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1. Introduction 

Brain imaging has been a key technology in advancing our understanding of the neuronal 
basis of cognition. However, in order to fully unleash the power of brain imaging it needs to 
be combined with other sources of information such as gene expression, behavioural 
performance, as well as with computational models. 
In so-called “model-based brain imaging” computational models of how the brain processes 
information are employed in order to interpret the data. A prominent example is the use of 
models from reinforcement learning in order to interpret responses in basal ganglia, or frontal 
cortex. However, while such a model-based brain imaging certainly adds a new level of 
explanation beyond the mere description of the evoked neuronal activations, it will always be 
limited by the spatial and temporal resolution of the employed imaging technologies. 
Here, we argue that the application of multi-scale modeling, which bridges the gap between 
the various spatial and temporal scales, is a necessary next step in the analysis of brain 
imaging data. For example, this way it will be possible to simulate the effects of altered 
membrane currents under pharmacological manipulation on brain-wide network dynamics 
and compare simulation results with recorded brain imaging data. 
We emphasize that one important benefit of models is to operationalize as many 
assumptions as possible (Section 2). Then, we summarize the state-of-the-art in 
Neuroinformatics tool support, which is necessary for multi-scale models in model-based 
brain imaging. We also argue that even without complete physical models, which bridge the 
various scales, a data-driven approach using partly phenomenological model can be 
pursued, but this calls for new Neuroinformatics tools (Section 3). We summarize some of 
our recent work in network modeling of the visual system, where we performed systematic 
model comparisons (Section 4), and we close with identifying a challenging test case for 
multi-scale modeling in model-based brain imaging, namely the investigation of the 
neuronal basis of the self (Section 5). 

2. Two dimensions of theory-dependence of observations in neuroscience 

Brain imaging studies are already heavily dependent on various kinds of models. We argue 
that a key advantage of models in brain imaging (and in the interpretation of neuronal data 

www.intechopen.com



 
Neuroimaging – Methods 

 

100 

in general) is to make assumptions explicit in order to deal with the fact that all observations 
are theory-dependent. Interestingly, we can distinguish two dimensions of theory-
dependence in brain imaging (Figure 1a): First, the dependence on the physical theories 
upon which the measurement devices like magnetic resonance imaging (MRI) scanners are 
built; second, the dependence on computational theories to derive teleological explanations 
of brain activity. While the former is shared with other scientific disciplines, the latter is a 
more recent advancement. Let us consider these two dimensions of theory-dependence in 
greater detail. 
 

 
 

Fig. 1. Theory-dependence of observations and Bayesian model comparison. a) In brain 
imaging one can identify two dimensions of theory-dependence of observations: an implicit 
dependence on the theories underlying the measurement devices (such as the working of an 
MRT scanner), and a more recent explicit theory-dependence, where computational theories 
are used in order to interpret neuronal activations in a teleological manner with formally 
defined computational theories. b) Graphical model for Bayesian model comparison. 

Models M are parameterized with parameters . Once prior distributions P(|M) and 

forward models P(x|) are defined, different models M (each of which is parameterized 

with a ) can be compared with each other. 

2.1 Theory-dependence of the measurement process 

Since the work of Fleck (Fleck, 1979), Kuhn (Kuhn, 1962), and also Popper (Popper, 1972) in 
the last century we know that all scientific observations are theory-laden, i. e. even the most 
basic “facts” depend on a certain theoretical background. These ideas have been developed 
with physics as the main application domain, because in the last century physics 
experienced many radical changes of its fundamental theories. In brain imaging the theory-
dependence of observations becomes most visible when considering the measurement 
process. For example, it is still not clear how signals from functional magnetic resonance 
imaging (fMRI) should best be interpreted in terms of neuronal and synaptic activations, 
and models are needed to ensure a proper interpretation of the measured brain activation in 
terms of neuronal activity (Almeida and Stetter, 2002). The situation is similar for research in 
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electroencephalography (EEG), where source localization methods aim at solving the 
inverse problem of estimating the sources of electrical activity inside the head based on the 
measured EEG activity outside the head. This kind of theory-dependence is usually implicit, 
but can be made explicit in terms of a model for the measurement process as part of the data 
analysis. 

2.2 Theory-dependence of the interpretation of the data 

Another more recent kind of theory-dependence in neuroscience is not implicit, but explicit 

theory-dependence. Here, the neuronal activity in the nervous system is interpreted in terms 

of a (computational) function for the organism in a teleological manner. Teleological 

explanations in biology have a long history, but what makes their re-appearance in 

neuroscience attractive is that nowadays they are often articulated in at least a semi-formal 

way, but now more often also in an explicit formal manner. A prime example is reward 

learning. Here, algorithms from reinforcement learning are used to provide a basis for the 

semantic interpretation of the neuronal activations (Schultz, 2002). In other words, the 

neuronal circuitry in the brain is considered as a “wetware” on which algorithms are 

running (with all the associated constraints brought about by the slow processing speed and 

sluggishness of nervous systems compared to today’s computers). Here, the empirical 

observations are intentionally theory-dependent, which we think is noteworthy and a new 

tool in the methodological toolbox to investigate complex biological systems. 

2.3 Models make the theory-dependencies explicit 

Both kinds of theory-dependence can be made explicit using models, which then allows for 

systematic comparisons between competing models on the basis of experimental 

observations. The approach of Bayesian model comparison is widely accepted as a 

principled method for comparing different models. Figure 1b shows the graphical model 

(graphical models are marriage of graph and probability theory used artificial intelligence 

and statistics) for Bayesian model comparison. Different models M can be parameterized 

with a parameter vector . Once prior distributions  P |M  are specified, observed data x 

can be used in order to compare different models M1 and M2 using the so-called posterior 

odds    1 2P M | /P M |  , or the posterior distributions over model parameters  for a 

certain model can be inspected. Performing the necessary calculations, such as evaluating or 

estimating the integral    P | ,M P |M d   x , is technically demanding and defining the 

prior distributions  P |M  can be non-trivial. Still, however, this way of model comparison 

can serve as a general framework for model-based brain imaging even with multi-scale 

models, i. e. the particular definition of  P |x  will need to incorporate both kinds of 

theory-dependence (see Section 3.3). 

3. Neuroinformatics support 

Neuroinformatics is an emerging discipline, which provides methods and tool support for 

neuroscience. Prime examples are databases for neuronal data, and tools for modeling and 

simulation. Let us briefly review selected advances in this field in order to identify ways in 

which Neuroinformatics could contribute to model-based brain imaging with multi-scale 

models. 
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3.1 Neuroinformatics support for sharing and analysis of data 

The brain imaging community has always been very progressive in terms of sharing data 
and tools. While new analysis methods could certainly be developed within a single 
method-oriented laboratory, it is the community-wide evaluation of new methods, which 
provides their ultimate test. The free sharing of tools is certainly helpful. 
In the field of fMRI studies, the SPM software (http://www.fil.ion.ucl.ac.uk/spm) is 

probably the most widely used open source software, and comparing models given 

observed data is a well-developed feature of SPM. It is the tool of choice to apply Dynamic 

Causal Models (DCMs) to brain imaging data, i. e. performing Bayesian model comparison 

with Neural Mass Models (NMMs), which are models accounting for averaged population 

activity in a whole cortical area with a greatly simplified local circuit architecture. Other 

software packages for specialized tasks such as, for example, multivariate pattern 

classification exist, but the advantage of a mature platform with a long tradition such as 

SPM is that one can almost consider it as a “software ecosystem” for data analysis as other 

tools and toolboxes can easily be integrated into analysis workflows. 

In the field of EEG studies, the situation is more diverse. This may be due to the fact that 

EEG as a brain-imaging modality has been (and still is) in a “renaissance” phase, i. e. it is 

recognized that new analysis methods can pull out much more information about brain 

states than plain averaging. Prominent tools for EEG analysis are EEGLAB (Delorme and 

Makeig, 2004) and the FieldTrip toolbox (Oostenveld et al., 2011), both of which support 

time-frequency analysis and source localization, namely dipole-based localization and the 

beamformer algorithm, respectively. EEGLAB is the probably best first choice for applying 

Independent Component Analysis (ICA) to EEG data (Onton and Makeig, 2006). Even 

though the application of ICA to EEG is controversial, recent advances suggest that properly 

adapted variants of ICA can yield physiologically plausible results (Hyvärinen et al., 2010). 

SPM can also be applied for EEG analysis, and it supports DCMs for EEG data. Another 

prominent tool for EEG analysis is Cartool (http://brainmapping.unige.ch/cartool), which 

supports a so-called topographic analysis of event-related potentials (Pascual-Marqui et al., 

1995; Murray et al., 2008) as well as distributed source localization. In contrast to the other 

Matlab-based tools, Cartool is an application for the Windows operating systems with a 

graphical user interface and currently no possibility for external scripting, i. e. it cannot be 

part of an automated toolchain. 

In terms of data sharing, it is notable that for more than 10 years the fMRI community has 

the possibility to share the raw data (Editorial, 2000). Initially, this was viewed rather 

skeptically, but it has facilitated the development of new analysis methods (Van Horn and 

Ishai, 2007). Unfortunately, it appears that EEG researchers do not typically take such an 

approach and are still far more protective of “their” data. As of now, this also applies to data 

sharing in neurophysiology. Only some neurophysiology researchers freely share their data 

via web pages. However, progress and standardization can be expected from efforts taken 

by, for example, the International Neuroinformatics Coordination Facility or actions of 

major funding agencies and publishers. 

Taken together, the sharing of tools and data from various imaging modalities (including 

neurophysiology) is an essential prerequisite for applying multi-scale modeling to model-

based brain imaging. Very likely, there will never be a single tool to cover all requirements 

for data analysis. Instead, a “software ecosystem” with loose coupling between components 
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(such as in terms of specifications for data and file formats and ultimately implementations 

using service-oriented architectures) appears as a promising solution. The existing Matlab-

based tools come closest to such an ecosystem. 

3.2 Neuroinformatics support for multi-scale modeling 

In order to evaluate the forward model,  P |x , for multi-scale models one needs to 

account for the observed data in terms of the neuronal activity of synaptically coupled 

neurons. Do we currently have enough knowledge in order to define such models 

mathematically, not to mention their numerical simulation? For example, for fMRI it is 

still not clear if the signal reflects pre- or postsynaptic activity (Logothetis, 2008), or 

excitatory or inhibitory synaptic activity (Lauritzen and Gold, 2003). For EEG forward 

models, the anisotropy of the conductivities may matter (Güllmar et al., 2010), and linking 

local field potentials to the spiking/synaptic activity is also a current research topic 

(Rasch et al., 2009). 

For example, we have recently combined NMMs and anisotropic head-models in order to 

simulate EEG activity (Zimmermann et al., 2011) as an attempt for a multi-scale forward 

model. Here, we argue that even without a complete physical description of how spiking 

activity causes, for example, EEG signals one could still pursue model-based brain imaging 

with multi-scale models, namely by using phenomenological models for those parts of the 

full model, where a physical description is currently not available. The procedure of 

Bayesian model comparison is blind to the physical plausibility or “truth” of a model, 

 P |x , but only compares probabilistic models with each other. Thus, by using data from 

multiple imaging modalities and employing phenomenological models for the boundaries 

between different scales of modeling, one could iteratively improve these models. Of course, 

one needs to accept that parts of such multi-scale models are incomplete. From a pragmatic 

perspective, this shifts the focus from finding a “true” model or physical principle to bridge 

the gap between different scales to the very practical question: How to simulate forward 

models, and how to share models? 
Sharing models in terms of scripts for established simulators like NEURON, GENESIS or 

NEST has been a major step towards facilitating the exchange of models. Recently, these 

efforts have been extended by the development of simulator-independent model 

descriptions like generating models via Python scripts (Davison et al., 2008), renewed 

interest in NeuroML (Goddard et al., 2001), or the recent NineML initiative 

(http://ninml.org). Compared to Systems Biology, however, corresponding efforts in 

Computational Neuroscience are less developed in terms of model exchange (De Schutter, 

2008), because a standard as widely accepted as the Systems Biology Markup Language 

(SBML) is still missing, but it is actively developed within the Neuroinformatics community. 

As of now, web portals like ModelDB (http://senselab.med.yale.edu/modeldb) or, for 

vision science, the Visiome (http:// visiome.neuroinf.jp) are an excellent source of models in 

terms of scripts for simulators. Hopefully, in the near future, such portals will also host 

model descriptions (as compared to simulator scripts), similar to the BioModels database for 

Systems Biology models (http://www.ebi.ac.uk/biomodels). However, we argue that it is 

essentially the multiplicity of different (spatial and temporal) scales of neuronal models, 

which makes similar efforts a challenge for Neuroinformatics. 
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3.3 Is there any Neuroinformatics support for multi-facet modeling? 

In addition the different scales, neuronal systems can also be described at different levels 
of abstractions such as in terms of the neuronal dynamics, but also in terms of the 
computations carried out by the neuronal “wetware”. Marr distinguished between the 
computational problem, the algorithmic solution, and a “wetware” used to execute the 
algorithm (Marr, 1982). This distinction is very close to a typical computer science 
approach, where the algorithms are clearly distinct from the hardware on which they are 
running. Such an apparently clear separation has been questioned recently, because the 
algorithms and the neuronal “wetware” may not be as independent as previously thought 
(Noë, 2005). Computational Neuroscience researchers have produced hypotheses, which 
aim at bridging the gap between mere mechanistic descriptions and computational 
properties by essentially proposing transformations from algorithmic descriptions to 
neuronal circuitry. Is there any Neuroinformatics support for such a multi-facet 
modeling? Can multi-facet modeling be considered within the framework of Bayesian 
model comparison? 

The answer to the first question is simply “no”. As of now, there is no tool support to 

explicitly formulate such multi-facet models, but we have recently started to address this 

problem (Ansorg and Schwabe, 2010) by taking inspiration from software engineering. How 

can such multi-facet models fit into the framework of Bayesian model comparison? One 

simply needs to define a forward model  P |x  for the observed data, but for multi-facet 

models this calls for defining a computational model and a transformation into the 

“wetware”. If proper description languages for such multi-facet models and transformations 

would be available, one could compare different hypothesis about the computations in 

neuronal circuits in a data-driven way. Readily available candidates for such multi-facet 

modeling include hypotheses about the role of dopamine in reward learning (Schultz, 2002), 

or postulates about population codes in sensory systems (Ma et al., 2006). 

4. Selected advances in cortical microcircuit models 

The NMMs employed in DCMs are a major step beyond the mere statistical models 
embodied in, for example, effective connectivity analyses. However, these NMMs often 
assume a simplified cortical architecture. In our modeling of visual cortical networks we 
also employed mean-field firing rate models as in NMMs (as well as more detailed models 
with so-called “spiking neurons”). We could show that single neuron responses in primary 
visual cortex (V1) are best explained when the local cortical microcircuits are assumed to 
operate in a balance between strong recurrent excitation and inhibition (Mariño et al., 2005a; 
Stimberg et al., 2009), and that inter-areal feedback into V1 may play a crucial role in “lateral 
inhibition” (Schwabe et al., 2006a; Ichida et al., 2007; Schwabe et al., 2010). To the best of our 
knowledge, such and other recent advances in cortical microcircuits models have not yet 
been implemented into NMMs used in brain imaging. Here we review some of these 
advances and outline how they could be used in model-based brain imaging with multi-
scale models. 

4.1 The operating regime of local cortical computations 

More than 50 years after the discovery of orientation tuning in V1, there are still 

controversial discussions about the underlying neuronal circuits (Figure 2a). Probably the 
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dominant controversy relates to the question: To what extent is neuronal selectivity in 

sensory systems determined by the afferent feedforward connections vs. intra-cortical 

processing (or even feedback from higher visual areas)? Previous theoretical studies already 

investigated a so-called “balanced regime” of neuronal networks, where excitatory and 

inhibitory inputs are balanced and largely cancel each other out. We have investigated such 

an operating regime in joint experimental-modeling studies. 

 

 

 

 

 
 

 

 

Fig. 2. Orientation tuning models and Bayesian posterior over models. a) Illustrations of 
circuits, which may compute orientation-tuned responses in area V1. b) Bayesian posterior 
for models enumerated in terms of the strength of local recurrent inhibition (x-axis) and 
excitation (y-axis), given the data reported in (Mariño et al., 2005b). (Figure 2b is taken from 
Stimberg et al. (2009), by permission of Oxford University Press) 

A study by Stimberg et al. (2009) employed a Bayesian approach to investigate data reported 

first by Mariño et al. (2005b). Most importantly, a class of models was defined, which 

includes all the different variants shown in Figure 2a, by considering the strength of 

recurrent excitation and inhibition within a network model of an approx. 1mm2 cortical 

patch as parameters  in a forward model  P |x . Then, using this forward model, the 

posterior probabilities over the model parameters were computed, given the experimental 

data (Figure 2b). It turned out that a recurrent regime (Figure 2a, right icon) is the most 

probable regime. The details of this calculation and the simulations are given in Stimberg et 

al. (2009). A few aspects of this study are important to emphasize here: First, the data to be 

explained by the network model was already postprocessed data from multiple 

experimentally recorded neurons, i. e. it was not aimed at accounting for every recorded 

spike. Second, compared to the NMMs used in DCMs the network model referred to a 

smaller scale than accessible by current brain imaging studies (<1mm2). Third, this model 

used parameter values for the model neurons (such as membrane conductances), which are 

at best good guesses informed by other studies, but way beyond a comprehensive 
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characterization in a single preparation. Finally, the class of models was sufficiently 

restricted so that one could investigate the full posterior distribution. 
Hence, this study demonstrates that large-scale network simulations can be used 

successfully in a Bayesian model comparison (of models within a properly defined class). 

Note that while the employed model certainly lacks many potentially biophysically relevant 

details, it is far more realistic than the NMMs used in DCMs. We argue that the most 

relevant way, in which it goes beyond the NMMs, is not the level of biophysical realisms but 

the fact that it operates the model network in a “balanced” regime. In such a regime, 

recently termed “inhibition stabilized network” (Ozeki et al., 2009) as recurrent excitation 

makes the network unstable in the absence of recurrent inhibition, even small external 

inputs can be amplified via local recurrent connections. The dynamic properties of such 

strong local recurrent connections have not yet been considered in DCMs, which address 

inter-areal networks and use greatly simplified local circuit models. 

4.2 Contextual effects and “lateral inhibition” 

In another series of joint experimental-modeling studies we investigated such inter-areal 
networks, but we focused on the detailed microcircuits of the inter-areal connections. This is 
a key question one needs to deal with when interpreting large-scale brain activations in 
terms of network models. Here, the spatial scales of the connections need to be identified 
(see Angelucci et al. (2002) for the corresponding anatomy of feedback within the visual 
system), but network simulations needs to be conducted in order to predict the 
physiological responses. 
 

 

Fig. 3. Surround suppression in network models and data-model comparison. a) Illustration of 
surround suppression: When the surround of a neuron's classical receptive field is also 
stimulated, then the response is reduced. b) Illustration of a recurrent network model of many 
recurrently coupled orientation hypercolumns in area V1. They receive feedforward inputs 
from the lateral geniculate nucleus (LGN), are interconnected via long-range horizontal 
connections within V1 and reciprocally to another retinotopically organized extra-striate visual 
area (here: area MT). c) Summary of surround suppression data from macaque V1 from two 
experimental conditions (stimulus in the classical receptive field at high, y-axis, and low, x-
axis, contrast). The ellipse indicates the 50% confidence region of the measured surround 
suppression in N=63 cells. The lines show predicted surround suppression of the recurrent 
network model from Schwabe et al. (2006) for increasing strength of the inter-areal feedback 
connections to local inhibitory cells for moderate (dashed) and strong intra-areal (solid) lateral 
inhibition. (Figure 3c is taken from Schwabe et al.(2010), with permission from Elsevier). 
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A prominent phenomenon of interest in visual neuroscience is surround suppression. When 

another stimulus in the surround of a classical receptive field of a neuron is shown, then the 

response is suppressed compared to the stimulation of only the classical receptive field. 

Figure 3a illustrates this for visually responsive neurons tuned to orientation. The concept of 

“lateral inhibition” is usually invoked to explain this surround suppression, i. e. recurrent 

connections between different 1mm2 patches implement a competition via mutual 

suppression. In a modeling study we predicted that feedback from extrastriate areas into V1 

(see Figure 3b for an illustration of the model architecture) may play a major role in 

mediating this “lateral inhibition” (Schwabe et al., 2006a), which in this model is an inter-

areal inhibition. Interestingly, we also predicted that stimuli with a large separation from 

the receptive field of the recorded neuron could even facilitate (and not only suppress) the 

responses when the classical receptive field is stimulated at low contrast. Later we 

confirmed this prediction experimentally (Ichida et al., 2007). These studies show that 

stimulus-driven responses and their modulation can depend on the stimulus properties and 

are mediated by inter-areal connections. Most importantly, such studies could inform the 

stimulus design in brain-imaging experiments (Harrison et al., 2007). While the models of 

the 1mm2 patches of cortex (see Section 4.1) are currently at the limit of the spatial resolution 

accessible to fMRI, the spatially more extended models considered in these studies are in 

principle directly applicable as network models in DCMs, but now with cortical areas 

explicitly modeled as spatially extended patches of cortex. 

In our investigation of inter-areal networks we also performed systematic comparisons 

between model predictions and the experimentally recorded single neuron responses, but 

here we did not apply a Bayesian approach (Schwabe et al., 2010), and this can serve to 

highlight an important distinction to be respected for the comparison of network models, 

namely between the definition of a “noise model” and variability due to true heterogeneity 

of the recorded neurons. Let  Input; y f  denote the functional dependence between a 

sensory input into a neuronal network model, parameterized by , and a mean output y 

predicted by, for example, a NMM. Since the experimental observations x are usually much 

more variable than predicted by such a mean output, one could formulate a noise model, 

such as  x y  with  being additive Gaussian noise, for the observations x, which shall 

account for the observed variability in the data. We have experimentally measured the 

strength of surround suppression of neurons with an oriented stimulus in the classical field 

brought about by stimulation at more distant visual field locations (the “far surround”). A 

summary of the measured surround suppression strengths is shown in Figure 3c in terms of 

the error ellipse (50% confidence) around the estimated mean suppression for two 

experimental conditions (high contrast stimulus in the center, y-axis, vs. low contrast 

stimulus, x-axis). Clearly, the measured suppression strengths are variable, but we assumed 

that this variability is due to the fact that we recorded different types of neurons without 

being able to distinguish them based on the extracellular recordings. For example, it is 

conceivable that some neurons were excitatory while others were inhibitory, some neurons 

may operate in a different local network neighborhood than others, etc. In Schwabe et al. 

(2010) we hypothesized that this variability is due to different strengths of the intra-areal vs. 

inter-areal connections (the model parameter ), and we simulated the network model with 

different parameter values. As we increased, for example, the strength of the feedback 
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connections in the model (to local inhibitory neurons in V1) we predict different strengths of 

surround suppression (see lines in Figure 3c). For certain strengths the predicted 

suppression is within the 50% confidence region while for others it is outside. 
This study shows that one can respect the variability in the data in terms of heterogeneity of 

the underlying microcircuits and still use experimental data with NMM-like network 

models in order to learn something about the actual microcircuits: Here, we found that 

within the class of models we considered the models with stronger feedback projections to 

inhibitory neurons in the model V1 produce quantitatively better matches to the measured 

surround suppression than models with less feedback to these inhibitory neurons; see 

Schwabe et al. (2010) for more details. Of course, stochastic models respecting heterogeneity 

in single cell properties and network connections, or models for large-scale simulations 

could be described with model parameters , which capture such heterogeneity and hence 

would be directly useable within a Bayesian model comparison. 

5. The neuronal basis of the self as a test case 

Multi-scale models will soon enter model-based brain imaging studies. The method of 

DCMs can be extended to include cortical circuit models, which take into account, for 

example, the exquisite balance between excitation and inhibition, or the retinotopy and 

spatial scales of intra- and inter-areal connections. This could also lead to a re-evaluation of 

many already published brain imaging studies, where a “neuronal activation” was 

associated with a certain informally described function. One such discipline, which lacks 

more formalized models suitable for model-based brain imaging, is the emerging field of 

“the neuroscience of the self”. In other words, we argue that addressing the fundamental 

question of how the brain organizes self-related computations is a challenging test case for 

model-based brain imaging with multi-scale models, in particular because of the lack of 

computational models and the need for microcircuits models to ensure a proper 

interpretation of the already available imaging data. 

5.1 Computational modeling of self-related processing 

We argue that investigating self-related processing in the brain in order to determine the 

neuronal basis of the first-person perspective, or “selfhood” (Blanke and Metzinger, 2009), is 

a challenging but do-able test case for model-based brain imaging with multi-scale models. 

Of course, one could ask: Why address such problems, given that we still haven’t resolved 

the circuitry underlying orientation tuning in V1? 

What makes investigating the neuronal basis of the self a challenging test case is that we 
are currently lacking proper computational models for that, but brain-imaging studies 
suggest that certain brain regions and networks (including the so-called default mode 
network) may play an important role. It has been shown experimentally that by using 
incongruent multi-sensory stimulations the apparently hard-wired body scheme and 
body image of a subject can be disturbed as evident in the so-called “rubber hand 
illusion” (Botvinick and Cohen, 1998) or an extension of this to the full body 
(Lenggenhager et al., 2007). By applying computational concepts developed for the visual 
and sensory-motor system, we proposed computational models for such self-related 
processing, which do not at all refer to a “self” but only to (multi)sensory signals relevant 
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for self-related tasks. For example, vestibular signals are likely to be of importance 
(Schwabe and Blanke, 2008) as well as proper multi-sensory integration in sensory-motor 
loops (Schwabe and Blanke, 2007; Kannape et al., 2010). We have conceptualized the sense 
of self as a set of learning and inference algorithms for such self-related sensory signals, in 
particular vestibular signals, which are running on a neuronal “wetware”. Thus, from a 
computational perspective, the processing of self-related (multi)sensory signals may be 
very similar to the processing of, say, visual signals in the visual system. Accordingly, 
such computational theories can be tested in a similar manner, but the main challenge is 
to control the sensory stimulation. Ideally one would like to exert fine-grained control 
over the vestibular stimulations, but in fMRI studies this is only possible via caloric or 
galvanic stimulation, which are far from the stimulation encountered in more natural 
scenarios. Thus, in order to investigate the self via brain imaging, one shall investigate the 
brain activity of whole bodies in action. As of now this is only possible with brain-wide 
intracranial recordings as pursued in, for example, the Neurotycho project 
(http://neurotycho.org), because EEG in behaving human subjects is very noisy. In the 
Neurotycho project, the full-body motions of freely behaving monkeys are also recorded. 
Unfortunately, the vestibular system is widely distributed (Lopez and Blanke, 2011). This 
makes large-scale recordings necessary so that animal studies may be the method of 
choice for the foreseeable future. Initiatives such as the Neurotycho project provide 
valuable data, which can also enter a Bayesian model comparison, where the forward 
models may now also account for the full-body motions (recorded via motion-capture 
technology). Of course, simulating such forward models calls for combining models at 
various scales and coupling them with each other via phenomenological models. 

5.2 The function role of the temporoparietal junction 

Model-based brain imaging with multi-scale models can be performed in a truly data-driven 

manner once the model classes are defined. We have argued that it is already applicable 

even in the absence of a complete physical model for relating, for example, spikes to 

measured EEG activity (given that proper Neuroinformatics tool support is available). Then, 

applying such techniques could help to decipher the computational role and network 

connectivity of those brain areas, where we currently have only a rather limited grasp on 

their role for cognition. One such area is the temporoparietal junction (TPJ). Very briefly, the 

TPJ has been implicated in the theory of mind (Young et al., 2010), mental perspective taking 

and out-of-body experiences (Blanke and Mohr, 2005), and as part of an attention-

management network (Corbetta et al., 2008). Having available formal model-descriptions of 

such theories in computational terms (which is not yet possible as we don’t have a proper 

support for multi-facet modeling), and a proposal for how to transform them into neuronal 

activations would allow for systematically comparing such theories using data. The need to 

formally describe such computational theories becomes evident by inspecting the rather 

descriptive nature of many imaging experiments. As of now, the computational theories 

imported from, for example, research in the visual and sensory-motor system seem to be the 

most promising candidates to explain TPJ activations in computational terms, namely as 

part of a (Bayesian) model a subject is using internally in order to infer the state of another 

person’s mind (Kilner et al., 2007), as part of an attention-management network (Corbetta et 

al., 2008), or simply as a vestibular error signals in imagined (but not actually carried out) 

full-body movements in the case of mental perspective taking. In the case of distributed 
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brain activations and in a still rather exploratory phase of investigating self-related brain 

networks, combining multi-facet modeling and (even phenomenological) multi-scale models 

may be most fruitful. 

6. Conclusion and future research 

In summary, we have emphasized that a Bayesian model comparison is the most systematic 
method to compare different models on the basis of measurements. The explicit use of 
models makes the theory-dependence of observations explicit and emphasizes that within a 
Bayesian model comparison we compare only models within a class (or between classes) of 
models as compared to finding a single “true” model. Our work in modeling orientation 
tuning and surround suppression further emphasize this: The employed models are 
certainly more detailed than the NMMs currently employed in brain-imaging, but they are 
also far too simplistic to account for many biophysical details. Still, our comparison of such 
network models within a class of models for a given data set is a valuable example of a 
systematic model comparison. 
We also argued that multi-scale modeling, combined with multi-facet modeling, will be an 
important method for investigating even rather challenging neuroscientific questions such 
as explaining the neural basis of the self in terms of computational and neuronal models. 
This can be done even in the absence of a complete multi-level model for relating spikes to 
macroscopic data from brain imaging, namely by employing phenomenological models. As 
a consequence, we see the development of supporting Neuroinformatics tools to support the 
data-driven comparison of multi-scale and multi-facet models as an important step for 
future research. 
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