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1. Introduction

Stroke is a leading cause of death and a major cause of long term disabilities worldwide.
According to the World Health Organization (WHO), a total of 15 million people suffer
from a stroke each year comprising 5 million with a fatal outcome and another 5 million
with permanent disabilities. While prevention research identifies factors and specific drugs
that may lower the risk of a future stroke, the treatment of ischemic stroke patients aims at
maximizing the recovery of brain tissue at risk. It is typically done by arterial recanalization
of the vessel where the clot is located. Identification of salvageable brain tissue is essential
during the clinical decision-making process. As a general rule for the decision to intervene,
the expected benefits of the intervention should outweigh its potential risks and costs. To
identify viable brain tissue, time is considered as a determining factor in the treatment of
stroke patients. A perfect illustration of this timing issue is the thrombolytic therapy which
uses specific drugs to break-up or dissolve the blood clot. As shown in a recent study (Hacke
et al, 2008), thrombolysis applied with recombinant tissue plasminogen activator (rt-PA) is
effective for acute ischemic stroke patients when administered intra-venously within a specific
time window (3 hours, or 4 hours 30 min for patients meeting additional criteria). However,
this time frame is arbitrary and might be too restrictive for some patients (Schaefer et al., 2007).
For example, some patients could have benefited from this therapy but, instead, have been
unnecessarily excluded. Beyond this ongoing debate about the length of the time window,
there is a recognized need for accurate strategies to quantify the extent of viable tissue for
victims of ischemic strokes and therefore to be able to identify the patients who could benefit
from such a therapy.
Estimating the dynamic of infarct growth in ischemic stroke is extremely complex and its
mechanisms are still poorly understood. Various factors such as quality of collateral perfusion,
energy delivery, and age of the patient are known to have a significant impact on the
outcome. However, their interactions over time is not clearly established and has not been
quantified. The most commonly used techniques currently available to predict tissue outcome
are based on imaging. It is widely accepted that the combination of diffusion (DWI) and
perfusion-weighted (PWI) magnetic resonance imaging (MRI) provide useful information
to identify the tissue at risk at an early stage. Several groups (Chen et al., 2008; Fisher
& Ginsberg, 2004; Kidwell et al., 2004; Schlaug et al., 1999) have studied the mismatch
between DWI and PWI to determine the penumbral tissue. However, DWI-PWI mismatch
approaches have limitations: increased diffusion signals may be reversible (although a recent
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2 Neuroimaging

study (Chemmanam et al., 2010) has concluded that it does not seem to be a common
phenomenon), and the determination of the threshold of critical perfusion by PWI has been
controversial (Heiss & Sobesky, 2005). DWI-PWI technique is based on the static thresholding
of images and additional analysis is necessary to predict the final infarct size.
More recently, considerable attention has been given to the development of automatic,
quantitative predictive models that can estimate the likely evolution of the endangered tissue.
These approaches that have been proposed in the literature differ on the types of images,
and the prediction techniques they employ. Initially, automatic prediction models have been
trained on a voxel-by-voxel basis by integrating multimodal perfusion information from cases
with known follow-up tissue fate. WU et al (Wu et al., 2001; 2007) proposed in one of their
studies a framework based on a generalized linear model (GLM) and evaluated 14 ischemic
stroke patients. Results showed that combining parameters computed from DWI and PWI
offers higher specificity and sensitivity than models trained on DWI, or PWI alone. ROSE et
al (Rose et al., 2001) used Gaussian models trained on multiple parameters (DWI, CBF, CBV,
mean transit time (MTT)) to predict tissue outcome on 19 ischemic stroke patients. Other
studies based on logistic regression (Yoo et al., 2010), on ISODATA clustering (Shen et al.,
2005) applied to ADC and CBF have also led to similar conclusions; the combination of various
parameters improves the prediction accuracy. In addition to the DWI-PWI mismatch, several
studies (Olivot, Mlynash, Zaharchuk, Straka, Bammer, Schwartz, Lansberg, Moseley & Albers,
2009; Olivot, Mlynash, Thijs, Purushotham, Kemp, Lansberg, Wechsler, Gold, Bammer, Marks
& Albers, 2009) have demonstrated that time-to-maximum (Tmax) of the residue function
is a reliable parameter to detect penumbra in acute stroke because it implicitly captures a
complex combination of delay and dispersion. It has been shown to predict actual CBF
more accurately than mean transit time (MTT) (Olivot, Mlynash, Zaharchuk, Straka, Bammer,
Schwartz, Lansberg, Moseley & Albers, 2009).
The regional information contained in the surrounding voxels of the location to be predicted
has been shown in recent works to improve the accuracy of the predictive model in
comparison with a single-voxel-based method. Although some regional information may
implicitly be included by single-voxel-based methods via the convolution of the image
with a smoothing filter, it is usually not taken into account by the models. Promising
approaches have attempted to take into account the regional distribution explicitly by
exploiting spatial correlation between voxels (Nguyen et al., 2008), using a prior map of
spatial frequency-of-infarct (Shen & Duong, 2008), and Neural Networks (Huang et al.,
2010). All these studies have demonstrated signs of improvement in comparison with
single-voxel-based approaches.
Drawing from these findings, this chapter introduces a predictive model of tissue fate that
captures the relationship between spatial patterns observed in perfusion images after onset
and tissue outcome. This work presents a comparative analysis of the predictive power of
different flow parameters extracted from Perfusion Weighted Images (PWI) during the acute
phase of the stroke. Specifically, Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF),
Mean Transit Time (MTT), Tmax, Time-To-Peak (TTP), and Peak are extracted and evaluated
in this study. The predictive model is formalized as a nonlinear regression problem. It
combines the tissue information available at onset in terms of Fluid Attenuated Inversion
Recovery (FLAIR) images with parameters extracted from PWI to predict the tissue outcome
four days after intervention. FLAIR images are used in this study to identify lesions from
previous strokes and, to a lesser extent, early lesions in the acute phase. They are also used
to assess the survival outcome of the brain tissue four days after intervention. While FLAIR
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Tissue Fate Prediction from Regional Imaging Features in Acute Ischemic Stroke 3

is the gold standard in neurology to depict irreversible lesions, PWI parameters represent
flow-related features that may be useful for the prediction of tissue outcome.
The novelty of the proposed work is to study the impact of a regional model on each of
these perfusion maps (CBV, CBF, MTT, Tmax, Peak, TTP). The regional distribution among
neighboring voxels is represented by cuboids (i.e. rectangular volumes) (Fig 1(a)). By varying
the size of these cuboids, we expect to determine what is the optimal size for each map that
leads to the most accurate tissue fate prediction. Such an approach can be seen as a 3D
generalization of subwindows-based stochastic methods (Maree et al., 2005) that have been
successfully used on a wide variety of image classification problems.
During learning, the cuboids are sampled at similar locations in FLAIR and one of the
perfusion images, and each pair of cuboids is combined into a single vector and used as
input to the predictive model. The output is the tissue fate, in terms of FLAIR voxel intensity,
measured 4-days after an arterial recanalization intervention. A Kernel Spectral Regression
(SR-KDA) (Cai et al., 2007) model is used to represent the relation that exists between PWI
parameters combined with FLAIR images at onset and the tissue fate.

2. Image-based prediction of tissue outcome

2.1 Patients, and MRI data acquisition

MRI data was collected from patients identified with symptoms of ischemic stroke and
admitted at the University of California-Los Angeles Medical Center. The use of these data
was approved by the local institutional review board (IRB). Inclusion criteria for this study
included: (1) presenting symptoms suggestive of acute stroke, (2) last known well time within
six hours, (3) MRI (including PWI) of the brain performed before recanalization therapy and
approximately four days later, (4) final diagnosis of ischemic stroke. A total of 25 patients
(mean age, 56 ± 21 years; age range, 27 to 89; 15 women; average NIHSS of 14 ± 6.3) satisfied
the above criteria and underwent MRI using a 1.5 Tesla echo planar MR imaging scanner
(Siemens Medical Systems). The PWI scanning was performed with a timed contrast-bolus
passage technique (0.1 mg/kg contrast administered intravenously at a rate of 5 cm3/s) and
with the following parameters on average: repetition time (TR), 2000 ms; echo time (TE), 60
ms. The FLAIR sequence was acquired with the following parameters: repetition time (TR),
7000 ms; echo time (TE), 105 ms; inversion time (TI), 2000 ms. All the images were resized
using bilinear interpolation to match a resolution of 1 × 1 × 5 mm per voxel.
The median time from symptom onset to baseline MRI was 4h38 (IQR 1h43, 5h39), and to
followup MRI was 4 days 13h30 (IQR 3 days 15h08, 4 days 22h17). Median time from onset
to intervention was 6h20. The degree of success of the intervention in terms of recanalization
and reperfusion, as well as the quality of collaterals have a significant impact on the tissue
fate. These factors are not taken into account in our predictive model because it relies only on
onset images.

2.2 Prediction framework

The prediction framework proposed in this chapter relies on a regression model that is learned
in a supervised fashion from a set of training images with known outcome. Once the model
has been trained, it can be used to predict the tissue fate, in terms of followup FLAIR intensity,
on new cases. The following subsections describe a series of preprocessing steps (Figure 1(b))
prior to the predictive modeling.

247Tissue Fate Prediction from Regional Imaging Features in Acute Ischemic Stroke

www.intechopen.com



4 Neuroimaging

(a) Cuboid (b) Prediction Framework

Fig. 1. (a) Illustration of a cuboid extracted from the brain volume. (b) During prediction, the
skull is first stripped from the FLAIR image and the result is normalized. A parameter map
is extracted from PWI images and registered to FLAIR images. Cuboids are sampled at the
same locations from both images and used as input to the regression model to predict the
tissue outcome.

2.2.1 Automatic brain volume segmentation

Before learning, the framework requires FLAIR images acquired immediately after onset and
at followup to be co-registered. The skull and non-brain tissue could interfere with the
registration process and therefore have been stripped.
To perform this brain extraction step, we use the FSL Brain Extraction Tool (BET) (Smith., 2002)
that is integrated into a pipeline software developed by the Laboratory of Neuro Imaging
(LONI) at UCLA (http://www.loni.ucla.edu/). BET estimates an intensity threshold to
discriminate between brain/non-brain voxels. Then, it determines the center of gravity of the
head, defines a sphere based on the center of gravity of the volume, and finally deforms it
toward the brain surface.

2.2.2 FLAIR image normalization

Because FLAIR images were acquired with different settings and originated from different
patients, their intensity value was not directly comparable. To allow for inter-patient
comparisons, FLAIR images were normalized with respect to the average intensities within
the contralateral white matter. The normal-appearing white matter was delineated manually
by an experienced researcher for both onset and follow-up brain volumes.

2.2.3 Perfusion imaging features

Imaging features are extracted from PWI images with a software developed at UCLA, the
Stroke Cerebral Analysis (SCAN) package. The tissue contrast agent concentration C(t) is
expressed as a convolution of the arterial input function (AIF) identified from the contralateral
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middle cerebral artery (MCA) and the residue function R(t) (Calamante et al., 2010)

C(t) = CBF × (AIF(t)⊗ R(t)), (1)

where CBF is the cerebral blood flow. The residue function is obtained by deconvolution, and
the time to its maximum value is used to specify Tmax. Therefore, Tmax is the arrival delay
between the AIF and C(t).
After applying a gamma variate fit on a pixel-by-pixel basis, cerebral blood volume (CBV) is
estimated in each voxel by computing the area under the fitted gadolinium concentration time
curve, measured in the corresponding image pixel at every time point after bolus arrival:

CBV =
Nc

∑
t=0

C(t). (2)

The mean transit time (MTT) is computed as the normalized first moment of the fitted curve,
up to the peak of the curve. The time to peak contrast concentration (TTP) is another
perfusion-related parameter that corresponds to the time it takes for signal intensity to reach
its minimum in each pixel. The value of this minimum is used to define another feature called
Peak.
Finally, CBV and MTT are used to calculate the cerebral blood flow (CBF) through the tissue
voxel, according to the central volume theorem:

CBF =
CBV

MTT
. (3)

2.2.4 Image registration

Registration of FLAIR and PWI images is necessary because the outcome of an extracted
cuboid, measured as a voxel value in the followup image, has to correspond to the same
anatomical location in the different volumes. Co-registration was performed for each patient
independently. Because the intensity of FLAIR images may present large variations between
onset and followup due to changes in the tissue perfusion caused by the stroke, several
attempts to use automatic image registration methods failed to accurately align the volumes.
Instead, our framework utilized five landmark points placed manually at specific anatomical
locations (center, plus four main cardinal directions) on the slice of the brain that had the
largest ventricular area. An affine projection was applied to project the followup FLAIR and
acute Tmax on the original FLAIR volume.

2.2.5 Ground truth

During evaluation, we pose the prediction task as a two-class classification problem, where the
voxel of the groundtruth is set to 1 if it is infarcted and 0 if it is not. The groundtruth is obtained
by manual outline of infarcts on FLAIR images by an expert in neurology from UCLA
who was asked to precisely delineate infarcts, comparing the infarcted hemisphere with
the contralateral hemisphere. Outlining was performed with the help of the commercially
available medical imaging software 3D DOCTOR developed by ABLE SOFTWARE CORP

(http://www.ablesw.com/). No manual outlining is made on the predicted images.
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2.2.6 Cuboid sampling

For training, we exploit a set of FLAIR images F at onset, their corresponding co-registered
PWI feature map M, and followup FLAIR images F′.
The dataset {X, Y} used to train and to evaluate the predictive model is created by extracting
cuboids of fixed size w × l × d among onset images with their corresponding outcome. Each
cuboid c ∈ R

s is described by its raw voxel values, yielding an input vector of s = w × l × d
numerical attributes. Our method extracts a large number of cuboids at random positions
from training images. In practice, given a sampled location {i, j, k}, we extract a cuboid
cF in the acute FLAIR image at F(i, j, k) and a corresponding cuboid cM in the perfusion
map at M(i, j, k). To improve the generalization power of the predictive model, the cuboids
cM, cF are normalized with respect to the direction θ of the image gradient in the XY plane
using an image rotation, performed with bilinear interpolation. Normalized patches cM′ , cF′

thus become invariant to orientation changes in the XY plane. Orientation normalization
is particularly useful when considering the case where cuboids are located at the same
distance from a circular infarction but at different directions. If no rotational normalization
is performed, all the cuboids have a different appearance and the model has to be trained for
all the directions around the infarct and requires more training examples.

cM′ = imrotate(cM,−θM) θM = tan−1
Lσ

y,M(x, y, z)

Lσ
x,M(x, y, z)

(4)

cF′ = imrotate(cF,−θF) θF = tan−1
Lσ

y,F(x, y, z)

Lσ
x,F(x, y, z)

(5)

where Lσ
x,F, Lσ

x,F, Lσ
x,M, Lσ

y,M are the Gaussian derivatives in X and Y directions, computed from

the acute FLAIR image F and perfusion map M,

Lσ
x,M =

∂

∂x
Gσ ⊗ M Lσ

y,M =
∂

∂y
Gσ ⊗ M (6)

Lσ
x,F =

∂

∂x
Gσ ⊗ F Lσ

y,F =
∂

∂y
Gσ ⊗ F (7)

where Gσ is a 2D isotropic Gaussian filter with standard deviation σ = 3 in our experiments.
The two cuboids are merged into a single, multi-modal cuboid x = {cF′ , cM′} that corresponds
to the concatenation of the cuboids extracted at the same location in the different volumes.
Each multi-modal cuboid x is then labeled with the intensity y of the central voxel in the
corresponding follow-up FLAIR image y = F′(i, j, k). The dataset consists of the set of
multi-modal cuboids x ∈ X and their corresponding outputs y ∈ Y that represent the
followup FLAIR intensities.

2.3 Regression-based predictive model

Our predictive model takes the form a regression model y = f (x) that maps the tissue
outcome y ∈ Y, described in terms of the voxel intensity in the followup FLAIR image, as
a function of the multi-modal cuboid x ∈ X extracted at the same location. Defining outputs
y in a continuous space, in contrast with a binary one, allow us to easily change the sensitivity
and specificity of the framework, by varying the threshold on the predictions. A greyscale (or
color) output image is also more adapted than a binary image to visualize complex patterns.
In the context of pattern recognition, the literature of regression analysis has been particularly
proficient in the last couple of years with the emergence of robust, nonlinear methods. In
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this study, the comparative analysis will be based on a Kernel Spectral Regression (SR-KDA)
analysis (Cai et al., 2007) that we successfully used in our preliminary study (Scalzo et al.,
2010), and other regression-based pattern recognition applications Scalzo et al. (2009; 2010).

2.3.1 Kernel spectral regression

Kernel Spectral Regression (SR-KDA) (Cai et al., 2007) is a recently proposed method to
solve Kernel Discriminant Analysis (KDA) problems efficiently. Specifically, it poses the
discriminant analysis as a regularized regression problem that exploits a graph representation.
SR-KDA utilizes a kernel projection of the data (also called “kernel trick” in the literature).
Input data samples X are projected onto a high-dimensional space via a Gaussian kernel K,

K(i, j) = exp−‖xi − xj‖
2/2σ2 (8)

where σ is the user-specified standard deviation of the kernel.
In addition, from the set of n input data samples X, a n × n symmetric affinity matrix W is
generated with Wij having a positive constant value if xi, xj ∈ X are from the same class (i.e.
yi ∈ Y is equal to yj ∈ Y), and zero otherwise. From matrix K and W, SR-KDA uses the
Gram-Schmidt method to obtain eigenvectors φ,

Wφ = λφ (9)

and estimates the mapping α efficiently using a Cholesky decomposition,

αT(K + δI) = φ (10)

where I is the identity matrix, δ > 0 the regularization parameter, and φ are the eigenvectors
of W. When a new multi-modal cuboid, xnew, is extracted from the image of a new patient,
the FLAIR intensity at followup, ŷnew, is computed using

k(i) = exp−‖xi − xnew‖2/2σ2, i = 1 . . . n (11)

ŷnew = α̂T(k + δI) (12)

where k is the vector resulting from the kernel projection of xnew into the kernel space using
training data X.

2.4 Experimental setup

This section describes how the predictive power in terms of tissue fate of the different
perfusion images will be evaluated on our dataset of ischemic stroke patients. The proposed
experiments are designed to answer the following questions: Do the neighboring voxels
significantly improve the prediction of the tissue outcome at a specific voxel in the different maps?
If so, what is the optimal size of this neighborhood in ischemic strokes? Does it differ depending on
the type of image? Specifically, these questions will be addressed by evaluating the tissue fate
prediction accuracy of the Kernel Spectral Regression (SR-KDA) (Section 2.3.1) method on
our dataset (Section 2.1). The problem is posed as a classification task where the output Y (i.e.
followup FLAIR image) was manually binarized to create the ground truth (Section 2.2.5).
A specific model will be trained for each of the six types of perfusion parameter; CBV, CBF,
MTT, Tmax, TTP, Peak. The training of a specific regression model is made from a set of
training samples that, in the ideal case, should be uniformly distributed throughout the data
space. However, this is not the case for most of the stroke patients where the brain volume
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contains a larger number of noninfarcted voxels. A recent study (Jonsdottir et al., 2009) has
shown that an unequal number of infarcted and noninfarcted voxels can negatively impact
the overall performance of the system. Following the methods of the study, we perform a
random sampling on the input cuboids so that an equal number of infarcted and noninfarcted
cuboids are present in the training set. The number of training samples for each slice was set
to a maximum of 85 cuboids of class 0 and 85 cuboids of class 1. In theory, this could create
a large dataset of 170 × nbSlice × nbCases training samples. In practice, however, we reduce
the size of the dataset during the extraction process such that the number of extracted cuboids
for a slice is equal to the minimum number of occurrence of either class (0 or 1). For example,
if only 10 voxels are infarcted (class 1) on the followup of one slice, only 10 cuboids will be
extracted for class 1 as well as 10 other cuboids for class 0. This procedure has the advantage
of speeding up the cuboid extraction process and generates less than 10, 000 training samples
equally distributed between the two classes.

2.4.1 Cuboid size

For each PWI parameter map, we evaluate the accuracy of the SR-KDA regression method
to predict tissue fate for different sizes of cuboids. A predictive model is evaluated for each
cuboid size using a leave-one-patient-out crossvalidation so that the data from the patient
evaluated is excluded from the training set at each iteration. In this experiment, cuboids are
symmetric; w, l have the same length (Section 2.2.6). The tested sizes 1 spanned from 1 × 1
to 23 × 23. During the leave-one-out crossvalidation, the Area Under the Curve (AUC) is
computed from the ROC curve for each patient. The average AUC and standard deviation
across patients are calculated and constitute our measure of performance. The parameters
of SR-KDA σ, δ were optimized at each iteration of the leave-one-out procedure by running
another leave-one-out cross-validation on the data excluding the patient to be tested.

2.4.2 Global ROC curves

Global ROC curves are also generated for each PWI parameter map. For fair comparison,
the cuboid size of each image was the one that led to the best accuracy in the experiment
presented in the previous paragraph and reported in Figure 2. To generate the global ROC
curve, predictions Ŷi are first computed for each specific patient i during the crossvalidation.
Then, all the prediction vectors {Ŷ1, Ŷ2, . . . , Ŷn} are concatenated into a single vector Ŷtotal ,
and the global ROC curve is computed from the data of all patients Ŷtotal .

2.4.3 McNemar’s significance test

Although differences in average AUCs can be used to rank the predictive power of the
different PWI parameter maps and to observe the improvements of the regional model versus
a single-voxel-based approach, differences are not necessarily statistically significant. We
propose to use a McNemar’s test (Siegel & Castellan, 1988) to verify if the difference between
between regional and single-voxel-based models are statistically significant for each PWI map.
McNemar’s test, which is based on a Fisher-test with one degree of freedom, is a useful tool in
determining if two methods have comparable error rates. Given the null hypothesis that the
two methods A and B have the same error rate, and the following contingence table (Table 1),

1 The low sagittal resolution (≥ 7 mm per voxel) of PWI images did not allow us to test the z-size of the
cuboid which was set to 1 slice.
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McNemar’s test can be written as a Fisher-test,

χ2 =
(|b − c| − 1)2

b + c
. (13)

Correct (B) Error (B) Total

Correct (A) a b a+b
Error (A) c d c+d

a+c b+d n

Table 1. Classification contingence table between two methods (A, B).

McNemar’s test is applied to investigate if the main hypothesis of this paper is supported
by a statistical significance test. We verify that the improvement in performance obtained
by the regional cuboids versus a single voxel is significant. To do so, the McNemar’s test is
performed between the models obtained using SR-KDA with their optimal cuboid size and
with a single voxel 1 × 1. We perform the experiment for each PWI parameter map with the
following optimal cuboids size (identified in the previous experiment): Tmax, 15 × 15; MTT,
15 × 15; CBV, 9 × 9; CBF, 11 × 11; TTP, 13 × 13; Peak, 11 × 11.

3. Results

3.1 Cuboid size

AUC after a leave-one-patient-out crossvalidation for an increased cuboid size is reported
in Figure 2 for each PWI parameter map. The AUC can be interpreted as the probability of
correct classification for a randomly selected pair of positive and negative samples. Usually,
any AUC result above .9 is considered as excellent.
Baseline average accuracy for Tmax parameter reaches 0.83 ± 0.01 with cuboid size 1 × 1 and
increases to 0.90± 0.05 at a size of 15× 15. MTT parameter reaches 0.76± 0.02 and increases to
0.87 ± 0.06 at a size of 15 × 15. CBV parameter reaches 0.67 ± 0.03 and increases to 0.74 ± 0.10
at a size of 9 × 9. CBF parameter reaches 0.71 ± 0.02 and increases to 0.81 ± 0.08 at a size of
11 × 11. TTP parameter reaches 0.84 ± 0.02 and increases to 0.91 ± 0.04 at a size of 13 × 13.
Peak parameter reaches 0.74 ± 0.02 and increases to 0.82 ± 0.08 at a size of 11 × 11.
These results suggest that Tmax and TTP parameters are the most accurate single maps
to predict the tissue outcome. Interestingly, the optimal size of the cuboids vary across
the different modalities, however all of them outperform their respective single-voxel-based
model. These results demonstrate that a regional approach, which takes into account
neighboring voxels may improve the prediction accuracy regardless of the modality used.
Global ROC curves that illustrate the results in terms of true positive and false positive rates
are depicted in Figure 3. The ROC are produced for each parameter map, comparing the
results between a baseline cuboid size of 1 × 1 and the optimal size.
The similarity between the prediction and the actual outcome of the brain tissue for each
parameter can be visualized in Figure 4 on arbitrary slices. The columns respectively
correspond (from left to right, top to bottom) to follow-up FLAIR, prediction from Tmax, TTP,
MTT, the manually outlined ground truth of followup FLAIR, and prediction from CBV, CBF,
and Peak. The prediction are produced from the SR-KDA model trained using a leave-one-out
crossvalidation with optimal cuboid size for each modality.
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Fig. 2. Effect of the cuboid size on the average Area Under the Curve (AUC) for SR-KDA
regression models using a leave-one-out crossvalidation strategy.
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Fig. 3. For each parameter, ROC curves (dark line) are generated using the cuboid size that
led to the best average AUC for each method as reported in Fig 2, and compared to
single-voxel-based models (gray line). The difference between the dark and gray lines is
proportional to the improvement obtained by a regional model versus single-voxel-based
model.
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Flair Day 4 Tmax Prediction TTP Prediction MTT Prediction
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Fig. 4. Prediction results for three patients. FLAIR at followup, and predictions from onset
Tmax, TTP, MTT, perfusion map are illustrated on the first row. Predictions are compared to
the ground truth manually outlined in followup FLAIR at day 4 on the second row, followed
by CBV, CBF, and Peak predictions.
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3.2 McNemar’s test

Significance results of the McNemar’s test are summarized in Table 2. With a 95% confidence
interval and one degree of freedom, two models are considered significantly different if the
value χ2 is above 3.8414. McNemar’s values between a baseline model of size 1 × 1 versus
an optimal regional model are 25.56, 116.8, 54.04, 5.81, 23.313.12, for Tmax, MTT, TTP, CBF,
CBV, Peak, respectively. Because they are way over 3.8414, regional models for Tmax, MTT,
CBF, CBV (and CBF to some extent) can be considered to improve the prediction accuracy
significantly. However, Peak was just below the threshold and therefore the impact of the
regional model on this feature map cannot be considered significant on our dataset.

Test McNemar value

Tmax 15x15 vs Tmax 1x1 25.56

MTT 15x15 vs MTT 1x1 116.8

TTP 13x13 vs TTP 1x1 54.04

CBF 11x11 vs CBF 1x1 5.81

CBV 9x9 vs CBV 1x1 23.31

Peak 11x11 vs Peak 1x1 3.12

Table 2. Results of McNemar’s test to measure the significance of using single-voxel-based
versus regional models using the optimal cuboid size for each PWI parameter map.

3.3 Computational performance

The predictive model was implemented in Matlab and executed on a Dell Optiplex 760
desktop computer equipped with an Intel Core2 Duo CPU cadenced at 3.33GHz. The training
of the predictive model, excluding image normalization, volume registration, and ground
truth selection took less than ten minutes for 10 × 10 cuboids, while the prediction on an
entire volume took less than two minutes. Note that the speed depends on the size of the
cuboids, larger cuboids require more memory and computational time.

4. Discussion

The prediction of brain tissue fate in ischemic stroke, and therefore the identification of
salvageable tissue, is a challenging problem that holds useful information for the clinician
during the decision making process. Ultimately, automatic tissue fate predictive models could
help us understand the underlying mechanisms of infarct growth. These mechanisms are
complex, as they depend on a wide variety of factors such as: quality of blood perfusion to
the area, quality of colaterals, energy delivery, age and medical history of the patient, etc.
Integrating all these elements within a unified predictive model is the long-term goal of our
research.
In this chapter, we have proposed a comparative analysis about the predictive power of
PWI parameter maps. A generic framework based on a nonlinear regression method was
introduced to predict the likely outcome of brain tissue in ischemic stroke patients. Although
the models were trained on a rather small dataset (25 patients), our experimental results
have demonstrated that significant improvement can be obtained by a regional model in
comparison with a single-voxel-based approach. Several feature maps achieve an average
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AUC of over .8 using optimal cuboid sizes. These good performances may be explained by
the three following reasons:

• Regional: The use of optimized cuboids significantly improves a single-voxel-based
approach. A possible explanation of this improvement is that cuboids implicitly represent
the regional distribution of intensity and correlation among voxels and are more robust to
noise.

• Nonlinear: The predictive model is based on Kernel Spectral Regression (SR-KDA) that
has demonstrated excellent performances in a wide variety of applications. For the current
application, a possible explanation for this difference is that the relation between the
cuboids extracted at onset from PWI parameters and the followup FLAIR intensity is not a
linear one, and it is, therefore, better captured by a nonlinear model such as SR-KDA.

• Randomness: Because machine learning techniques are often limited in the number of
training samples they can handle in a reasonable time, efficiently exploiting the millions of
cuboids available in the training set is a complex task. To obtain a representative training
set, we randomly sample cuboids across images so that a similar number of cuboids is
sampled for each outcome (infarcted or not). This is similar in spirit to what has been
shown in a previous study (Jonsdottir et al., 2009).

In principle, even after normalization, FLAIR images are not necessarily comparable between
patients. However, in practice, the “leave-one-patient-out” approach excludes all the data
of the patient to be evaluated from the training set, and therefore, solely relies on the
other patients to make predictions. Results obtained in terms of average AUC show that
after normalization, infarcted and non-infarcted tissue can, with a reasonable confidence, be
predicted across patients.
The proposed study is not only useful to identify the optimal size of the regional model for
a given perfusion map, but may also serve as a starting point to help us understand the
limitations of current perfusion maps and to identify in which cases other factors may improve
the predictions. While a correct prediction tells us that the relation between different PWI
parameters and the outcome of the tissue can be captured by the model, a prediction error may
originate from several technical errors (co-registration of images, normalization, classifier,
data sampling, perfusion map) or come from physiological reasons (quality of collaterals,
degree of success of arterial recanalization intervention). For example, in the case of an arterial
occlusion, the infarct core might not grow after an unsuccessful intervention (failed opening
of the vessel) due to good collateral blood supply to the territory. There is, therefore, a margin
for improvement by taking into account additional physiological parameters (e.g. collateral
flow) and a larger dataset.
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