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1. Introduction  

Safety in aeronautics could be improved if continuous checks were guaranteed during the 
in-service inspection of aircraft. However, until now, the maintenance costs of doing so have 
proved prohibitive. In particular, the analysis of the internal defects (not detectable by a 
visual inspection) of the aircraft’s composite materials is a challenging task: invasive 
techniques are counterproductive and, for this reason, there is a great interest in the 
development of non-destructive inspection techniques that can be applied during normal 
routine tests.  

Non Destructive Testing & Evaluation (NDT & E) techniques consist of a data acquisition 
phase (based on any scanning method that does not permanently alter the article being 
inspected) followed by a data analysis phase carried out by qualified personnel. In 
particular, transient thermography and ultrasound analysis  are two of the most promising 
techniques for the analysis of aircraft composite materials (Hellier, 2001).  

Non-destructive evaluation requires an excessive amount of money and time and its  
reliability depends on a multitude of different factors. These range from physical aspects of 
the technology used (e.g., wavelength of ultrasound) to application issues (e.g. probe 
coupling or scanning coverage) and human factors (e.g. inspector training and stress or time 
pressure during inspection) (Kemppainen. & Virkkunen, 2011). 

Most of the work in the literature concentrates on the study of data acquisition and 
manipulation processes in order to prove the relationship between data and structural 
defects or composition of the material (Chatterjee et al., 2011). Unfortunately only some of 
the work from the literature concentrates on the posterior analysis of the acquired data in 
order to (fully or partially) delegate, to some computational algorithm, the automatic 
recognition of material composition, operative conditions, presence of defects, and so on.  
This is undoubtedly a very attractive research field since it can reduce operational costs, 
save time and make the process independent from human factors. However, the 
development of proper algorithms and methodologies is in its infancy and their level of 
inspection reliability is still inadequate for those sectors (namely, transportation) where an 
error can have serious health and safety consequences. 
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The pioneering work on the a posteriori analysis of data dates back to the early 1990s: it 
suggested that solutions to the problem of automatic ultrasonic NDT data interpretation 
could be found by expert systems which embody the knowledge of human interpreters 
(McNab & Dunlop, 1995) (Hopgood et al., 1993) (Avdelidis et al., 2003) (Meola et al., 2006) 
(Silva et al., 2003). More effective approaches, based on advanced signal processing and 
artificial intelligence paradigms, have been proposed in the last decade (Benitez et al., 2009) 
(Wang et al., 2008). 

In this chapter, we address the problem of developing an automatic system for the analysis 
of sequences of thermographic images and ultrasonic signals to help safety inspectors in the 
diagnosis of problems in aircraft components in all those cases where the defects or the 
internal damage are not detectable with a visual inspection. In particular thermographic 
analysis is proposed to automatically discover water insertions whereas ultrasonic 
inspection aims at revealing solid insertions of brass foil.   

The proposed approach considers two main steps for interpreting thermographic and 
ultrasonic data: in the first step a pre-processing technique is introduced to clean data from 
noise and to emphasise embedded patterns and the classification techniques used to 
compare ultrasonic signals and to detect classes of similar points. In the second step two 
neural networks are trained to extract the information that characterises a range of internal 
defects starting from ultrasonic and thermographic signals extracted in correspondence to 
the defective areas. After that the same neural networks are applied to automatically inspect 
real aircraft components. 

Section 2 gives an overview of the proposed approach whereas section 3 and 4 concentrate 
on the data pre-processing and classification respectively. Finally, section 5 presents the 
experimental results on real aircraft material and conclusions are derived in section 6. 

2. Overview of the system   

The proposed system for automatic inspection of aircraft components is schematized in 

figure 1. The system takes the data extracted by non destructive processes reported in the 

literature as transient thermography and ultrasound scanning as input. 

Transient thermography is a non-contact technique, which uses the thermal gradient 

variation to inspect the internal properties of the investigated area. The materials are heated 

by an external source (lamps) and the resulting thermal transient is recorded using an 

infrared camera. Of course, this kind of analysis is only applicable to materials that have a 

good thermal conductivity such as metals and carbon composites. Different types of thermal 

excitation can be used according to the materials and the defects under investigation: for 

instance uniform heating, spot heating, and line heating. 

Ultrasonic inspection uses instead sound signals at frequencies beyond human hearing 
(more than 20 kHz) to estimate some properties of the irradiated material by analyzing 
either the reflected (reflection working modality) or transmitted (transmission working 
modality) signals. A typical ultrasonic inspection system consists of several functional units: 
pulser, receiver, transducer, and display devices. A pulser is an electronic device that can 
produce a high-voltage electrical pulse. Driven by the pulser, the transducer generates a 
high-frequency ultrasonic wave which propagates through the material. In the transmission  
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Fig. 1. Scheme of the proposed framework. 

modality, the receiver is placed on the opposite side of the material from the pulser, 
whereas, in the reflection modality, the pulser and the receiver are placed on the same side 
of the material.  

Ultrasonic data can be collected and displayed in a number of different formats. The three 
most common formats are known in the NDT community as A-scan, B-scan, and C-scan 
presentations. Each presentation mode provides a different way of looking at and 
evaluating the region of material being inspected. On the one hand, thermographic analysis 
is carried out to automatically discover water insertions whereas ultrasonic inspection aims 
at revealing solid insertions of brass foil.   

For thermographic inspection we analyze mono-dimensional signals obtained by 
considering the time variation of each pixel in the sequence of thermographic images.  For 
each point (i,j) of the material the mono-dimensional signal is generated from the gray levels 
of the same point in the sequence of images: this signal represents the temperature variation 
of the material during and after the heating process. This way it is possible to generate 
spatial-time variant images, the analysis of which allows for the evaluation of the thermal 
gradient during the heating process.  

In Figure 2, the one-dimensional signals extracted from the thermographic sequence of  
aircraft fuselage are shown:  one point belongs to an area affected by the presence of water  
(red line) whereas the other signal corresponds to non-defective areas (gray lines). From the 
graph it is clearly evident that a functional description of the intensity variations cannot be 
easily generalized and the behaviours of points corresponding to defective and non-
defective areas are very similar. 

For the analysis of ultrasonic data we analyze one-dimensional signals acquired from the 
reflection working modality and A-scan representation. This means that, for each point of 
the inspected material, we have a continuous signal that represents the amount of received 
ultrasonic energy as a function of time.  
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In figure 3 two ultrasound signals are shown. The signal on top is relative to a non-defective 
point.  Observe that there are large extrema at the beginning and at the end. These changes 
in ultrasound energy are caused by the transmitted signals being reflected by the 
boundaries of the material. These boundary extrema are referred to as tool side and bag side 
peaks, respectively. The ultrasonic signal for an area of material that contains defects is 
given on the bottom of figure 3. In addition to the boundary extrema, the signals contain 
extrema at other time locations caused by defective components.  The time localization of 
the additional extrema depends on the defect location in the inspected material.  

The temporal evolution of the thermographic and ultrasound signals x(t) is the input to the 
core of the proposed approach that consists of two main steps:  the pre-processing of the 
data, in order to emphasize the characteristics of the signals belonging to the same class, and 
the following neural classification.  

Pre-processing step allows to discard noise and to enhance  the most relevant information 
for flawed area detection  purposes. Two Multi Layer Perceptron (MLP) neural architectures 
characterized by the presence of an input layer of source nodes, a hidden layer and an 
output layer, are then used  to build an inspection framework that automatically label each 
signal as belonging to a flawed area or not. 

A final connectivity analysis of all the  points labelled as belonging to flawed areas is done 
in order to both discard isolated false positives and to deduce size and shape of the flawed 
area as a whole. 

 
 
 

 
 
 

Fig. 2. the one-dimensional signals extracted from the thermographic sequence of aircraft 
fuselage. The black line corresponds to unflawed areas whereas the red line corresponds to 
a pixel belonging to water infiltration. 
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Fig. 3. Two ultrasound signals: the signal on top is relative to a non-defective point. The 
signal on the bottom is relative to a flawed area. 

3. Data pre-processing   

The automatic classification of acquired signals as flawed or unflawed is not trivial due to 
the huge number of intra-class variance: on the one hand ultrasonic and thermal signals 
relative to unflawed areas can shows different temporal behaviours depending on 
manufacturing variations in the underlying composite layers or specimen thickness 
variations. This is evident in figure 4 where different thermographic signals relative to 
unflawed areas are reported. On the other hand, signals relative to flawed areas can differ 
since insertions and infiltrations can occur at different locations. 

In order to make the classification easier, a pre-processing technique step is then required: 
on the one hand,  it has to increase signal to noise ratio  and, on the other hand, to detect and 
enhance the information that could increase the probability of separating signals belonging 
to different classes. 

 

Fig. 4. thermographic signals relative to unflawed areas: their temporal behaviours can 
strongly differ depending on many factors. 
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There are many effective signal pre-processing techniques in the literature. Most of them 
work in a specific domain (time or frequency) whereas a few of them affect both domains 
simultaneously. In the latter category lies the so-called Wavelet Transform, an extension of 
Fourier Transform generalized to any wideband transient. For its capability to give a multi-
domain  representation of the data, the wavelet transform has been used in this work to 
analyse collected thermographic and ultrasonic data.  

In figure 5 the wavelet decomposition (by using Daubechies 3 kernels ) at level 3 using a 
thermographic (top) and ultrasound (bottom) signal are reported. 

The next subsection gives some additional theoretical information about the considered pre-
processing technique based on Wavelet Transform.  

 
(a) 

 
(b) 

Fig. 5. the wavelet decomposition of a thermographic (on top) and ultrasound (at the 
bottom) signal. 
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3.1 Wavelet transform 

Let us think about our input as a time-varying signal. To analyze signal structures of very 
different sizes, it is necessary to use time-frequency atoms with different time supports. The 
wavelet transform decomposes signals over dilated and translated wavelets Mallat (1999). 
The signal may be sampled at discrete wavelength values yielding a spectrum. In 
continuous wavelet transform the input signal is correlated with an analyzing continuous 
wavelet. The latter is a function of two parameters such as scale and position. The widely 
used Fourier transform (FT) maps the input data into a new space, the basis functions of 
which are sins and cosines. Such basis functions are defined in an infinite space and are 
periodic, this means that FT is best suited to signal with these same features. The Wavelet 
transform maps the input signal into a new space which basis functions are usually of 
compact support. The term wavelet comes from well- localized wave-like functions. 

In fact, they are well-localized in space and frequency i.e. their rate of variations is restricted. 

Fourier transform is only local in frequency not space. Furthermore, Fourier analysis is 
unique, but wavelet not, since there are many possible sets of wavelets which one can 
choose. 

Our trade-off between different wavelet sets is compactness versus smoothness. Working 
with fixed windows as in the Short Term Fourier Transform (STFT) may bring about 
problems. If the signal details are much smaller than the width of the window they can be 
detected but the transform will not localize them. If the signal details are larger than the 
window size, then they will not be detected properly. The scale is defined by the width of a 
modulation function. To solve this problem we must define a transform independent from 
the scale. This means that the function should not have a fixed scale but should vary. To 
achieve this, we start from a function ( )t  as a candidate of a modulation function and we 

can obtain a family starting from it by varying the scale s  as follows: 

1
, ( ) ( ) ( ) ( )

p

p u t u t
s t s

s ss
u u t s       

If   has width T  then the width of s  is sT . In terms of frequencies, the smaller the s the 

higher the frequencies s  and vice versa. 

The continuous wavelet transform X  is the result of the scalar product of the original signal 

( )x t  with the shifted and scaled version of a prototype analysing function ( )t called 

mother wavelet which has the characteristic of a band pass filter impulse response. 

The coefficients  of the transformed signal represent how closely correlated the mother 
wavelet is with the section of the signal being analyzed. The higher the coefficient, the more 
the similarity. 

Calculating wavelet coefficients at every possible scale is a fair amount of work, and it 
generates a great amount of data. If we choose scales and positions based on the power of 
two (called dyadic scales and positions) then our analysis will be much more efficient. This 
analysis is called the discrete wavelet transform. 

In the discrete case, WT is sampled at discrete mesh points and using smoother basis 

functions. This way a multiresolution representation of the signal ( )x t  can be achieved. 
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Notice that the wavelet transform can be written as a convolution product  (it is a linear 
space-invariant filter): 

, ,( , ) ( ) ( ) ,s t s tX s t x u u du x    

This leads to a fast and efficient implementation of the wavelet transform for a discrete 
signal obtained using digital filtering techniques. The signal to be analyzed is passed 
through filters with different cut off frequencies at different scales. The wavelet transform 
for a discrete signal is computed by successive low-pass and high-pass filtering of the 
discrete time-domain signal. Many filter kernels can be used for this scope and the best 
choice depends on the features of the input signal that have to be exploited. 

At each decomposition level, the half-band filters produce signals spanning only half the 
frequency band. This doubles the frequency resolution as the uncertainty in frequency is 
reduced by half. At the same time, the decimation by 2 doubles the scale. With this 
approach, the time resolution becomes arbitrarily good at high frequencies, whereas the 
frequency resolution becomes arbitrarily good at low frequencies. 

4. Automatic learning and classification of defective and non-defective 
patterns 

After the pre-processing step the new wavelet based data representations is given as input 
to an automatic classifier that, after a proper learning phase, is able to label each input 
stream as belonging to a flawed or unflawed area on the basis of the learned input/output 
mapping model. One of the most powerful data modelling tools that is able to capture and 
represent complex input/output relationships is neural network (NN).  

4.1 Neural network paradigm 

The motivation for the development of neural network technology stemmed from the desire 
to develop an artificial system that could perform "intelligent" tasks similar to those 
performed by the human brain. Neural networks resemble the human brain in the following 
two ways:  

1. A neural network acquires knowledge through learning.  
2. A neural network's knowledge is stored within inter-neuron connection strengths 

known as synaptic weights.  

The true power and advantage of neural networks lies in their ability to represent both 

linear and non-linear relationships and in their ability to learn these relationships directly 

from the data being modelled. Traditional linear models are simply inadequate when it 

comes to modelling data that contains non-linear characteristics.  

The most common neural network model is the multilayer perceptron (MLP), having an 

architecture as reported in figure 6. This type of neural network is known as a supervised 

network because it requires a desired output in order to learn. The goal of this type of 

network is to create a model that correctly maps the input to the output using historical data 

so that the model can then be used to produce the output when the desired output is 

unknown. 
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Fig. 6. A feed forward neural network scheme.  

The MLP and many other neural networks learn using an algorithm called back 
propagation. With back propagation, the input data is repeatedly presented to the neural 
network. With each presentation the output of the neural network is compared to the 
desired output and an error is computed. This error is then fed back (back propagated) to 
the neural network and used to adjust the weights such that the error decreases with each 
iteration and the neural model gets closer and closer to producing the desired output. This 
process is known as "training". 

The hidden layers enable the network to extract higher-order statistics especially when the 
size of the input layer is large. There is no theoretical limit to the number of hidden layers 
but, typically, architectures with just one hidden layer are adequate to face the complexity of 
most of the practical problems . Most used neural architecture have only one hidden layer.  
Supervised learning involves applying a set of training examples to modify the synaptic 
weights connecting the neurons of the network. Each example consists of a unique input 
signal and the corresponding desired response. The network is presented with many 
examples many times and the synaptic weights are tuned so as to minimize the difference 
between the desired response and the actual response of the network. The network training 
is repeated until a steady state is reached, where there are no further significant changes in 
the synaptic weights. 

The input layer has a number of neurons equal to the number of image features. In this 
work, the features are those extracted after the pre-processing phase. The number of nodes 
in the output layer depends on the number of classes that the network has to recognize. In 
our context the network has to recognize the sound point and the defect points (2 output 
nodes). The number of nodes in the hidden layer is determined by experiment.  

There is no quantifiable best answer to the layout of the network for any particular 
application. There are only general rules picked up over time and followed by most 
researchers and engineers applying this architecture to their problems.  

Rule One: As the complexity in the relationship between the input data and the desired 
output increases, the number of the processing elements in the hidden layer should also 
increase. 

Rule Two: If the process being modelled is separable into multiple stages, then additional 
hidden layer(s) may be required. If the process is not separable into stages, then additional 
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layers may simply enable memorization of the training set, and not a true general solution 
effective with other data. 

Rule Three: The amount of training data available sets an upper bound for the number of 
processing elements in the hidden layer(s). To calculate this upper bound, use the number of  
cases in the training data set and divide that number by the sum of the number of nodes in 
the input and output layers in the network. Then divide that result again by a scaling factor 
between five and ten. Larger scaling factors are used for relatively less noisy data. If you use 
too many artificial neurons the training set will be memorized. If that happens, 
generalization of the data will not occur. 

5. Experimental setup and results 

The composite material used in the experimental tests has an alloy core with a periodic 
honeycomb internal structure of 128-ply thicknesses (each ply has a thickness of 0.19 mm). 
The experiments were carried out on two specimens: the first one presents two water 
infiltrations whereas the second one presents three solid insertions of brass foil (0.02±0.01 
mm thickness). One solid insertion was placed two plies from the tool side surface (TOP 
INSERTION), one at mid part thickness (MIDDLE INSERTION) and the remaining one two 
plies from the bag side surface (BOTTOM INSERTION). Brass inserts were introduced to 
represent voids and delamination. In all the cases the defects or the internal damage were 
not detectable with a visual inspection. 

Figure 7 shows the specimens of sandwich material used in the experiments with the 
graphical information superimposed indicating the exact location of water infiltrations (in 
blue) and brass foil insertions i.e. top insertion (T) on the left, middle insertion (M) in the 
centre and bottom insertion (B) on the right. 

 

 

Fig. 7. the sandwich materials used in the experiments with the superimposed graphical 
information indicating the exact location of water infiltrations and brass foil insertions 

The thermographic image sequence was obtained by using a thermo camera sensitive to the 
infrared emissions. A quasi-uniform heating was used to guarantee a temperature variation 
of the composite materials around 20C/sec. In figure 8 one of the thermographic images is 
reported. Only liquid infiltrations become visible due to the larger thermal variation of the 
water with respect to solid insertions.  
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Fig. 8. One of the thermographic images where the liquid infiltrations are visible. 

Ultrasonic data were obtained by an ultrasonic reflection technique that uses a single 
transducer serving as transmitter and receiver (5MHz). 

In figure 9, the signal on the left is relative to a non-defective area whereas the signal on the 

right  is relative to a brass insertion placed in the middle of the material thickness and for 

this reason the corresponding extrema is far from the boundary ones. The signal in the 

centre of figure 3 is relative to a brass insertion placed very close to the inspected material 

surface and then the corresponding extrema is mixed with the tool side one. This shows that 

defective and non-defective areas can have very similar temporal behaviours under 

ultrasound scanning  and this causes traditional NDT  techniques to fail.  

   

Fig. 9. three ultrasound signals relative to the non-defective area (on the left), a brass 
insertion placed in the middle of the material thickness (on the right) and very close to the 
inspected material surface (in the centre). 

Acquired experimental data were then represented in the wavelet domain by using 

Daubechies 3 family of filters and the derived coefficients were given as input to two 

different neural networks in order to specialize each of them to recognize water infiltration 

and solid insertion respectively. The defect segmentation step is performed by using neural 

networks with two output neurons. Each available signal is fed into the net, which classifies 

it as either relative to defective areas or an unflawed  area.  

Preliminary experiments aimed at defining the best data model through the selected neural 
paradigm. In particular they allow the definition of the best number of neurons in the 
hidden layer and the most suited number of training points. To accomplish this 
fundamental task different set training examples were built. In particular, for each neural 
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network 3 different training sets consisting of 40, 60 and 80 examples (50% corresponding to 
unflawed and 50% to flawed areas) were used. At the same time different test sets of points 
were built for each specimen. In particular, for the specimen with water infiltration two data 
were built: the first set contained 250 signals relative to unflawed points, the second set 
contained 250 signals relative to defective areas damaged by the water. 

Similarly for the specimen with brass foil insertions 4 data sets were built: the first set 
contained 250 signals relative to unflawed points, the second set contained 250 signals 
relative to the defective area corresponding to the brass foil positioned two plies from the 
tool side surface (Top Insertion), the third set contained 250 signals relative to the defective 
area corresponding to the brass foil positioned at mid part thickness (Middle Insertion) and 
finally the fourth set contained 250 signals relative to the defective area corresponding to the 
brass foil positioned two plies from the bag side surface (Bottom Insertion). 

In each experiment a training set was selected and the learned network was then used to 
classify the data in the corresponding test set. The set of training examples consisted of 
input–output couples (input signal, corresponding desired response). During the training 
phase the  points of known examples were extracted from the considered materials and 
continuously fed into the net so that the synaptic weights were tuned to ensure the 
minimum distance between the actual and the desired output of the net. 

Training continues until a steady state is reached, i.e., no further significant change in the 
synaptic weights could be made to improve net performance. This is repeated also using 
different configurations of the hidden layer. In particular a number of hidden neurons 
ranging from 20 to 100 were considered.  

The results of this demanding experimental phase are summed up in figure 10 and figure 
11. 
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Fig. 10. Experiment results for water infiltration detection using thermal signals when a 
different number of training examples and hidden neurons were considered  
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Fig. 11. Experiment results for solid insertion detection using ultrasound signals when a 
different number of training examples and hidden neurons were considered  

Experiments demonstrated that a lower number of hidden layer nodes (i.e 20-30) is a good 
choice since a larger number of nodes in the inner layer for such situations can drive the 
classification model to over-fit the training data and to produce a very high failure score. At 
the same time, experimental proofs pointed out that a limited number of training points (i.e. 
40) is the best choice in term of correct classification rate. In other words this is the 
minimum number of training examples to allow a proper learning of the data distribution 
and, at the same time, it is the maximum number to avoid data over-fitting case, i.e. to 
preserve  the fundamental capability to classify unknown data (generalization capacity)  .  

For a better comprehension of experimental results tables I and II report the scatter matrices 
relative to the experiments performed by using the best network and training set 
configuration.  

 

 Unflawed Water insertion 

Unflawed 184/250 (73,6%) 66/250 (26,4%) 

Water insertion 28/250 (11,2%) 222/250 (88,8%) 

Table I: Scatter matrix derived in the experiments for water infiltration detection. 

 

 Unflawed Solid Insertion 

Unflawed 169/250 (67,6%) 81/250 (32,4%) 

Brass Foil (top) 36/250 (14,4%) 214/250 (85,6%) 

Brass Foil (middle) 15/250 (6,0%) 235/250 (94,0%) 

Brass Foil (bottom) 64/250 (25,6%) 186/250 (74,4%) 

Table II. Scatter matrix derived in the experiment 1 for brass fail insertion detection. 

Table I and II give a quantitative evaluation of the possibility to automatically detect both 
liquid and solid insertions in composite materials by using thermal and ultrasonic 
techniques in combination with neural approaches.  

In particular, Table II illustrates that brass foil insertions at the mid-thickness level were 
always better classified than those located either at the top or at the bottom. The defect 
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location is one of the most important factors in ultrasound inspection. The defects placed 
either at the top or at the bottom of the inspecting structure are in general the most difficult 
to detect since their echo is mixed with the tool face or the bag side echo. On the contrary, 
defective areas in the mid-part of the material thickness produce a distinct peak in the signal 
trend that is straightforward to identify. 

In the second part of the experimental phase all the signals extracted by the thermographic 
and ultrasonic analysis were classified by using the neural networks previously learned.  

According to the neural network outputs, a binary image is produced containing black 
points for defective areas and white points for sound areas. 

 

 

Fig. 12. graphical representation of the raw classification of all the signals extracted from 
specimens with water infiltration (on the left) and brass foil insertions (on the right). 

In figure 12 the graphical representation of the raw classification of all the signals extracted 
from specimens with water infiltration (on the left) and brass foil insertions (on the right) is 
reported. Defective areas are correctly detected but there are also a lot of points in the 
unflawed areas erroneously classified as flawed. For this reason an additional processing 
step was introduced in order to analyse the output images considering the vicinity of flawed 
pixels (region analysis). In other words, considering that these false detections were isolated 
and did not form connected regions having a considerable area value, the elimination of 
these points was made more straightforward if some a priori knowledge about the 
minimum expected size of the defective areas is available. 

In figure 13 the final outcome is reported after a filtering process based on the connectivity 
analysis of the detected defective regions and a selection criterion based on removing the 
regions having an area less than 20 pixels, are shown. 

Most of the false flawed points were removed even if some areas in addition to the real 
defects were still considered flawed. They mainly occurred in correspondence with a 
variation of the inclination of the surface (see fig. 7): unfortunately, in this unflawed area 
both thermographic and ultrasound signals changed their slope more evidently with respect 
to the corresponding signals used to train the net.   This problem could be faced by learning 
the net also on the points belonging to this particular areas. However, this way of 
proceeding  was not considered in this work since it could be counterproductive: the net 
could miss some real defective areas (or parts of it) and, in our opinion, considering the 
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applicative context, it is critically important to detect all defective points, even at the 
expense of generating extra false positives 

 

Fig. 13. the result of the cleaning based on the point connectivity analysis on the images 
reported in figure 8.  

6. Conclusion 

In this chapter, we address the problem of developing an automatic system for the analysis 
of sequences of thermographic images and ultrasonic signals to help safety inspectors in the 
diagnosis of problems in aircraft components. 

In particular, thermographic analysis was carried out to automatically discover water 
insertions whereas ultrasonic inspection aimed at revealing solid insertions of brass foil. 
Experiments were carried out on real aircraft specimens and demonstrated the capability of 
the proposed framework to discover flawed areas. A tolerable number of false positive 
occurrences were also found in correspondence to the part of the specimens having a 
sloping surface since their points were not included in the learning phase in order to get the 
best true positive detection rate considering the critical operative context.   

Future work will focus on investigating the defect identification capability of the proposed 
approach. This will be achieved by extending the analysis to material with different 
thicknesses and different defective insertions. In the future, we will also investigate the 
possibility of using an unsupervised-learning approach in order to reduce human 
intervention.  
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