubramanian et al., 2011). Studies to examine 

safety, tolerability and blood levels of AZD-5847 in healthy volunteers are underway. 

3.2.5 Phase II 

3.2.5.1 PNU-100480 

Sponsor/developer: Pfizer 

N NS
O

NH

O

F

O

  

PNU-100480 

Summary: PNU-100480 is a structural analogue of linezolid (see details in Phase II section). 

It is more active than linezolid against TB (Williams, et al., 2009 as cited in Alffenaar et al., 

2011) and possesses similar efficacy to that of INH and RMP (Cynamon et al., 1999, as cited 

in Alffenaar et al., 2011). Its MIC was found in the range of .0625-0.5 g/mL in drug-

susceptible and drug-resistant clinical strains of Mtb (Alffenaar et al., 2011). When added to 

a first-line regimen in a murine model, PNU-100480 had a synergistic bactericidal effect, 

while linezolid had an antagonistic effect (Williams, et al., 2009 as cited in Alffenaar et al., 

2011). 14 day dose-escalation and 28 day dose study in healthy volunteers have been 

completed (WGND, 2011).  
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3.2.5.2 Pyrrole (LL-3858) or Sudoterb. 

Sponsor/developer: Lupin Pharmaceutical Inc. 

CH3

N

Cl

Cl

N

H3C

  

N CH3

NH

N

N

N CF3

O

  

BM 212      LL3858 

Summary: Deidda et al. (Deidda et al., 1998) first reported the activity of the pyrroles against 

Mtb. The most potent compound identified was BM212 (MICs = 0.7 to 1.5 μg/mL against 

several strains of Mtb). This work by Deidda et al. later on inspired Lupin to synthesize a 

series of pyrroles and one of their leads LL3858 is currently in clinical development for the 

treatment of TB (Arora et al., 2004). The MIC90 of LL3858 for Mtb is reported to be 0.25 

g/mL (Tuberculosis. 2008. Ll-3858, as cited in van den Boogaard et al., 2009). LL3858, in 

combination with current anti-TB drugs, is reported to sterilize the lungs and spleens in 

lesser time than the conventional therapy (Sinha et al., 2004). The mechanism of action for 

this class of compounds has not yet been established.  

3.2.5.3 Diamine (SQ-109) 

Sponsor/developer: Sequella, NIH  

H3C N
H

H
N

CH3 CH3

  

SQ-109 

Summary: SQ109, or N-adamantan-2-yl-N′-(3,7-dimethylocta-2,6-dienyl)-ethane-1,2-

diamine, is being developed by Sequella. It was the most potent compound (MIC = 0.1–0.63 

μg/mL) in the series (Lee et al., 2003). In vivo studies showed 1 to 2.0-log reduction in CFU 

counts in the lung and spleen at 25 mg/kg. Its oral bioavailability is only 4% (Jia et al., 2005). 

Preclinical toxicology studies have been completed and further phase 2 clinical studies are 

underway. 
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3.2.5.4 Nitroimidazoles (PA824 AND OPC67683) 

3.2.5.4.1 PA-824 

Sponsor/developer: TB Alliance 

N

ON

O

OCF3

O2N

  

PA-824 

In 1970s Ciba-Geigy in India screened a series of nitroimidazoles as radiosensitizers. Many 

of them were later found to possess antimicrobial activity, (including anti-Mtb activity). 

However, further development was discontinued after the lead molecule CGI-17341 was 

found to be mutagenic. In 1995 a pharmaceutical company, PathoGenesis, modified Ciba-

Geigy’s molecules and screened around 700 compounds against Mtb and found PA824 as 

the most active (Stover et al., 2000) and non mutagenic (Ginsberg & Spigelman, 2006). After 

PathoGenesis, Chiron Corporation obtained the rights and finally the Global Alliance for TB 

Drug Development acquired its rights for its clinical development. It has potent in vitro 

activity against Mtb, as evidenced by an MIC range of 0.015 to 0.25 mg/ml, and retains this 

activity against isolates resistant to a variety of commonly used anti-TB drugs. PA-824 kills 

Mtb bacilli by inhibiting the synthesis of protein and cell wall lipids (Stover et al., 2000). In 

mouse model it was highly active for latent TB in combination with moxifloxacin 

(Nuermberger et al.; 2005). It is suggested, however, that PA-824 is a prodrug and requires 

reductive activation of the aromatic nitro group (Manjunatha et al., 2006). 

PA-824 showed good tissue permeability in rat studies. Its minimum bactericidal dose (to 

reduce the lung CFU count by 99%) was found to be 100 mg/kg/day in murine studies. PA-

824 in combination with INH prevents selection of TB mutants resistant to INH. It is 

effective against replicating and persistent TB bacilli. It is also effective against MDR strains 

and Mtb grown under oxygen depletion (Tyagi et al., 2005; Lenaerts et al., 2005). It has 

completed phase 1 studies in healthy volunteers (Spigelman, 2005). 

3.2.5.4.2 OPC-67683 (Delamanid) 

Sponsor/developer: Otsuka Pharmaceutical Co. Ltd. 

N O

OCF3

ON
O

N
O2N

  

OPC-67683 
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Another nitroimidazole compound, OPC-67683 (MICs 0.006 μg/mL) is being developed by 
Otsuka Pharmaceutical. It was found to be potent against Mtb in vitro and in vivo 
(Matsumoto et al., 2005). In a mouse model, its efficacy was reported to be superior to that of 
currently used TB drugs. The effective plasma concentration of OPC-67683 was 0.100 
μg/mL (achieved with an oral dose of 0.625 mg/kg). It showed no cross-resistance with the 
current anti-TB drugs. The mechanism of action of OPC-67683 is suggested to be similar to 
PA-824 (Kawasaki et al., 2005). 

3.2.5.5 Diarylquinoline (TMC-207 or R-207910 or Bedaquiline) 

Sponsor/developer: Tibotec 

N

N
OH

O

Br

  

TMC-207 

TMC-207 is owned by Johnson & Johnson (J&J) and is being developed at its research 

subsidiary Tibotec. TMC-207 not only showed very potent in vitro activity against both 

MDR and drug-susceptible strains of Mtb but also has potent activity against other 

Mycobacterial species (M. avium, M. marinum, M. fortuitum, and M. abscessus M. 

smegmatis). Its MIC ranges from 0.002 to 0.06 µg/mL for drug susceptible and drug 

resistant strains (Andries et al., 2005; Huitric et al., 2007). It is active in vitro against TB 

organisms resistant to INH, RMP, streptomycin, EMB, PZA, and moxifloxacin. It has no 

cross-resistance with current anti-TB medications (Andries 2004). In mice, a single dose 

had bactericidal potency for about eight days. When used as monotherapy, a single dose 

of TMC-207 was as potent as the triple combination of RMP, INH, and PZA and was more 

active than RMP alone. It works on the proton pump of ATP synthase (Andries et al., 

2005). The effective half-life was found was ~24 h. Single ascending dose and 14-day 

multiple ascending dose studies in healthy human males showed no severe adverse 

effects. Further clinical trials are underway. 

3.2.5.6 Linezolid for the Treatment of Multi-Drug Resistant Tuberculosis   

Sponsor/developer: Tuberculosis Trials Consortium (TBTC), Pfizer   

N NO
O

NH

O

F

O

  

Linezolid 
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Linezolid is an approved antibacterial drug without a TB indication. It was discovered in 

1990s and approved in 2000 for the treatment of Gram positive bacterial infections. It is 

active against most Gram-positive bacteria with MIC90 1-2 g/mL (Alcalá et al., 2003). It 

works as a protein synthesis inhibitor. Lack of information on its efficacy is one of the major 

concerns for its use as anti-TB agents (Migliori et al., 2009). Long-term use has been 

associated with thrombocytopenia, neuropathy and haematopoietic suppression (Gerson et 

al., 2009).  

3.2.5.7 Rifapentine (TBTC study) 

Sponsor/developer: CDC, Sanofi-aventis 

NH

O
OH

N
O

OH

O

N

O

HO

H

O

NOH
O

O
OH

  

Rifapentine 

Rifapentine is a cyclopentyl derivative of the first-line TB drug RMP. Its MIC was found to 

be 0.03 g/mL by 7H12 broth radiometric assay (Heifets et al., 1999). Its mechanism of 

action is the same as of RMP (Williams et al., 1998). It induces the CY450 system to a lesser 

extent than RMP (Weiner et al., 2004). It can also be used for latent TB as a part of regimen 

with either moxifloxacin or INH (Nuermberger et al., 2005). The aim of the clinical trial is to 

examine antimycobacterial activity and safety of an experimental intensive phase (first 8 

weeks of treatment) tuberculosis treatment regimen in which RMP is substituted by 

rifapentine.  

3.2.6 Phase III 

3.2.6.1 Fluoroquinolones 

In the past few years, attention has been focused on the use of fluoroquinolones for 

shortening the treatment duration of Mtb. Most of the credit for the use of fluoroquinolones 

goes to a clinical trial by the Tuberculosis Research Centre, Chennai, India (Tuberculosis 

Research Centre [TRC], 2002). In this trial, newly diagnosed pulmonary TB patients were 

randomly divided to receive one of four regimens containing a fluoroquinolone – ofloxacin 

(OFX). The rates of sputum conversion by this treatment at 2 months ranged from 92%-98% 

(superior to ∼80% conversion rate by conventional therapy) (Tuberculosis Trials 

Consortium [TBTC], 2002).  
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3.2.6.1.1 Moxifloxacin 

Sponsor/developer: University College London 

OCH3

N

F

O

HN

H

H

OH

O   

Moxifloxacin 

Moxifloxacin (“Avelox” by Bayer) is a broad-spectrum antibiotic (400 mg/day dose) and is 

active against both gram positive and gram negative bacteria. It exhibits MIC of 0.5 g/mL 

against Mtb (Shandil et al., 2007). It displayed early bactericidal activity comparable to INH 

and rifampin in humans (Pletz 2004; Gosling 2003). It affects bacteria by binding to the DNA 

gyrase and topisomerase IV, which are involved in bacterial replication. It has no cross-

resistance to other antituberculosis drug classes; therefore, it might be useful against MDR-

TB and XDR-TB. Further, it has been shown to display good activity profile against MDR 

strains (Tortoli et al., 2004). However, it has CNS side effects and drug interactions with 

other fluoroquinolones. Moxifloxacin has not been reported to be safe or effective in 

children younger than 18 or in pregnant or lactating women (Bayer, n.d.). Nuermberger et 

al. (2004) found that substituting moxifloxacin for INH shortens the duration of therapy for 

active disease much better than does substituting moxifloxacin for EMB.  

3.2.6.1.2 Gatifloxacin 

Sponsor/developer: Institut de Recherche pour le Developpement, WHO, European 
Commission (primary developers) 

OCH3

N

F

O

OH

O

HN

  

Gatifloxacin 

Gatifloxacin (“Tequin” by Bristol-Myers Squibb) is also a broad-spectrum antibiotic (dosage 
of 400 mg/day). It works by the same mechanism as moxifloxacin. It is active against 
occasionally dividing Mtb, but not for dormant bacteria (Paramasivan et al., 2005). 
Gatiflozacin in combination with ethionamide and PZA was most effective to sterilize the 
lungs and prevent relapse (Cynamon & Sklaney, 2003). Gatifloacin can cause CNS toxicity 
and has been associated with increases in insulin levels among diabetics. It has not been 
shown to be safe or effective in children younger than 18 or in pregnant or lactating women. 
Gatifloxacin has completed a phase 2 study on randomized patients receiving 8 weeks of 
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therapy with either conventional treatment or the combination of INH, PZA, and RMP with 
either OFX or moxifloxacin, or gatifloxacin. In this study, serial sputum colony count 
measurements indicated that the patients in the moxifloxacin and gatifloxacin arms cleared 
their sputum more quickly than the patients receiving conventional therapy or the regimen 
containing OFX (Lienhardt et al., 2005).  

3.2.7 Experimental compounds 

The following experimental compounds are not commercially available. Their efficacy and 
safety are unknown. 

3.2.7.1 A herbal product from Ukraine has been subjected to many open label clinical trials, 
with promising results in TB and TB/HIV coinfected patients (Zaitzeva et al., 2009; 
Nikolaeva et al., 2008a, 2008b). Open label trials with adjuvant Dzherelo (Immunoxel) have 
also been positive in MDR-TB and XDR-TB patients (Prihoda et al., 2007).  

3.2.7.2 V-5 Immunitor or “V5”, is an oral vaccine available in tablets for hepatitis B and 
hepatitis C treatment. TB sputum clearance was unexpectedly noted within a month, in 
hepatitis C-TB co-infected patients. Blinded studies suggest that V5 is also effective against 
MDR-TB (Olga et al., 2010; Butov et al., 2011). 

4. Conclusion 

After decades of reluctance in the TB drug discovery, several groups/institutions such as TB 

Alliance, Working Group on New Drugs (WGND) and New Medicines for Tuberculosis 

(NM4TB) have rekindled hope for new anti-tuberculosis drug(s) which may offer promise 

against MDR- and XDR-TB, and HIV-TB co-infection. The new drugs may also have 

capability of shortening the treatment duration of drug susceptible TB. Apart from the 

above big organizations, smaller research teams worldwide including our laboratory are 

actively involved in the search of new classes of potent and safe anti-tuberculosis drug(s).  

The current TB drug pipeline (Table 6), no doubt, is the richest we have ever seen, but still it 

will take a long before any new drug hits market with approval. There are hurdles on the 

way ahead. Fund constraints, slow pace trial designs, insufficient infrastructure to validate 

the drug(s), validation and approval mechanism of Food and Drug Administration (FDA) 

and the European Agency for the Evaluation of Medicinal Products (EMEA), and most 

importantly, the strong political will power, are the crucial issues ahead. The TB Trials 

Consortium (TBTC) (funded by The Centers for Disease Control and Prevention), National 

Institutes of Health (NIH) and European and Developing Country Clinical Trials Program 

(EDCTP) have to play better and expanded roles along with the ongoing efforts to accelerate 

the drug development. Governments, regulatory agencies, pharmaceutical and biotechnology 

companies, involved international agencies and communities, and basic and applied 

researchers worldwide all have to work together to achieve the goal of eradicating TB, like 

other big burden disease such as HIV. 

It is worth to mention here lastly, that not only cure by drugs, but prevention measures and 

awareness steps by Governments and social bodies are also crucial and play very important 

role to stop any such infectious devil. Particular area on alert which need drastic 

improvements are imprisonment, health care systems, sex workers, travel and transportations, 
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and mass gathering activities such as festivals and events. The most important but neglected 

part of prevention program, which might be addressed and implemented urgently and 

effectively, is a separate and intense educational program designed for families having a 

member with diagnosed active TB. Together with a successful drug hunt and preventive 

measures, we can soon hope of the world without fear of millions of yearly deaths from 

tuberculosis. 

 

Discovery Classes, 
(Sponsor/developer) 

Preclinical Clinical Existing Drugs 
 

Screening Lead 
Identification 

Lead 
Optimization 

Phase I Phase II Phase III

Natural 
Products 
(IMCAS) 

Whole-Cell Hit to 
Lead Program 
(GSK) 

Mycobacterial 
Gyrase Inhibitors 
(GSK) 

Nitroimidazoles
(U. of 
Auckland/ U. 
Ill Chicago) 

AZD58
47 

PNU-
100480 

Moxiflox
acin  
(Bayer) 

First Line 
 
Rifampicin 
Isoniazid 
Pyrazinamide 
Ethambutol 

Topoisomerase 
I Inhibitors 
(AZ/NYMC) 

Folate 
Biosynthesis 
Inhibitors (AZ) 

 
 PA-824  

(Nova-
rtis) 
 

RNA Polymerase 
Inhibitors (AZ)  
Energy 
Metabolism 
Inhibitors 
(AZ/U. Penn)

InhA Inhibitors 
 

CPZEN-45 

Nucleosides Ruthenium(II)ph
o-
sphine/picolinate 
complexes 

Pyrazinamide 
Analogs (Yonsei)

Preclinical TB 
Regimen 
Develo-pment 
(JHU/U. Ill 
Chicago) 

Lnezolid; 
low dose

Gatifloxa
cin 

Second Line  
 
Amikacin 
Kanamycin 
Capreomycin 
Streptomycin  
Cycloserine 
Ethionamide,  
PAS 
Clofazimine 
Ciprofloxacin 
Levofloxacin 
Ofloxacin 

Carbo-
hydrates 

Whole-Cell Hit to 
Lead Program 
(AZ)  

Metal 
Complexes 

Folate 
Biosynthesis 
Inhibitors 

Diarylquinolines 
Tibotec/U. of 
Auckland 

DC-159a   
 

TMC 207 
(Tibotec)

Hydrazides 
and 
hydrazones 

Menaquinone 
Synthase (MenA) 
Inhibitors 

Hetero-cyclics  
 
Quinolines, 
Quinoxalines, 
Pyrimidines, 
Purines, 
Pyrroles, 
Azines 

Protein Kinase 
Inhibitors 

Riminophenazine
s (IMM/BTTTRI) 

SQ-641 LL3858  Rifape-
ntine 

Enzyme(s) 
involved in DNA 
synthesis 

SQ-109 
OPC6768
3 

 SQ-609 

“Third Line” 
 
Rifabutin,  
Macrolides:  
(e.g., 
clarithromycin); 
Linezolid, 
R207910, 
Thioacetazone; 
Thioridazine;  
Arginine; vitamin 
D;  
. 

Malate Synthase 
Inhibitors 

 

Chalcones 
 

BTZ-043 
 Actinomycete 

metabolites 
 

Rifapenti
ne 
 

Artemisinin 
derivatives 
 Fungal 

metabolites 

Macrolids 
 

 Q-201 (Quro 
Science Inc.) 

Peptides 
 

Table 6. Drug discovery: Screening to Existing Drugs. 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

79 

5. References 

Acocella G. (1978). Clinical Pharmacokinetics of Rifampicin. Clinical Pharmacokinetics, Vol. 3, 
pp. 108-127. 

Ahmad, Z.; Peloquin, C. A.; Singh, R. P.; Derendorf, H.; Tyagi, S.; Ginsberg, A.; Grosset, J. H. 
& Nuermberger, E. L. (2005). PA-824 Exhibits Time-Dependent Activity in a 
Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, Vol. 55, 
pp. 239–224. 

Alcalá, L.; Ruiz-Serrano, M. J.; Turégano, C. P. F.; de Viedma, D. G.; Díaz-Infantes, M.; 
Marín-Arriaza, M. & Bouza, E. (2003). In vitro activities of linezolid against clinical 
isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line 
antituberculous drugs. Antimicrobial Agents and Chemotherapy, Vol. 47, pp. 416-417. 

Alffenaar, J. W. C.; van der Laan,T.; Simons, S.; van der Werf, T. S.; van de Kasteele, P. J.; de 
Neeling, H. & van Soolingen, D. (2011). Susceptibility of Clinical Mycobacterium 
tuberculosis Isolates to a Potentially Less Toxic Derivate of Linezolid, PNU-100480. 
Antimicrobial Agents and Chemotherapy, Vol. 55, pp. 1287–1289. 

Ancizu, S.; Moreno, E.; Solano, B.; Burguete, A.; Torres, E.; Pérez-Silanes, S.; Aldana, I. & 
Monge, A. (2010). New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide 
derivatives as anti-Mycobacterium tuberculosis agents. Bioorganic & Medicinal 
Chemistry, Vol. 18, pp. 2713–2719. 

Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H. W. H.; Neefs, J. M.; Winkler, H.; 
Gestel, J. V.; Timmerman,P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, 
E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N. & Jarlier, V. (2005). A 
Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. 
Science, Vol. 307, pp. 223–227. 

Aristoff, P.A.; Garcia, G. A.; Kirchhoff, P. D. & Hollis Showalter, H. D. (2010). Rifamycins-
obstacles and opportunities. Tuberculosis, Vol. 90, pp. 94–118. 

Arjanova, O.V.; Prihoda1, A. D.; Yurchenko, L. V.; Sokolenko, N. I.; Frolov, V. M.; 
Tarakanovskaya, M. G.; Jirathitikal. V. & Bourinbaiar, A. S. (2010). Phase 2 Trial of 
V-5 Immunitor (V5) in Patients with Chronic Hepatitis C Co-infected with HIV and 
Mycobacterium tuberculosis. Journal of Vaccines and Vaccination Vol. 1, 103. 
doi:10.4172/2157-7560.1000103 

Arora, S. K.; Sinha, N.; Sinha, R. K.; Uppadhayaya, R. S.; Modak, V. M. & Tilekar, A. (2004) 
Synthesis and in vitro anti-mycobacterial activity of a novel anti-TB composition 
LL4858 [abstract F-1115]. In: Program and abstracts of the 44th Interscience Conference 
on Antimicrobial Agents and Chemotherapy (Washington, DC). Washington, DC: 
American Society for Microbiology. 

Arya, D. S.; Ojha, S.K.; Semwal, O.P. & Nandave, M.(2008). Pharmacokinetics of 
Pyrazinamide in Children with Primary Progressive Disease of Lungs Indian 
Journal of Medical Research, Vol. 128, pp. 611-615. 

Baciewicz, A. M.; Chrisman, C. R.; Finch, C. K. & Self, T. H. (2008) Update on Rifampin and 
Rifabutin Drug Interactions. American Journal of Medical Sciences, Vol. 335, pp. 126-
136.  

Balasubramanian, V.; Gaonkar, S.; Solapure, S.; Sambandamurthy, V.; Shandil, R.; Mahesh, 
K. N.; Sharma, S.; Kaur, P. Deepthi, R.; Subbulakshmi, V.; Ramya, V.; 
Ramachandran, V.; Reddy, J.; Giridhar, J.; Deshpande, A.; Bharath, S.; Kumar, 
N.;Balganesh, M.; Nandi, V.; Wright, L.; Melnick, D.; (Scheduled Presentation on 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

80

Monday, Sep 19, 2011) AZD5847, an Oxazolidinone for the Treatment of 
Tuberculosis: Pre-clinical Studies. [Presentation no. F1-1364]. American Society for 
Microbiology, 1752 N Street NW Washington, DC. USA. Available from  

 http://www.abstractsonline.com/plan/ViewAbstract.aspx?mID=2789&sKey=5f3f
a01a-9c86-4ebd-8cab-50756d6faa6f&cKey=c393491b-4fdf-42a8-8857-
3756dce2a517&mKey={0C918954-D607-46A7-8073-44F4B537A439} 

Barclay, W. R.; Ebert, R. H.; Le Roy, G. V.; Manthei, R. W.; & Roth, L. J. (1953). Distribution 
and Excretion of Radioactive Isoniazid in Tuberculous Patients. Journal of the 
American Medical Association, Vol. 151, pp. 1384-1388. 

Bayer. Avelox® (moxifloxacin hydrochloride) Product Safety. 12.08.2001, Available from 
http://www.avelox.com/en/physician/product_information/avelox_safety/inde
x.php  

Belanger, A. E.; Besra, G. S.; Ford, M. E.; Mikusova, K.; Belisle, J. T.; Brennan, P. J. & 
Inamine, J. M. (1996). The Embab Genes of Mycobacterium avium Encode an 
Arabinosyl Transferase Involved in Cell Wall Arabinan Biosynthesis that is The 
Target for the Antimycobacterial Drug Ethambutol. Proceedings of the National 
Academy of Sciences, Vol. 93, pp. 11919–11924. 

Bermudez, L. E.; Inderlied, C. B.; Kolonoski, P.; Wu, M.; Aralar, P. & Young, L. S. (2001) 
Telithromycin is Active against Mycobacterium avium in Mice Despite Lacking 
Significant Activity in Standard In vitro and Macrophage Assays and is Associated 
With Low Frequency of Resistance During Treatment. Antimicrobial Agents and 
Chemotherapy, Vol. 45, pp. 2210–2214. 

Biava, M.; Porretta, G. C.; Poce, G.; Supino, S.; Deidda, D.; Pompei, R.; Molicotti, P.; Manetti, 
F. & Botta, M. (2006). Antimycobacterial Agents. Novel Diarylpyrrole Derivatives 
of BM212 Endowed with High Activity toward Mycobacterium tuberculosis and Low 
Cytotoxicity. Journal of Medicinal Chemistry, Vol. 49, pp. 4946-4952. 

Biava, M.; Porretta, G. C.; Poce, G.; Logu, A. D.; Meleddu, R.; Rossi, E. D.; Manetti, F & Botta, 
M. (2009). 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: 
Design, synthesis, and microbiological evaluation. European Journal of Medicinal 
Chemistry, Vol. 44, pp. 4734–4738. 

Biava, M.; Porretta, G. C.; Poce, G.; Battilocchio, c.; Alfonso, S.; Logu, A. D.; Serra, N.; 
Manetti, F & Botta, M. (2010). Identification of a Novel Pyrrole Derivative Endowed 
With Antimycobacterial Activity and Protection Index Comparable to that of the 
Current Antitubercular Drugs Streptomycin and Rifampin. Bioorganic & Medicinal 
Chemistry, Vol. 18, pp. 8076–8084. 

Bogatcheva, E.; Hanrahan, C.; Nikonenko, B.; de los Santos, G.; Reddy, V.; Chen, C.; 
Barbosa, F.; Einck, L.; Nacy, C. & Protopopova, M. (2011). Identification of SQ609 as 
a Lead Compound from A Library Of Dipiperidines. Bioorganic & Medicinal 
Chemistry Letters, Vol. 21, pp. 5353–5357. 

Bogatcheva, E.; Dubuisson, T.; Protopopova, M.; Einck, L.; Nacy, C. A. & Reddy, V. M. 
(2011). Chemical Modification Of Capuramycins To Enhance Antibacterial Activity. 
Journal of Antimicrobial Chemotherapy, Vol. 66, pp. 578–587. 

Butov, D. A.; Pashkov, Y. N.; Stepanenko, A. L.; Choporova, A. I.; Butova, T. S.; Batdelger, 
D.; Jirathitikal, V.; Bourinbaiar, A. S. & Zaitzeva, S. I. (2011). Phase IIb Randomized 
Trial of Adjunct Immunotherapy In Patients With First-Diagnosed Tuberculosis, 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

81 

Relapsed and Multi-Drug-Resistant (MDR) TB. J Immune Based Ther Vaccines, Vol. 
9:3. Available from http://www.jibtherapies.com/content/pdf/1476-8518-9-3.pdf 

Callaway E. (October 15, 2008). Oldest cases of human TB found beneath the sea. In: New 
Scientist, 12.08.2011, Available from www.newscientist.com /article/dn14941-
oldest-cases-of-human-tb-foundbeneath-the-sea.html 

Carta, A.; Palomba, M.; Paglietti, G.; Molicotti, P.; Paglietti, B.; Cannas, S. & Zanetti, S. 
(2007). [1,2,3]Triazolo[4,5-h]quinolones. A New Class of Potent Antitubercular 
Agents against Multidrug Resistantnt Mycobacterium tuberculosis Strains. Bioorganic 
& Medicinal Chemistry Letters. Vol. 17, pp. 4791–4794. 

Centre for Disease Control and Prevention [CDC] (1994) 12.08.2011, Available from 
http://wonder.cdc.gov/wonder/prevguid/p0000413/p0000413.asp#head0060010
00000000  

Chiba. T.; Takii, T.; Nishimura, K.; Yamamoto, Y.; Morikawa, H.; Abec, C. & Onozaki, K. 
(2007). Synthesis of New Sugar Derivatives from Stachys sieboldi Miq and 
Antibacterial Evaluation against Mycobacterium tuberculosis, Mycobacterium avium, 
and Staphylococcus aureus.Bioorganic & Medicinal Chemistry Letters. Vol. 17, pp. 
2487–2491. 

Clark, D. W. (1985). Genetically determined variability in acetylation and oxidation. 
Therapeutic implications. Drugs, Vol. 29, 342-375. 

Cole S. T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S. V.; 
Eiglmeier, K.; Gas, S.; Barry, C. E. 3rd; Tekaia, F.; Badcock, K.; Basham, D.; Brown, 
D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; 
Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.;, Krogh, A.; McLean, J.; Moule, S.; 
Murphy, L.; Oliver, K.; Osborne, J.; Quail, M. A.; Rajandream, M. A.; Rogers, J.; 
Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J. E.; Taylor, K.; 
Whitehead, S. & Barrell, B. G. (1998). Deciphering the Biology of Mycobacterium 
tuberculosis from the Complete Genome Sequence. Nature, Vol. 393, pp. 537-544. 

Collins, L. & Franzblau, S .G. (1997) Microplate Alamar Blue Assay versus BACTEC 460 
System for High-throughput Screening of Compounds against Mycobacterium 
tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy, Vol. 
41, pp. 1004–1009. 

Deidda D.; Lampis G.; Fioravanti R.; Biava, M.; Porretta, G. C.; Zanetti, S. & Pompei, R. 
(1998). Bactericidal Activities o The Pyrrole Derivative BM212 against Multidrug-
Resistant and Intramacrophagic Mycobacterium tuberculosis Strains. Antimicrobial 
Agents and Chemotherapy, Vol. 42, 3035-3037. 

Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; China, A.; Nagaraja, V. & Sriram, D. (2008 
a). Novel Ofloxacin Derivatives: Synthesis, Antimycobacterial and Toxicological 
Evaluation. Bioorganic & Medicinal Chemistry Letters, Vol. 18, pp. 1229–1236. 

Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; China, A.; Nagaraja, V. & Sriram, D. (2008 
b). Antimycobacterial activities of novel 2-(sub)-3-fluoro/nitro-5, 12-dihydro-5-
oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid. Bioorganic & Medicinal 
Chemistry, Vol. 16, pp. 3408–3418. 

Domenech, P.; Reed, M. B. & Barry, C. E. (2005) Contribution of the Mycobacterium 
tuberculosis MmpL protein family to virulence and drug resistance. Infection and 
Immunity, Vol. 73, pp. 3492-3501. 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

82

Donald PR. & Seifart H. (1988). Cerebrospinal Fluid Pyrazinamide Concentrations in 
Children ith Tuberculous Meningitis. Pediatric Infectious Disease Journal, Vol 7. pp. 
469-471. 

Drobac P. C.; del Castillo H.; Sweetland A.; Anca G.; Joseph J. K.; Furin J. & Shin S. (2005). 
Treatment of Multidrug-Resistant Tuberculosis During Pregnancy: Long-Term 
Follow-Up of 6 Children With Intrauterine Exposure to Second-Line Agents. 
Clinical Infectious Diseases, Vol. 40, pp. 1689-1692.  

Disratthakit, A. & Doi, N. (2010). In vitro Activities of DC-159a, a Novel Fluoroquinolone, 
against Mycobacterium Species, Antimicrobial Agents and Chemotherapy, Vol. 54, pp. 
2684–2686. 

Eiter, L. C.; Hall, N. W.; Day, C. S.; Saluta, G.; Kucera, G. L. & Bierbach, U. (2009). Gold(I) 
Analogues of a Platinum-Acridine Antitumor Agent are Only Moderately 
Cytotoxic but Show Potent Activity against Mycobacterium tuberculosis. Journal of 
Medicinal Chemistry, 52, 6519–6522. 

Ellard, G. A. & Gammon, P. T. (1976). Pharmacokinetics of Isoniazid Metabolism in Man. 
Journal of Pharmacokinetics and Biopharmaceutics, Vol. 4, pp. 83-113. 

Falzari, K.; Zhu, Z.; Pan, D.; Liu, H,; Hongmanee, P. & Franzblau, S. G. (2005). In vitro and In 
vivo Activities of Macrolide Derivatives against Mycobacterium tuberculosis 
Antimicrobial Agents and ChemotherapyVol. 49, pp. 1447–1454. 

Forget, E. J. & Menzies, D. (2006) Adverse Reactions to First-Line Antituberculosis Drugs. 
Expert Opinion on Drug Safety, Vol. 5, pp. 231-249. 

Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.; Hernandez, A.; 
Degnan, M. T.; Cook, M. B.; Quenzer, V. K.; Ferguson, R. M.; Gilman, R. H. (1998). 
Rapid, Low-technology MIC Determination with Clinical Mycobacterium tuberculosis 
Isolates by Using the Microplate Alamar Blue Assay. Journal of Clinical Microbiology, 
Vol. 36, pp. 362–366. 

Fung-Tomc, J.; Minassian, B.; Kolek, B.; Washo, T.; Huczko, E. & Bonner, D. (2000). In vitro 
antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, 
gatifloxacin. J Antimicrob Chemother. Vol. 45, pp. 437-446. 

Gerson, S. L.; Kaplan, S. L.; Bruss. J. B.; Le, V.; Arellano, F. M.; Hafkin, B. & Kuter, D. J. 
(2002). Hematologic Effects Of Linezolid:Summary Of Clinical Experience. 
Antimicrobial Agents and Chemotherapy, Vol. 46, pp. 2723-2726. 

Ginsberg A & Spigelman M. (2006). New drugs for tuberculosis, In: Tuberculosis: a 
comprehensive international approach, Reichman L, Hershfield E, pp. 1135–1151. 3rd 
ed. New York and London: Informa Healthcare. 

Gosling, R. D.; Uiso, L. O.; Sam, N. E.; Bongard, E.; Kanduma, E. G.; Nyindo, M.; Morris, R. 
W. & Gillespie, S. H. (2003). The Bactericidal Activity of Moxifloxacin In Patients 
With Pulmonary Tuberculosis. Am J Respir Crit Care Med., Vol. 168, pp. 1342-1345.  

Gupte, A.; Boshoff, H. I.; Wilson, D. J.; Neres, J.; Labello, N. P.; Somu, R.; Xing, C.; Barry, C. 
E.; Aldrich, C. C.; (2008). Inhibition of Siderophore Biosynthesis by 2-Triazole 
Substituted Analogues of 5′-O-[N-(Salicyl)sulfamoyl]adenosine: Antibacterial 
Nucleosides Effective against Mycobacterium tuberculosis. Journal of Medicinal 
Chemistry, Vol. 51, pp. 7495–7507. 

Handwerger, S., & Tomasz, A. (1985). Antibiotic Tolerance Among Clinical Isolates of 
Bacteria. Reviews of Infectious Diseases, Vol. 7, pp. 368-386.  

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

83 

Hearn, M. J.; Cynamon, M. H.; Chen, M. F.; Coppins, R.; Davis, J.; Joo-On Kang, H.; Noble, 
A.; Tu-Sekine, B.; Terrot, M. S.; Trombino, D.; Thai, M.; Webster, E. R.& Wilson R. 
(2009). Preparation and Antitubercular Activities In vitro and In vivo of Novel Schiff 
Bases of Isoniazid. European Journal of Medicinal Chemistry. Vol. 44,, pp. 4169–4178. 

Heifets L. (1988). MIC as a Quantitative Measurement of Susceptibility of M. Avium to Seven 
Antituberculosis Drugs. Antimicrobial Agents and Chemotherapy., Vol. 32, pp. 1131-
1136. 

Heifets L. & Lindholm-Levy P. A. (1989). Comparison of Bactericidal Activities of 
Streptomycin, Amikacin, Kanamycin, and Capreomycin against M. Avium and M. 
tuberculosis. Antimicrobial Agents and Chemotherapy, Vol. 33, pp. 1298-1303.  

Heifets, L.; Sanchez, T.; Vanderkolk, J. & Pham, V. (1999). Development of Rifapentine 
Susceptibility Tests for Mycobacterium tuberculosis. Antimicrobial Agents And 
Chemotherapy, Vol. 43, pp. 25–28. 

Hirano, S.; Ichikawa, S. & Matsuda, A. (2008). Structure–activity relationship of truncated 
analogs of caprazamycins as potential anti-tuberculosis agents. Bioorganic & 
Medicinal Chemistry, Vol 16, pp. 5123–5133. 

Hong Kong Chest Service, Medical Research Council. (1981). Controlled Trial of Four Thrice 
Weekly Regimens and a Daily Regimen Given for 6 Months for Pulmonary 
Tuberculosis. Lancet, Vol 1, pp. 171–174.  

Horita, Y.; Takii, T.; Kuroishi, R.; Chiba, T.; Ogawa, K.; Kremer, L.; Sato, Y.; Lee, Y.; 
Hasegawa, T. & Onozaki, K. (2011). Synthesis and Evaluation of Anti-Tubercular 
Activity of New Dithiocarbamate Sugar Derivatives. Bioorganic & Medicinal 
Chemistry LetterVol. 21 pp. 899–903. 

Hu, Y.; Coates, A. R. & Mitchison, D.A. (2003). Sterilizing activities of fluoroquinolones 
against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrobial 
Agents and Chemotherapy, Vol. 47, pp. 653–657.  

Huang, Q.; Mao, J.; Wan, B.; Wang, Y.; Brun, R.; Franzblau, S. G. & Kozikowski, A. P. (2009). 
Searching for New Cures for Tuberculosis: Design, Synthesis, and Biological 
Evaluation of 2-Methylbenzothiazoles. Journal of Medicinal Chemistry, Vol. 52, 6757–
6767. 

Huitric, E.; Verhasselt, P.; Andries, K. & Hoffner, S. E. (2007). In vitro antimycobacterial 
spectrum of a diarylquinoline ATP-synthase inhibitor. Antimicrobial Agents and 
Chemotherapy Vol. 51, pp. 4202–4204. 

Inderlied, C. B. & Salfinger, M. (1999). Antimycobacterial Agents and Susceptibility Tests. In: 
Manual of Clinical Microbiology, ed. PR Murray, EJ Baron, MA Pfaller, FC Tenover, 
RH Yolken, pp1601-1623. Washington DC: ASM Press/ III ed. 

International Programme on Chemical Safety [INCHEM], a) n.d. and reference therein. 
12.08.2011 Available from  

 http://www.inchem.org/documents/pims/pharm/rifam.htm#SectionTitle:2.1%2
0Main%20--risks%20and%20target%20organs b) Available from  

 http://www.inchem.org/documents/pims/pharm/pim288.htm#SectionTitle:2.1%
20%20Main%20risks%20and%20target%20organs 

Jaso, A.; Zarranz, B.; Aldana, I. & Monge, A. (2005). Synthesis of New Quinoxaline-2-
carboxylate 1,4-Dioxide Derivatives as Anti-Mycobacterium tuberculosis Agents. J. 
Med. Chem. Vol. 48, pp. 2019-2025. 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

84

Jia, L.; Tomaszewski, J. E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, 
B.& Protopopova, M. (2005) Pharmacodynamics and Pharmacokinetics of SQ109, A 
New Diamine-Based Antitubercular Drug. British Journal of Pharmacol, Vol. 144, pp. 
80–87. 

Jiang, Z.; Higgins, M. P.; Whitehurst, J.; Kisich, K. O.; Voskuil, M. I. & Hodges, R. S. (2011). 
Anti-tuberculosis Activity of Α-Helical Antimicrobial Peptides: De Novo Designed 
L- and D-Enantiomers versus L- and D-LL-37. Protein and Peptide Letters, Vol. 18, 
pp. 241-252. 

Jindani, A.; Dore, C. J. & Mitchison, D. A. (2003). Bactericidal and Sterilizing Activities Of 
Antituberculosis Drugs During The First 14 Days. Am. J. Respir. Crit. Care Med., 167, 
1348-1354. 

Johansen, S. K.; Maus, C. E.; Plikaytis, B. B. & Douthwaite S. (2006). Capreomycin Binds 
Across The Ribosomal Subunit Interface Using Tlya-Encoded 2'-O-Methylations in 
16S and 23S rRNAs. Molecular Cell, Vol. 23, pp. 173-182.  

Johar, M.; Manning, T.; Kunimoto, D. Y. & Kumar, R. (2005). Synthesis and In Vitro Anti-
Mycobacterial Activity of 5-Substituted Pyrimidine Nucleosides. Bioorganic & 
Medicinal Chemistry, Vol. 13, pp. 6663–6671. 

Johar, M.; Manning, T.; Tse, C.; Desroches, N.; Agrawal, B.; Kunimoto, Y. & Kumar, R. 
(2007). Growth Inhibition of Mycobacterium boWis, Mycobacterium tuberculosis and 
Mycobacterium avium In vitro: Effect of 1-b-D-2’-b-D-Arabinofuranosyl and 1-(2-
Deoxy-2-fluoro-b-D-2`-ribofuranosyl) Pyrimidine Nucleoside. Journal of Medicinal 
Chemistry, Vol. 50, pp. 3696-3705. 

Kaufmann, S. H E. (2011). Tuberculosis Vaccines—A New Kid on the Block. Nature Medicine, 
Vol. 17, pp. 159–160. 

Kawasaki, M.; Yamamoto, K. & Matusmoto M. (2005) Mechanism of action of OPC-67683 
against Mycobacterium tuberculosis [abstract F-1463]. In: Program and abstracts of the 
45th Interscience Conference on Antimicrobial Agents and Chemotherapy (Washington, 
DC). Washington, DC: American Society for Microbiology. 

Khoje, A D.; Kulendrn, A.; Charnock, C.; Wan, B.; Franzblau, S. & Gundersen, L. L. (2010). 
Synthesis of Non-Purine Analogs of 6-Aryl-9-Benzylpurines, and Their 
Antimycobacterial Activities. Compounds Modified in the Imidazole Ring. 
Bioorganic & Medicinal Chemistry, Vol. 18, pp. 7274–7282. 

Kogler, M.; Vanderhoydonck, B.; De Jonghe, S.; Rozenski, J.; Van Belle, K.; Herman, J.; 
Louat, T.; Parchina, A.; Sibley, C.; Lescrinier, E. & Herdewijn, P. (2011). Synthesis 
and Evaluation of 5-Substituted 2’-deoxyuridine Monophosphate Analogues As 
Inhibitors of Flavin-Dependent Thymidylate Synthase in Mycobacterium 
tuberculosis. Journal of Medicinal. Chemistry, Vol. 54, pp. 4847–4862. 

Lacroix, C.; Phan Hoang, T.; Nouveau, J.; Guyonnaud, C.; Laine, G.; Duwoos, H. & Lafont, 
O. (1989). Pharmacokinetics of Pyrazinamide and Its Metabolites in Healthy 
Subjects. European Journal of Clinical Pharmacology, Vol. 36, pp. 395-400. 

Lee, R. E.; Brennan, P. J. & Besra, G. S. (1997) Mycobacterial Arabinan Biosynthesis: The Use 
of Synthetic Arabinoside Acceptors in The Development of An Arabinosyl Transfer 
Assay. Glycobiology, Vol. 7, pp. 1121–1128. 

Lee R.; Protopopova, M.; Crooks, E.; Slayden, R. A.; Terrot, M.; Barry, CE. (2003). 
Combinatorial Lead Optimization of [1,2]-Diamines Based On Ethambutol As 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

85 

Potential Antituberculosis Preclinical Candidates. Journal of Combinatorial Chemistry, 
Vol. 5, pp. 172–187. 

Lee, S. H.; Kim, S.; Yun, M. H.; Lee, Y. S.; Cho, S. N.; Oh, T. & Kim, P. (2011) Synthesis and 
Antitubercular Activity of Monocyclic Nitroimidazoles: Insights From Econazole. 
Bioorganic & Medicinal Chemistry Letter, Vol. 21, pp. 1515–1518. 

Lenaerts, A.; J.; Gruppo, V.; Marietta, K. S.; Johnson, C. M.; Driscoll, D. K.; Tompkins, N. M.; 
Rose, J. D.; Reynolds, R. C. & Orme, I. M. (2005) Preclinical testing of the 
nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series 
of in vitro and in vivo models. Antimicrobial Agents and Chemotherapy, Vol 49, pp. 
2294-301. 

Liav, A.; Angala, S. K.; Brennan, P. J. & Jackson, M. (2008). N-D-Aldopentofuranosyl-N0-[p-
(isoamyloxy)phenyl]-thiourea derivatives: Potential anti-TB therapeutic agents 
Bioorganic & Medicinal Chemistry Letter, Vol. 18, pp. 2649–2651. 

Lienhardt, C.; Rustomjee, R.; Mthigane, T.; Levin, J.; Fourie, B,; Horton, J.; Kanyok, T. & 
Mitchison, D. (2005) Comparison of 2-months sterilizing activities of several 
quinolone-containing regimens: preliminary results of a phase II trial in South 
Africa [abstract LB2-13]. In: Program and abstracts of the 45th Interscience Conference 
on Antimicrobial Agents and Chemotherapy (Washington, DC). Washington, DC: 
American Society for Microbiology. 

Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S. G. & Kozikowski, A. (2009). 
Structure-Activity Relationships for a Series of Quinoline-Based Compounds 
Active against Replicating and Nonreplicating Mycobacterium tuberculosis. Journal of 
Medicinal Chemistry, Vol. 52, pp. 2109–2118. 

Lim, S. A. (2006). Ethambutol-Associated Optic Neuropathy. Annals Academy of Medicine 
Singapore. Vol 35, pp. 274–278. 

Long, M. C. & Parker, W. B. (2006). Structure–Activity Relationship For Nucleoside Analogs 
as Inhibitors or Substrates of Adenosine Kinase from Mycobacterium tuberculosis I. 
Modifications to the Adenine Moiety. Biochemical Pharmacology, Vol. 71, pp. 1671– 
1682. 

Long, M. C.; Shaddix, S. C.; Moukha-Chafiq, O.; Maddry, J. A.; Nagy, L. & Parker, W. B. 
(2008) Structure–activity relationship for adenosine kinase from Mycobacterium 
tuberculosis II. Modifications to the ribofuranosyl moiety. Biochemical Pharmacology, 
Vol. 75, pp. 1588–1600. 

Lounis N.; Bentoucha A.; Truffot-Pernot C.; Ji, B.; O’brien, R. J.; Vernon, A.; Roscigno, G. & 
Grosset1, J. (2001). Effectiveness of once-weekly rifapentine and moxifloxacin 
regimens against Mycobacterium tuberculosis in mice. Antimicrob Agents Chemother, 
Vol. 45, pp. 3482–3486. 

Lourenço, M. C.; Ferreira, M. de L.; de Souza, M. V. N.; Peralta, M. A.; Vasconcelos, T. R. A. 
& Henriques M. G. M. O. (2008). Synthesis and Anti-Mycobacterial Activity of (E )-
N’-(Monosubstituted-Benzylidene)Isonicotinohydrazide Derivatives. European 
Journal of Medicinal Chemistry, Vol. 43, 1344-1347. 

Lu Y.; Zheng, M. Q.; Wang, B.; Zhao, W. J.; Li, P.; Chu, N. H. & Liang B. W. (2008). Activities 
of Clofazimine against Mycobacterium tuberculosis In vitro and In vivo. Zhonghua Jie 
He He Hu Xi Za Zhi. Vol. 31, pp. 752-755. 

Mahapatra, A.; Mativandlela, S. P. N.; Binneman, B.; Fourie, P. B.; Hamilton, C. J.; Meyer, J. 
J. M.; van der Kooy, F.; Houghton, P. & Lall, N. (2007). Activity of 7-methyljuglone 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

86

derivatives against Mycobacterium tuberculosis and as Subversive Substrates For 
Mycothiol Disulfide Reductase. Bioorganic & Medicinal Chemistry, Vol. 15, pp. 7638–
7646. 

Manjunatha, U. H.; Boshoff, H.; Dowd, C. S.; Zhang, L.; Albert, T. J.; Norton, J. E.; Daniels, 
L.; Dick, T.; Pang, S. S. & Barry, C. E. (2005). Identification of a nitroimidazo-
oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. 
Proc Nat Acad Sci USA, Vol. 103, pp. 431–436.  

Matsumoto, M.; Hshizume, H.; Tomishige, T. & Kawasaki M. (2005). In vitro and in vivo 
efficacy of novel antituberculous candidate OPC-67683 [abstract F-1462]. In: 
Program and abstracts of the 45th Interscience Conference on Antimicrobial Agents and 
Chemotherapy (Washington, DC). Washington, DC: American Society for 
Microbiology. 

McCune, R. M., Jr.; & Tompsett, R. (1956 a). Fate of Mycobacterium tuberculosis In Mouse 
Tissues as Determined by the Microbial Enumeration Technique. I. The Persistence 
of Drug-Susceptible Tubercle Bacilli In The Tissues Despite Prolonged 
Antimicrobial Therapy. Journal of Experimental Medicine. Vol. 104, pp. 737-762.  

McCune, R. M., Jr.; McDermott, W., & Tompsett, R. (1956 b). Fate of Mycobacterium 
tuberculosis In Mouse Tissues as Determined by the Microbial Enumeration 
Technique. II. The conversion of Tuberculous Infection to the Latent State By The 
Administration of Pyrazinamide and a Companion Drug. Journal of Experimental 
Medicine. Vol. 104, 763-802. 

McIlleron, H.; Willemse M.; Werely, C. J.; Hussey, G. D.; Schaaf, H. S.; Smith, P. J. & Donald, 
P. R. (2009). Isoniazid Plasma Concentrations in a Cohort of South African Children 
with Tuberculosis: Implications for International Pediatric Dosing Guidelines. 
Clinical Infectious Diseases, Vol. 48, pp. 1547–1553.  

Melnic, S.; Prodius, D.; Stoeckli-Evans, H.; Shova, S. & Turta, C. (2010). Synthesis and Anti-
Tuberculosis Activity of New Hetero(Mn, Co, Ni)Trinuclear Iron(III) Furoates. 
European Journal of Medicinal Chemistry, Vol. 45, pp. 1465–1469. 

Migliori, G. B.; Eker, B.; Richardson, M. D.; Sotgiu, G.; Zellweger, J. P.; Skrahina, A.; 
Ortmann, J.; Girardi, E.; Hoffmann, H.; Besozzi, G.; Bevilacqua, N.; Kirsten, D.; 
Centis, R. & Lange, C. TBNET Study Group. A Retrospective TBNET Assessment 
Of Linezolid, Safety, Tolerability and Efficacy In Multidrug Resistant Tuberculosis. 
European Respiratory Journal, Vol. 34, pp. 387-393. 

Miller, M. J.; Walz, A. J.; Zhu, H.; Wu, C.; Moraski, G.; M€ollmann, U.; Tristani, E. M.; 
Crumbliss, A. L.; Ferdig, M. T.; Checkley, L.; Edwards, R. L. & Boshoff, H. (2011). 
Design, Synthesis, and Study of a Mycobactin-Artemisinin Conjugat That Has 
Selective and Potent Activity against Tuberculosis and Malaria. Journal of American 
Chemical Society, Vol. 133, pp. 2076–2079. 

Mitchison, D. A. (1979). Basic Mechanisms of Chemotherapy. Chest, Vol. 76, pp. 771-781. 
Munier-Lehmann, H.; Chafotte, A.; Pochet, S.; Labesse, G. (2001) Thymidylate kinase of 

Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and 
bacterial enzymes. Protein Science, Vol. 10, 1195-1205. 

Nau, R.; Prange, H. W.; Menck, S.; Kolenda, H.; Visser, K.; & Seydel, J. K. (1992). Penetration 
of Rifampicin into the Cerebrospinal Fluid of Adults with Uninflamed Meninges. 
Journal of Antimicrobial Chemotherapy, Vol. 29, pp. 719-724 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

87 

Nicholas, G. M.; Eckman, L. L.; Newton, G. L.; Fahey, R. C.; Ray, S. & Bewley, C. A. (2003). 
Inhibition and Kinetics of Mycobacterium tuberculosis and Mycobacterium smegmatis 
Mycothiol-S-conjugate Amidase by Natural Product Inhibitors. Bioorganic & 
Medicinal Chemistry, Vol. 11, pp. 601–608. 

Nikolaeva, L. G.; Maystat, T. V.; Pylypchuk, V. S.; Volyanskii, Y. L.; Masyuk, L. A.& 
Kutsyna, G. A.; (2008 a). Effect of Oral Immunomodulator Dzherelo In TB/HIV Co-
Infected Patients Receiving Anti-Tuberculosis Therapy Under DOTS. International 
Immunopharmacology, Vol. 8, pp. 845–851. 

Nikolaeva, L. G.; Maystat, T. V.; Pylypchuk, V. S.; Volyanskii, Y. L.; Frolov, V. M.& Kutsyna, 
G. A. (2008 b). Cytokine Profiles of HIV Patients With Pulmonary Tuberculosis 
Resulting From Adjunct Immunotherapy With Herbal Phytoconcentrates Dzherelo 
and Anemin. Cytokine, Vol. 44, pp. 392–396. 

North Dakota Department of Health, 2011, 28.07.2011. Available from  
 http://www.ndhealth.gov/disease/tb/Documents/Second line TB drugs.pdf 
Nuermberger E. L.; Yoshimatsu, T.; Tyagi, S.; Williams, K.; Rosenthal, I.; O’brien, R. J.; 

Vernon, A. A.; Chaisson, R. E.; Bishai, W. R. & Grosset, J. H. (2004). Moxifloxacin-
Containing Regimens of Reduced Duration Produce A Stable Cure In Murine 
Tuberculosis. Am J Respir Crit Care Med, Vol. 170, pp. 1131–1134. 

Nuermberger, E.; Tyagi, S.; Williams, K. N.; Rosenthal, I.; Bishai, W. R.; Grosset, J. H. (2005). 
Rifapentine, Moxifloxacin, or DNA Vaccine Improves Treatment of Latent 
Tuberculosis In A Mouse Model. Am J Respir Crit Care Med. Vol. 172, pp. 1452-1456. 

O'Sullivan D. M.; McHugh, T. D & Gillespie S. H. (2005). Analysis of rpoB and pncA 
Mutations In The Published Literature: An Insight Into The Role of Oxidative Stress 
in Mycobacterium tuberculosis Evolution?. Journal of Antimicrobial Chemotherapy, Vol. 
55, pp. 674–679.  

Palmer, B. D.; Thompson, A. M.; Sutherland, H. S.; Blaser, A.; Kmentova, I.; Franzblau, S. G.; 
Wan, B.; Wang, Y.; Ma, Z. & Denny, W. A. (2010). Synthesis and Structure-Activity 
Studies of Biphenyl Analogues of the Tuberculosis Drug (6S)-2-Nitro-6-{[4-
(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-
824). Journal of Medicinal Chemistry, Vol. 53, pp. 282–294. 

Palomino, J. C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; & Portaela, F. (2002). 
Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of 
Drug Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and 
Chemotherapy, Vol. 46. p. 2720–2722. 

Paramasivan, C. N.; Sulochana, S.; Kubendiran, G.; Venkatesan, P. & Mitchison, D. (2005). A. 
Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and 
stationary-phase cultures of Mycobacterium tuberculosis. Antimicrobial Agents and 
Chemotherapy, Vol. 49, pp. 627-631. 

Pathak, A. K.; Pathak, V.; Kulshrestha, M.; Kinnaird, D.; Suling, W. J.; Gurcha, S. S.; Besra, G. 
S. & Reynolds, R. C. (2003). Arabinofuranose disaccharide analogs as inhibitors of 
Mycobacterium tuberculosis Tetrahedron, Vol. 59, pp. 10239–10248.  

Pavan, F.R.; Poelhsitz, V. G.; do Nascimento, F.; Leite, S. R. A.; Batista, A. A.; Deflon, V. M.; 
Sato, D. N.; Franzblau, S. G. & Leite, C. Q. F. (2010) Ruthenium (II) 
phosphine/picolinate complexes as antimycobacterial agents. European Journal of 
Medicinal Chemistry, Vol. 45, pp. 598–601 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

88

Peloquin, C. A.; Namdar, R.; Singleton, M. D. & Nix, D. E. (1999 a) Pharmacokinetics of 
Rifampin under Fasting Conditions, with Food, and with Antacids. Chest, Vol. 115, 
pp. 12-18. 

Peloquin, C. A.; Bulpitt, A. E.; Jaresko, G. S.; Jelliffe, R. W.; Childs, J. M. & Nix, D. E. (1999 b). 
Pharmacokinetics of Ethambutol under Fasting Conditions, with Food, and with 
Antacids. Antimicrobial Agents and Chemotherapy, Vol. 43, pp. 568-572. 

Peters, C. & Nienhaus, A. (2008). Case report-tuberculosis in a health care worker during 
pregnancy. Pneumologie, Vol. 62, pp. 695-698.  

Pletz, M. W. R.; De Roux, A.; Roth, A.; Neumann, K. H.; Mauch, H.& Lode, H. (2004) Early 
Bactericidal Activity of Moxifloxacin In Treatment of Pulmonary Tuberculosis: A 
Prospective, Randomized Study. Antimicrobial Agents and Chemotherapy, Vol. 48, pp. 
780-782. 

Pochet, S.; Dugue´, L.; Douguet, D.; Labesse, G.; Munier-Lehmann, H. (2002). Nucleoside 
Analogues as Inhibitors of Thymidylate Kinases: Possible Therapeutic 
Applications. ChemBioChem., Vol. 3, pp. 108-110. 

Pochet, S.; Dugue´, L.; Labesse, G.; Delepierre, M.; Munier-Lehmann, H. (2003). Comparative 
Study of Purine and Pyrimidine Nucleoside Analogues Acting on the Thymidylate 
Kinases of Mycobacterium tuberculosis and of Humans. ChemBioChem., Vol. 4, pp. 
742-747. 

Prihoda1, N. D.; Arjanova1, O. V.; Yurchenko, L. V.; Sokolenko, N. I.; Vihrova, L. A.; 
Pylypchuk, V. S. & Kutsyna, G. A. (2007). Open Label Trial of Adjuvant 
Immunotherapy with Dzherelo, Svitanok and Lizorm, in MDR-TB, XDR-TB and 
TB/HIV Co-Infected Patients Receiving Anti-Tuberculosis Therapy under DOT. 
Journal of Medicinal Plants Research, Vol. 1, pp. 117-122. 

Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A. D.; Moodley, P.; Jacobs, W. R., 
Jr. & Kobayashi, M. (2010). Trichoderins, Novel Aminolipopeptides From A Marine 
Sponge-Derived Trichoderma Sp., are Active against Dormant Mycobacteria. 
Bioorganic & Medicinal Chemistry Letters, Vol. 20, pp. 3658–3663. 

Rai, D.; Johar, M.; Manning, T.; Agrawal, B.; Kunimoto, D. Y. & Kumar R. (2005). Design and 
Studies of Novel 5-Substituted Alkynylpyrimidine Nucleosides as Potent Inhibitors 
of Mycobacteria. Journal of Medicinal Chemistry, Vol. 48, pp. 7012-7017. 

Rai, D.; Johar, M.; Srivastav, N. C.; Manning, T.; Agrawal, B.; Kunimoto, D. Y. & Kumar, R. 
(2007). Inhibition of Mycobacterium tuberculosis, Mycobacterium bovis, and 
Mycobacterium avium by Novel Dideoxy Nucleosides. Journal of Medicinal Chemistry, 
Vol. 50, pp. 4766-4774.  

Rastogi, N.; Goh, K. S.; Bryskier, A.& Devallois, A. (1996). In vitro Activities of Levofloxacin 
Used Alone and in Combination with First- and Second-Line Antituberculous 
Drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 
Vol. 40, p.p. 1610–1616 

Saito H.; Tomioka H.; Sato K.; Emori M.; Yamane T.; Yamashita K.; Hosoe K. & Hidaka T. 
(1991) In vitro Antimycobacterial Activities of Newly Synthesized 
Benzoxazinorifamycins. Antimicrobial Agents and Chemotherapy, Vol. 35, pp. 542–547. 

Scorpio, A. & Zhang Y. (1996). Mutations In Pnca, A Gene Encoding 
Pyrazinamidase/Nicotinamidase, Cause Resistance To The Antituberculous Drug 
Pyrazinamide In Tubercle Bacillus. Nature Medicine, Vol. 2, pp. 662–667. 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

89 

Sekiguchi, J.; Disratthakit, A.; Maeda, S. & Doi, N. (2011). Characteristic Resistance 
Mechanism of Mycobacterium tuberculosis to DC-159a, a New Respiratory 
Quinolone. Antimicrobial Agents and Chemotherapy, Aug. 2011, Vol. 55, pp. 3958–
3960. 

Senthilkumar, P.; Dinakaran, M.; Yogeeswari, P.; Sriram, D.; China, A.& Nagaraja, V. (2009). 
Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic 
acids. European Journal of Medicinal Chemistry. Vol. 44, pp. 345-358. 

Shakya, N.; Srivastav, N. C.; Desroches, N.; Agrawal, B.; Kunimoto, D. Y. & Kumar, R. 
(2010). 3-Bromo Analogues of Pyrimidine Nucleosides as a New Class of Potent 
Inhibitors of Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 2010, Vol. 53, 
pp. 4130–4140. 

Shandil, R. K.; Jayaram, R.; Kaur, P.; Gaonkar, S.; Suresh, B. L.; Mahesh, B. N.; Jayashree, R.; 
Nandi, V.; Bharath, S. & Balasubramanian, V. (2007). Sowmya, and V. Moxifloxacin, 
Ofloxacin, Sparfloxacin, and Ciprofloxacin against Mycobacterium tuberculosis: 
Evaluation of In Vitro and Pharmacodynamic Indices That Best Predict In Vivo 
Efficacy. Antimicrobial Agents and Chemotherapy, Vol. 51, pp. 576–582 

Shiradkar, M. R.; Murahari, K. K.; Gangadasu, H. R.; Suresh, T.; Kalyan, C. A.; Panchal, D. & 
Kaur, R. (2007). Synthesis of New S-Derivatives of Clubbed Triazolyl Thiazole As 
Anti-Mycobacterium tuberculosis Agents. Bioorganic & Medicinal Chemistry. Vol. 15, 
pp. 3997–4008.  

Singh, B. & Mitchison, D. A. (1954).Bactericidal Activity of Streptomycin and Isoniazid 
against Tubercle Bacilli. British Medical Journal, Vol. 130, pp. 130-132.  

Sinha, R. K.; Arora, S. K.; Sinha, N.; Modak, V. M.; In vivo activity of LL4858 against 
Mycobacterium tuberculosis (2004) [abstract F-1116]. In: Program and abstracts of the 
44th Interscience Conference on Antimicrobial Agents and Chemotherapy (Washington, 
DC). Washington, DC: American Society for Microbiology, 212.  

Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E.; Barry, C. E. & Aldrich, C. C. (2006). Rationally 
Designed Nucleoside Antibiotics That Inhibit Siderophore Biosynthesis of 
Mycobacterium tuberculosis. Journal of Medicinal Chemistry, Vol. 49, pp. 31-34. 

Spigelman, M. K. (2005) Current and future therapeutic options for tuberculosis 
[presentation 2190 in symposium 220{F}]. In: Program and abstracts of the 45th 
Interscience Conference on Antimicrobial Agents and Chemotherapy (Washington, DC). 
Washington, DC: American Society for Microbiology. 

Sriram, D.; Aubry, A.; Yogeeswari, P. & Fisher, L. M. (2006). Gatifloxacin derivatives: 
Synthesis, Antimycobacterial Activities, and Inhibition of Mycobacterium tuberculosis 
DNA gyrase.Bioorganic & Medicinal Chemistry Letters Vol. 16, pp. 2982–2985 

Sriram, D.; Aubry, A.; Yogeeswari, P.; Dhakla, P.; Senthilkumar, P.; Banerjee, D. & 
Manjashetty, T. H. (2009). 5-Nitrofuran-2-yl derivatives: Synthesis and Inhibitory 
Activities against Growing and Dormant Mycobacterium Species. Bioorganic & 
Medicinal Chemistry Letters, Vol. 19, pp. 1152–1154. 

Srivastav, N. C.; Manning, T.; Kunimoto, D. Y. & Kumar, R. (2007). Studies on Acyclic 
Pyrimidines as Inhibitors of Mycobacteria. Bioorganic & Medicinal Chemistry , Vol. 
15, pp. 2045–2053. 

Srivastav, N. C.; Rai, D.; Tse, C.; Agrawal, B.; Kunimoto, D. Y. & Kumar, R. (2010). Inhibition 
of Mycobacterial Replication by Pyrimidines Possessing Various C-5 Functionalities 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

90

and Related 20 -Deoxynucleoside Analogues Using in vitro and in vivo Models. 
Journal of Medicinal Chemistry, Vol. 53, 6180–6187. 

Stover, C. K.; Warrener, P.; VanDevanter, D. R.; Sherman, D. R.; Arain, T. M.; Langhorne, M. 
H.; Anderson, S. W.; Towell, J. A.; Yuan, Y.; McMurray, D. N.; Kreiswirth, B. N.; 
Barry, C. E. & Baker, W. R. (2000). A Small-Molecule Nitroimidazopyran Drug 
Candidate for The Treatment of Tuberculosis. Nature, Vol. 405, pp. 962–966. 

Suarez J, Ranguelova K, Jarzecki AA, , Manzerova, J.; Krymov, V.; Zhao, X; Yu, S; Metlitsky, 
L.; Gerfen, G. J. & Magliozzo, R. S. (2009). An Oxyferrous Heme/Protein-based 
Radical Intermediate is Catalytically Competent in the Catalase Reaction of 
Mycobacterium tuberculosis Catalase-Peroxidase (KatG), Journal of Biological 
ChemistryI, Vol. 284, pp. 7017–7029. 

Suling, W. J.; Reynolds, R. C.; Barrow, E. W.; Wilson, L. N.; Piper, J. R.; Barrow, W. W. 
Journal of Antimicrobial Chemotherapy, 1998, 42, 811–815. 

Takii, T.; Yamamoto, Y.; Chiba, T.; Abe, C.; Belisle, J. T.; Brennan, P. J. & Onozaki, K. (2002). 
Simple fibroblast-based assay for screening of new antimicrobial drugs against 
Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, Vol. 46, pp. 2533- 
2539. 

The American Thoracic Society [ATS]. (2006) 09.08.2011. Available from  
 http://www.thoracic.org/assemblies/mtpi/resources/istc-report.pdf  
Thomas, J. P.; Baughn, C. O.; Wilkinson, R. G. & Shepherd, R. G. (1961). A new synthetic 

compound with antituberculous activity in mice: ethambutol (dextro-2,2'-
(ethylenediimino)-di-l-butanol). American Review of Respiratory Disease, Vol. 83, pp. 
891-893. 

Timmins, G. S. & Deretic, V. (2006) Mechanisms of Action of Isoniazid. Molecular 
Microbiology, Vol 62, pp. 1220–1227. 

Tomioka, H. (2006). Current Status of Some Antituberculosis Drugs and the Development of 
New Antituberculous Agents with Special Reference to their In vitro and In vivo 
Antimicrobial Activities. Current Pharmaceutical Design, Vol. 12, No. 31, pp. 4047–
4070.  

Torres-Romero, D.; Jiménez, I. A.; Rojas, R.; Gilman, R. H.; López, M. & Bazzocchi, I. L. 
(2011). Dihydro-b-Agarofuran Sesquiterpenes Isolated From Celastrus Vulcanicola 
As Potential Anti-Mycobacterium tuberculosis Multidrug-Resistant Agents. Bioorganic 
& Medicinal Chemistry, Vol. 19, pp. 2182–2189. 

Tortoli, E.; Dionisio, D. & Fabbri, C. Evaluation of Moxifloxacin Activity In vitro against 
Mycobacterium tuberculosis, Including Resistant and Multidrug-Resistant Strains. 
(2004). Journal of Chemotherapy, Vol. 16, pp. 334-336. 

Trimble, K. A.; Clark, R. B.; Sanders, W. E., Jr.; Frankel, J. W.; Cacciatore, R. & Valdez, H. 
(1987) Activity of Ciprofloxacin against Mycobacteria In vitro: Comparison of 
BACTEC and Macrobroth Dilution Methods. Journal of Antimicrobial Chemotherapy. 
Vol. 19, pp. 617-622. 

Tripathi, R. P.; Tiwari, V. K.; Tewari, N.; Katiyar, D.; Saxena, N.; Sinha, S.; Gaikwad, A.; 
Srivastava, A.; Chaturvedi, V.; Manju, Y. K.; Srivastava, R. & Srivastava B. S. (2005), 
Synthesis and antitubercular activities of bis-glycosylated diamino alcohols. 
Bioorganic & Medicinal Chemistry, Vol. 13, pp. 5668–5679. 

www.intechopen.com



 
Chemotherapeutic Strategies and Targets Against Resistant TB 

 

91 

Trivedi, A. R.; Bhuva, V. R.; Dholariya, B. P.; Dodiya, D. K.; Kataria, V. B. & Shah, V. H. 
(2010). Novel Dihydropyrimidines as a Potential New Class of Antitubercular 
Agents. Bioorganic & Medicinal Chemistry Letters, Vol. 20, pp. 6100–6102. 

Tuberculosis Research Centre (Indian Council of Medical Research), Chennai (2002). 
Shortening Short Course Chemotherapy: A Randomized Clinical Trial for the 
Treatment of Smear Positive Pulmonary Tuberculosis With Regimens Using 
Ofloxacin In The Intensive Phase. Indian Journal of Tuberculosis, Vol. 49, pp. 27–38. 

Tuberculosis Trials Consortium (2002). Rifapentine and Isoniazid Once A Week Versus 
Rifampicin and Isoniazid Twice A Week For Treatment of Drug-Susceptible 
Pulmonary Tuberculosis In HIV-Negative Patients: A Randomized Clinical Trial. 
Lancet, Vol. 360, pp. 528–534 

Tyagi, S.; Nuermberger, E.; Yoshimatsu, T.; Williams, K.; Rosenthal, I.; Bishai, W. & Grosset, 
J. (2005). Bactericidal Activity of The Nitroimidazopyran PA-824 In The Murine 
Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, Vol. 49, pp. 2289–
2293. 

Upadhayaya, R. S.; Shinde, P.; Kadam, S. A.; Bawane, A.N.; Sayyed, A. Y.; Kardile, R. A.; 
Gitay, P. N.; Lahore, S. V.; Dixit, S. S.; Földesi, A. & Chattopadhyaya, J. (2011). 
Synthesis and Antimycobacterial Activity of Prodrugs of Indeno[2,1-C]Quinoline 
Derivatives. European Journal of Medicinal Chemistry, Vol. 46, pp. 1306-1324. 

Vacher, S; Pellegrin, J. L.; Leblanc, F.; Fourche, J. & Maugein J. (1999). Comparative 
Antimycobacterial Activities of Ofloxacin, Ciprofloxacin and Grepafloxacin. Journal 
of Antimicrobial Chemotherapy, Vol. 44, pp. 647-652. 

van den Boogaard. J.; Kibiki, G. S..; Kisanga, E. R.; Boeree, M. J. & Aarnoutse, R. E. (2009). 
New Drugs against Tuberculosis: Problems, Progress, and Evaluation of Agents in 
Clinical Development. Antimicrobial Agents and Chemotherapy, Vol. 53, pp. 849–862  

Vanheusden, V.; Munier-Lehmann, H.; Pochet, S.; Herdewijn, P. & Van Calenbergh, S. 
(2002). Synthesis and evaluation of thymidine-5�-O-monophosphate analogues as 
inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorganic & Medicinal 
Chemistry Letter, Vol. 12, pp. 2695-2698. 

Vanheusden, V.; Van Rompaey, P.; Munier-Lehmann, H.; Pochet, S.; Herdewijn, P.; Van 
Calenbergh, S. (2003). Thymidine and Thymidine-5�-O-Monophosphate 
Analogues as Inhibitors of Mycobacterium tuberculosis Thymidylate Kinase. 
Bioorganic & Medicinal Chemistry Letter, Vol. 13, pp. 3045-3048. 

Vanheusden, V.; Munier-Lehmann, Froeyen, M.; Busson, R.; Rozenski, J.; Herdewijn, P. & 
Van Calenbergh, S. (2004). Discovery of Bicyclic Thymidine Analogues as Selective 
and High-Affinity Inhibitors of Mycobacterium tuberculosis Thymidine 
Monophosphate Kinase. Journal of Medicinal Chemistry, Vol. 47, pp. 6187-6194  

Velaparthi, S.; Brunsteiner, R. & Petukhov, P. A. (2008) 5-tert-Butyl-N-pyrazol-4-yl-4,5,6,7-
tetrahydrobenzo[d]isoxazole-3-carboxamide Derivatives as Novel Potent Inhibitors 
of Mycobacterium tuberculosis Pantothenate Synthetase: Initiating a Quest for New 
Antitubercular Drugs. Journal of Medicinal Chemistr,y, Vol. 51, pp. 1999–2002. 

Vicente, E.; Pérez-Silanes, S.; Lima, L. M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; 
Aldana, I. & Monge, A. (2009). Selective activity against Mycobacterium tuberculosis 
of new quinoxaline 1,4-di-N-oxides. Bioorganic & Medicinal Chemistry, Vol. 17, pp. 
385–389. 

www.intechopen.com



 
Understanding Tuberculosis – New Approaches to Fighting Against Drug Resistance 

 

92

Walczak, K.; Gondela, A. & Suwin´ski, J. (2004). Synthesis and Anti-Tuberculosis Activity of 
N-Aryl-C-Nitroazoles. European Journal of Medicinal Chemistry, Vol. 39, pp. 849–853. 

Weiner, M.; Bock, N.; Peloquin, C. A.; Burman, W. J.; Khan, A.; Vernon, A. ; Zhao, Z.; Weis, 
S.; Sterling, T. R.; Hayden, K.; Goldberg, S. & the Tuberculosis Trials Consortium. 
(2004). Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-
weekly tuberculosis therapy. Am J Respir Crit Care Med. Vol. 169, pp. 1191-1197. 

Wieles, J. M.; Musser, & W. R. Jacobs, Jr. (1997). The Emb Operon, a Gene Cluster of 
Mycobacterium tuberculosis Involved In Resistance to Ethambutol. Nature Medicine,, 
Vol. 3, pp. 567–570. 

Wilkinson, R. G.; Shepherd, R. G.; Thomas, J. P. & Baughn, C. (1961). Stereospecificity in a 
New Type of. Synthetic Antituberculous Agent. Journal of American chemical Society, 
Vol. 83, pp. 2212-2213. 

Williams, D. L.; Spring, L.; Collins, L.; Miller, L. P.; Heifets, L. B.; Gangadharam, P. R. J. & 
Gillis, T. P. (1998). Contribution of rpoB mutations to development of rifamycin 
cross-resistance in Mycobacterium tuberculosis. Antimicrobial Agents and 
Chemotherapy. Vol. 42, pp. 1853-1857. 

Working Group on New Drugs. (WGND) (2011). 12.08.2011, Available from 
http://www.newtbdrugs.org/ 

World Health Organisation (WHO). (17 October 2006). WHO Global Task Force outlines 
measures to combat XDR-TB worldwide. 12.08.2011, Available from  

 http://www.who.int/mediacentre/news/notes/2006/np29/en/index.html 
Yamamoto Y.; Hasegawa Y. & Ogawa K. (2011). Retrospective Cohort Study of Risk Factors 

for Adverse Effects of Antituberculous Therapy. Kekkaku, Vol. 86, pp. 499-507. 
Zaitzeva, S. I.; Matveeva, S. L.; Gerasimova, T. G.; Pashkov, Y. N.; Butov, D. A.; Pylypchuk, 

V. S.; Frolov, V. M. & Kutsyna, G. A. (2009). Treatment of Cavitary and Infiltrating 
Pulmonary Tuberculosis With and Without The Immunomodulator Dzherelo. 
Clinical Microbiology and Infection, Vol. 15, pp. 1154–1162.  

Zhang Y. & Mitchison D (2003). The Curious Characteristics of Pyrazinamide: A Review. Int. 
J. Tuberc. Lung Dis., Vol. 7, (1), pp. 6–21.  

Zimhony, O.; Vilcheze, C.; Arai, M.; Welch, J. & Jacobs, W. R. (2007). Pyrazinoic acid and its 
n'Propyl Ester Inhibit Fatty Acid Synthase I in Replicating Tubercle Bacilli. 
Antimicrobial Agents and Chemotherapy, Vol. 51, pp. 752-754. 

www.intechopen.com



Understanding Tuberculosis - New Approaches to Fighting

Against Drug Resistance

Edited by Dr. Pere-Joan Cardona

ISBN 978-953-307-948-6

Hard cover, 376 pages

Publisher InTech

Published online 15, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

In 1957, a Streptomyces strain, the ME/83 (S.mediterranei), was isolated in the Lepetit Research Laboratories

from a soil sample collected at a pine arboretum near Saint Raphael, France. This drug was the base for the

chemotherapy with Streptomicine. The euphoria generated by the success of this regimen lead to the idea that

TB eradication would be possible by the year 2000. Thus, any further drug development against TB was

stopped. Unfortunately, the lack of an accurate administration of these drugs originated the irruption of the

drug resistance in Mycobacterium tuberculosis. Once the global emergency was declared in 1993, seeking out

new drugs became urgent. In this book, diverse authors focus on the development and the activity of the new

drug families.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Neeraj Shakya, Babita Agrawal and Rakesh Kumar (2012). Chemotherapeutic Strategies and Targets Against

Resistant TB, Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance, Dr. Pere-

Joan Cardona (Ed.), ISBN: 978-953-307-948-6, InTech, Available from:

http://www.intechopen.com/books/understanding-tuberculosis-new-approaches-to-fighting-against-drug-

resistance/chemotherapeutic-strategies-for-management-of-tb



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


