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1. Introduction 

The advantage of modern brain imaging techniques is the ability to non-invasively 

investigate human brain function during mental work. Therefore, most functional 

neuroimaging studies have investigated brain activity evoked by certain types of 

stimulation or tasks. Related brain function is then localized by contrasting task-states, or 

often, with a baseline-state acquired during rest. However, in wakeful human subjects this 

resting condition cannot be associated with neutral brain activity, in part, because there is 

always a relatively high level of neuronal background activity. Thus, the question arises 

whether spontaneous fluctuations of resting brain activity can be dismissed as stochastic 

noise, or whether they contain functionally relevant information. 

In the past decade, numerous studies have investigated brain activity during the resting 

state. Background activity has been shown to fluctuate spontaneously, i.e. unrelated to any 

obvious task, and that these fluctuations are not random. Rather, this spontaneous activity is 

characterized by several distinct pattern of correlated brain activity, so called: “resting state 

networks”. Network activity, usually derived from temporal correlation of neuronal activity 

measured in different brain regions (“functional connectivity”), describes the functional 

relationship between brain regions. Functional connectivity networks have been identified 

by different methods, such as positron emission tomography (PET), optical imaging, 

magneto- and electroencephalography (M/EEG), whereas by far most studies made use of 

functional magnetic resonance imaging (fMRI) data. Traditionally, functional connectivity 

measures rely on correlation analyses, however in recent years the analytic tools for 

describing the functional organization of the brain has increased dramatically. 

This chapter will provide insight into different ways to assess functional connectivity from 
resting-state fMRI data and describe applications of functional connectivity analyses to 
specific scientific questions. We will start with a description of the BOLD-effect, the 
underlying neurophysiological parameter in resting-state fMRI, followed by a résumé of the 
use of BOLD in functional neuroimaging, stating its history from simple "baseline-task-
contrasts" to the nowadays widely-used concept of functional connectivity. In the following 
sub-chapters, we will briefly describe analytic categories as applied to resting-state fMRI 
data, including “seed-based functional connectivity”, “independent component analysis 
(ICA)”, “clustering”, “multivariate pattern analysis (MVPA)”, “graph theory” and 
“centrality”. Finally, we will discuss two specific applications of functional connectivity 
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analyses: (1) investigation of anatomy, and (2) investigation of dynamics using simultaneous 
EEG-fMRI measurements. 

2. History of BOLD in functional neuroimaging, and the beginnings of 
functional connectivity in both task-states and rest 

fMRI is the most widely used imaging technique in modern cognitive neuroscience. It 

allows for non-invasive (albeit indirect) studying of neuronal processes in the brain with 

excellent spatial resolution. While the first functional MRI experiment was performed with 

an exogenous contrast agent (Belliveau et al., 1991), fortunately another method was 

developed using magnetic properties of blood itself, so that such a contrast agent was no 

longer required for functional imaging (Bandettini et al., 1992; Frahm et al., 1992; Kwong et 

al., 1992; Ogawa et al., 1992). The fMRI signal depends on the vascular response to 

functional brain activation and is typically implemented by imaging of the blood 

oxygenation-level dependent (BOLD) contrast. 

2.1 The BOLD-effect 

The use of the BOLD effect for imaging brain activation relies on the fact that changes in 

neuronal activity are associated with changes in energy consumption and cerebral blood 

flow (Roy & Sherrington, 1890; Villringer & Dirnagl, 1995)1. Since changes in oxygen 

consumption and blood flow are associated with changes in haemoglobin oxygenation, the 

latter can also be used as an indirect measure of neuronal activity, assuming that activated 

neuronal circuits have an increased metabolic demand. 

The magnetic susceptibility of blood depends on the magnetic properties of haemoglobin, 
the molecule carrying the oxygen necessary for aerobic cellular metabolism. During brain 
activation, blood focally changes its oxygenation level, which depends on the proportion of 
oxygenated haemoglobin ([oxy-Hb]) and deoxygenated haemoglobin ([deoxy-Hb]). [oxy-
Hb] is a diamagnetic molecule, whereas [deoxy-Hb] is paramagnetic. The presence of 
[deoxy-Hb] causes local field inhomogeneities, which are responsible for a dephasing of the 
local transversal magnetization2, leading to a reduction in the transverse relaxation time T2. 

                                                 
1 Although fMRI is widely used in scientific and clinical approaches, the complex mechanism describing 
the coupling of neuronal activity and metabolic demand ("neurovascular coupling") is not yet fully 
understood. Not only the role of the different mediators dealing with neurovascular coupling is under 
debate, also the formation of the vascular response obtained with fMRI is unclear (Buxton et al. 1998; 
Steinbrink et al. 2006; Villringer & Dirnagl 1995). 
2 In medicine, the MR signal is usually based on the magnetic dipole moment of hydrogen nuclei 
(protons) in water, by far the most abundant nuclei in the human body. In a static magnetic field B0, 
these magnetic dipole moments generate a magnetisation vector ML longitudinal oriented to B0. 
Applying an adequate radio frequency pulse induces an additional magnetic field B1, that flips M into 
the plane perpendicular to B0. According to classical mechanics, this transversal magnetisation vector 
MT starts rotating about the direction of B0, inducing a voltage in a receiver coil proportional to the 
proton density. In the absence of B1, however, the excited magnetic spins will return to equilibrium. 
This relaxation is characterised by (1) a re-growth of ML with the time constant T1, and (2) by a decay of 
MT with the time constant T2. The values of T1 and T2 depend on tissue composition, structure and 
surroundings. The setting of a long echo time TE, that is the time between excitation and read-out, 
produces T2-weighted images, because only tissue with a long T2 decay constant will contribute to the 
signal intensity. 
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As a diamagnetic molecule, [oxy-Hb] does not produce the same dephasing. Thus, changes 
in [deoxy-Hb] can be observed as the BOLD contrast in T2-weighted MR-images, serving as 
an indirect measure of neuronal activity. Since neuronal activation is accompanied by a focal 
increase in oxygenated blood, overshooting the actual metabolic demand, activated brain 
areas are characterised by positive BOLD responses in fMRI measurements. 

2.2 From 'baseline' to 'resting' to 'intrinsic' dynamics 

For functional investigations of the human brain, typically, a task or a stimulus is 
administered to a subject in a block or event-related experimental design and the resulting 
changes in neuronal activity are detected by contrasting a “task-state” and a “control- or 
baseline-state”. The term "baseline-state" thereby cannot be associated with "zero brain 
activity", since even during so called “rest conditions”, there is always some neuronal 
activity (spikes, synaptic activity) associated with a relatively high level of (baseline) 
cerebral blood flow and oxygen consumption (Clarke & Sokoloff, 1999; Sokoloff et al., 1955 
for a review Raichle, 2010). Such task-state contrasts are by far the most used data analysis 
approach in fMRI assuming more or less constant baseline activity to be independent from 
task- or stimulation-evoked activity. 
Given that baseline activity is not zero, the question arises whether spontaneous fluctuations 
of resting brain activity are stochastic (“noise”) and thus can be simply attenuated by 
averaging procedures. Furthermore, it is of relevance whether fluctuations of the baseline 
influence the shape and amplitude of task-evoked activity during the stimulation period. In 
recent years, the issue of “physiological noise” and brain activity during resting states has 
become accessible for investigation. Numerous studies have been published examining 
spontaneous fluctuations of baseline activity (i.e. unrelated to any obvious task) in the low-
frequency range <0.1 Hz (Biswal et al., 1995; Fox et al., 2005). These fluctuations contain 
important function-related information and it has been shown that “resting states” are 
characterized by several distinct patterns of correlated intrinsic brain activity, so called 
“resting state networks”, describing intrinsic functional connectivity (Gusnard & Raichle, 
2001). Resting state activity has been identified by different methods, such as fMRI, PET, 
Optical Imaging, EEG, and MEG, and in several instances simultaneous combinations of 
methods such as EEG/fMRI have been particularly useful. In addition, numerous studies 
have addressed the influence of ongoing activity on behavioural responses and the 
relationship between ongoing activity and evoked activity (Becker et al., 2011; Scheeringa et 
al., 2011; for a review Nierhaus et al., 2009; Sadaghiani et al., 2010).  

2.2.1 Task-state contrasts (evoked brain activity) 

Despite the fact that vascular responses are only indirectly related to changes in brain 

activity and that they develop with time constants of several seconds to the underlying 

neuronal activity, vascular methods, in particular fMRI, have become the most widely used 

method for the assessment of evoked brain activity. Stimuli or tasks are organized either in 

an event-related design, a block design, or a mixture of those two. Data analysis typically 

employs a general linear model of evoked brain activity (Friston et al., 1995). By contrasting 

the “activated state” with the “control state”, changes in brain activity due to task or 

stimulation are visualized. Figure 1 shows a typical fMRI response for a somatosensory 

stimulation paradigm, where subjects received 4-Hz electrical stimulation of the left middle 

finger at amplitude twice of the sensory perception threshold. 
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Alternating stimulation blocks with resting periods allowed for contrasting two activation 
states, revealing a positive BOLD signal change in the contralateral primary 
somatosensory cortex, whereas the secondary somatosensory cortices are bilaterally 
activated (Fig.1A). The time course of the activated region shows a high correlation with 
the stimulation, and the peak of the hemodynamic response occurs with a delay of several 
seconds. This approach of contrasting rest- and task-state assumes fluctuations of baseline 
activity to appear merely stochastic and independent from evoked activity, thus vanishing 
in the averaging process.  
 

 

Fig. 1. Evoked brain activity. BOLD fMRI response on 4 Hz electrical stimulation of the left 
middle finger (adapted from Taskin et al., 2006). Stimulation was applied in blocks of 20 s 
alternating with periods of rest of the same duration. (A) The activation map generated by 
contrasting stimulation- with resting-periods (statistical T-maps, n=6, p<0.05 corrected for 
multiple comparisons). (B) BOLD dynamics as average time course over 30 blocks (red, 
mean+ S.E.M.) of the labelled region in A and stimulation paradigm (blue). 

2.2.2 Resting state (ongoing brain activity) 

The apparent “noise” in the BOLD signal was quite early assessed to have neuronal 

components, however, only in recent years has its investigation become a wide-spread 

research endeavour. Bharat Biswal and colleagues at the Medical College of Wisconsin 

demonstrated in 1995 that low frequency fluctuations of baseline (resting state) fMRI contain 

information about background neuronal activity (Biswal et al., 1995), which was 

subsequently elaborated by other groups (Fox et al., 2005; Greicius et al., 2003). Such 

correlations in the patterns of spontaneous activity specifically within the low-frequency 

band (<0.1 Hz) have given rise to the study of “resting state networks”, an example of which 

is depicted in Figure 2.  

The approach of measuring BOLD signal independent of any task makes the method 
independent of any differences of performance between sessions and/or subjects. Therefore, 
resting-state fMRI can be easily employed in patients with potentially limited ability for 
participation in task paradigms. Indeed it has been successfully applied in many clinical 
populations e.g., with Alzheimer disease (Greicius et al., 2004; Sorg et al., 2007), 
schizophrenia (Calhoun et al., 2009), stroke (van Meer et al., 2010), and different age-groups 
(Madden et al., 2010). 
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Fig. 2. Figure from Smith et al. (2009) depicting similarity between ‘resting-state network’ 
(left) and task-coactivation derived networks (right). 

Many questions remain open regarding the mechanisms underlying the coherence of these 

spatially-distributed, low-frequency fluctuations. However, the rapid employment of these 

techniques by the imaging community over the past decade is due, in part, to both the ease 

of data acquisition and the similarity of results to previous finding using task-induced 

approaches. Since the methods for analysing resting-state activity are not limited to data 

acquired during 'rest', the term 'functional connectivity' has gained popularity, describing 

functional interplay of spatially distinct brain regions. 

3. A brief overview of analytic methods to assess functional connectivity 

Different post-processing techniques can be used for identifying spatial patterns of coherent 

BOLD activity in fMRI data, allowing for interpretation regarding functional connectivity3 

between spatially distributed brain areas. Since the following subchapters will explain only 

very briefly the idea and theoretical presuppositions of each analytic tool, for a more 

detailed description, we refer to a recent review by our group (Margulies et al., 2010). 

3.1 Seed-based functional connectivity 

This technique makes use of correlation from an a priori region-of-interest (ROI) or "seed 
region". In its simplest form, an averaged ROI time series is correlated with the time series of 

                                                 
3 Functional Connectivity is often described in contrast to Effective Connectivity. While the former 
describes different brain regions which are functionally connected, the latter addresses the direction of 
these neuronal interactions. Causality models, such as Dynamic Causal Modelling, Structural Equation 
Modelling or Granger Causality are used to estimate effective connectivity from neuroimaging data. 
Assuming that better prediction is an indication of influence, the common idea is to determine whether 
activity in one brain region can be predicted by the dynamics in other brain regions.  
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all the other voxels in the brain, or with the average time series of several distributed ROIs. 
The resulting matrix of correlation coefficients then can be interpreted as the functional 
connectivity of the selected seed region, where a high correlation coefficient indicates strong 
functional connectivity to the respective area. From such correlation maps, a number of 
different functional networks have been derived, e.g. a motor network, a visual network, the 
default-mode network and others. Seed-based functional connectivity analysis was initially 
applied to resting-state data by Biswal et al. (1995), showing motor cortex functional 
connectivity being similar to motor task activity patterns. Mapping the default-mode 
network - which is implicitly linked to the brains resting state - was much later achieved 
(Greicius et al., 2003). 
Correlation of time series implies quantifying the relation of two signals in the time-domain 
(such as 'covariance' or 'cross-correlation'). Of course, different mathematical methods can 
be used to quantify the relationship between the seed region time series and the time series 
of other voxels or ROIs. While 'coherence' operates equivalently in the frequency-domain 
(Sun et al., 2004), another approach would be to explore the 'phase-spectrum delay' between 
regions (Sun et al., 2005). Thus, the choice of the proper mathematical method, and the 
selection, size and shape of the a priori defined seed region are critical variables for assessing 
functional connectivity with the seed-based method (Van Dijk et al., 2010). 

3.2 Independent Component Analysis (ICA) 

One of the features of resting-state analysis is that there is no stimulation paradigm for 
researchers to be dependent on. Therefore, many data-driven solutions have been employed 
for identification of low-frequency resting state patterns (Beckmann et al., 2005; Fox & 
Raichle, 2007). The most widely used approach is Independent Component Analysis (ICA). 
By using blind source separation techniques4, ICA methods decompose the entire BOLD 
data set into statistically independent components (Hyvärinen & Oja, 2000) without any 
hypothesis paradigms, i.e. prior seed definition is not required any more. Researchers found 
that several separated spatial components could accurately represent specific functional 
networks during resting state. Many neuroimaging studies have demonstrated that ICA is a 
productive tool for investigating resting-state fMRI data. Some widely studied functional 
networks e.g., the default mode network and motor network, show consistency across 
subjects (Damoiseaux et al., 2006; Zuo et al., 2010). ICA has also been successfully applied to 
demonstrate significant differences in connectivity patterns between patients and healthy 
controls (Calhoun et al., 2009; Greicius et al., 2004; Sorg et al., 2007). In addition to 
identifying functionally relevant networks, ICA also enables automatic separation of 
artificial and physiological noise sources from fMRI data (De Martino et al., 2007; Tohka et 
al., 2008). 
Still, two controversial issues should be considered: specifying the number of components 
and selecting those that are functionally meaningful. The number of independent 

                                                 
4 Blind source separation techniques underlie the assumption that the measured signal is a linear 
mixture of independent signals from a number of spatially distributed sources. Decomposition 
algorithms separate multi-channel data into a set of such independent spatial or temporal components. 
Temporal decomposition is widely used in EEG research, generating sources, each given by a time 
course of its activity and a weighting-vector, describing its contribution to the signal recorded in each 
sensor. As fMRI data usually consists of more spatial than temporal data points, spatial decomposition 
is more widely applied. 
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components appropriate to resting-state data is an issue of ongoing debate, and several data 
driven approaches for optimising the selection of this number have been developed 
(Beckmann & Smith, 2004; Li et al., 2007). However, it is worthwhile to consider that due to the 
multiple scales of functional organisation in the brain, determining the number of functionally 
relevant components is also a product of the spatial scale of interest. Thus, even with data 
driven approaches like ICA, certain assumptions about brain organization are still required. 
Selecting components that are of functional relevance is another challenging issue with ICA. 
While automatic rejection of artefact components can be implemented rather easily (through 
assessing the frequency spectrum or high spatial scattering), the most commonly used method 
for identifying functionally relevant components, such as the default-mode network, remains 
visual inspection by an expert—though several automated network selection approaches have 
also been proposed (Greicius et al., 2004; De Martino et al., 2007). 

3.3 Multivariate Pattern Analysis (MVPA) 

In recent years the use of pattern-classification algorithms has gained increasing importance 

in fMRI data analysis (for reviews Haynes & Rees, 2006; Norman et al., 2006). In general, 

these algorithms use specific features of objects to identify classes to which they belong. In 

fMRI data, spatially distributed brain activation or connectivity patterns are used as features 

to classify different brain or cognitive states. Applying this technique requires in the 

beginning a training of the classification algorithm with the features and the prespecified 

classes. Thereby a subset of the data (training-set) must be used to attune the classifier on 

the relationship between features and classes, before the rest of the data (testing-set) can be 

used to verify the classifiers capability for new/unknown data. 

Feature selection and the choice of a proper classifier are critical issues to achieve good results. 
While mathematical methods allow for a data driven, automated selection of discriminative 
features, a manual selection method can be beneficial for designing application specific 
features. For pattern classification, usually supervised5 machine learning algorithms, such as 
support vector machines (SVM), neural networks, or linear discriminant analysis (LDA), are 
used. Knowledge about the relationship between features and classes (i.e. a linear or non-
linear relation is assumed) should be taken into account for classifier selection. 
Revealing disease-related differences in resting-state functional connectivity, MVPA has 

been successfully used for disease-state prediction, discriminating patients and healthy 

controls (Craddock et al., 2009; Shen et al., 2010; Zhu et al., 2008). 

3.4 Clustering 

Similar to MVPA, clustering is a family of mathematical techniques that can be applied to 

fMRI data to search for characteristic patterns. However, clustering algorithms tend to find 

patterns without specific knowledge about classes. This means that data is partitioned 

(classified) into subsets (clusters) in an unsupervised manner, such that observations 

assigned to the same cluster are similar. Different clustering algorithms6 have been applied 

                                                 
5 Unsupervised algorithms, such as clustering, tend to find pattern without prior knowledge about the 
desired classes, inevitably increasing uncertainty of the whole procedure. 
6 Different clustering approaches are e.g. 'hierarchical clustering', 'partitional clustering', 'spectral 
clustering' or 'non-metric clustering', and the development and improvement of clustering methods is 
an intense research field (Margulies et al., 2010). 
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to fMRI data in several studies deriving clusters of voxels or regions that represent known 

functional or anatomical subdivisions in the brain (Bellec et al., 2010; van den Heuvel et al., 

2008; Salvador et al., 2005). Another approach is division of the data into functional units by 

clustering voxels that have similar pattern of functional connectivity (Cohen et al., 2008). 

Although a model-free approach (in this sense similar to ICA) which finds specific pattern 
without prior assumptions (as e.g. seed selection in model based approaches), clustering still 
involves human judgement. Usually, the user has to define a number of clusters in which 
the data should be partitioned, and the clustering results need comparison with known 
functional networks. 

3.5 Graph theory 

Characterising aspects of network structure is a common mathematical problem in which 
graphs represent mathematical structures describing pairwise relations between objects in 
a certain network. A graph consists of a collection of vertices or nodes, and a collection of 
edges connecting pairs of vertices. A path in a graph is a sequence of vertices which are 
connected by edges, and the distance between two vertices is the shortest path connecting 
them. The degree of a vertex is the number of terminating edges. Vertices with very high 
degrees are termed hubs. Translated to fMRI data, a voxel or ROI constitute a vertex and 
their connections are represented by edges. Thus, the theoretical framework of graph 
theory can be used to analyse brain networks obtained from imaging data (for a review 
see Bullmore & Sporns, 2009). Given a functional connectivity map, a graph 
representation can be derived either by assigning an edge if the correlation between two 
vertices exceeds a certain threshold, or the correlation coefficients themselves can be used 
to weight each edge. 
Numerous tools can be used for characterising such network organisation, which can be 

conceptually divided into 'local' measures (characterising vertices individually) and 'global' 

measures (characterising the whole graph). The latter is e.g. realised by the degree 

distribution P(k), that represents the probability that a randomly chosen vertex has the 

degree k (Achard et al., 2006; Eguíluz et al., 2005; Nakamura et al., 2009). It also offers 

information about the number of hubs in a graph - obviously regions of special interest for 

connectivity analyses (Buckner et al., 2009). The ability to separate a network into clusters 

with high internal connectivity is described by modularity, whereas the degree of integration 

of a graph can be described by the average path length. Combining these measures brings up 

the fundamental approach of the brain being characterised as a small-world network, 

supporting both modular processing of information by high clustering and distributed 

information processing via short wiring distances (Bassett & Bullmore, 2006).  

3.6 Centrality 

One of the graph-based approaches is the centrality measure. The centrality of a node within 

a network is an estimation of the relative importance of that node within a network. 

Eigenvector centrality mapping (ECM) was recently implemented to estimate the centrality 
of human brain regions with fMRI data (Lohmann et al., 2010). In their study, the linear 
correlation was proposed to generate a network of every voxel within the entire brain. Then 
centrality of each voxel was estimated within its own brain network. They found that some 
brain regions, e.g. precuneus, cerebellum, showed higher centrality than other brain regions 
during resting state scan. In addition, by comparing centrality between a hungry and sated 
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condition, the results showed that the precuneus has higher centrality in a hungry state than 
in a sated state. 
The ECM analysis is a data-driven method and therefore it is an appropriate tool for data 
analysis of “resting-state” studies. There are only few studies on centrality of brain regions 
but if validity is confirmed, centrality measures will probably be of wide interest for many 
studies on the human brain in experimental and clinical settings. 

4. Applications of functional connectivity analyses to specific scientific 
questions 

As we have just described, functional connectivity provides a means of investigating 
underlying organization of functional systems in the brain. While each of these 
methodologies allows for the description of specific aspects of network structure, 
interaction, and organization, the research question we are now stuck with is how to 
meaningfully apply such techniques. We will here describe two main avenues of research, 
broadly categorized by anatomical and dynamical lines of investigation. More specifically, 
anatomical questions will relate to spatial aspects of brain organization, how regions 
connect to one another, and how those patterns differ between mental states, or between 
patients and healthy control populations. Dynamical aspects address the interactions in time 
between brain regions, and can likewise be evaluated for the aforementioned categorical 
differences. We consider the anatomical/dynamical distinction valuable because each set of 
research questions brackets a different set of analytic tools. For instance, in evaluating 
neuroanatomy, the relation between two regions can be quantified using a variety of 
correlation-based metrics, however, the aim of such analyses lies predominantly in the 
resulting spatial maps.  

4.1.1 Investigation of anatomy 

Brain mapping is mostly based on anatomical structures, e.g., Brodmann areas. Numerous 
schemas have been proposed over the past century for describing subdivisions in various 
areas of the cortex and subcortical regions. Among them, cytoarchitectonics, the mapping of 
the cellular structure within the cortical layers, has maintained popularity as a method for 
describing cortical areas within the functional neuroimaging literature. However, 
cytoarchitectonic mapping has the disadvantage of only being discernable using histological 
techniques, making it difficult to subsequently conduct functional imaging studies on the 
same research subjects. Function-based brain mapping is strongly demanded because of the 
value of precisely localizing functional areas in the brain. Intrinsic functional connectivity 
approaches, a synonym of resting-state functional connectivity, however, take advantage of 
a primary characteristic of the brain: namely, its connectivity. Connectivity has previously 
been applied extensively in the macaque monkey using axonal labelling tract-tracing 
techniques. The success of this approach in the macaque suggests that a non-invasive 
approach in humans also holds great promise. 
In humans, resting-state functional connectivity has been successfully used to map divisions 
with complex structures such as the anterior cingulate (Margulies et al., 2007), precuneus 
(Margulies et al., 2009), striatum (Di Martino et al., 2008), lateral parietal lobule (Cohen et al., 
2008; Mars et al., 2011; Nelson et al., 2010), motor cortex (Cauda et al., 2010; van den Heuvel 
& Hulshoff Pol, 2010), to name a few examples. In addition, functional connectivity has been 
demonstrated to map closely to anatomical connectivity methods, such as diffusion tensor 
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imaging (DTI) tractography (Greicius et al., 2009; Skudlarski et al., 2008) and tract tracing 
studies in the macaque monkey (Margulies et al., 2009; Mars et al., 2011; Vincent et al., 2007).  
Therefore, several studies have begun to use functional networks to find functional areas 
within some anatomical brain regions. For instance, precuneus has been found to show 
similar sub-regions distribution in human and monkey (Margulies et al., 2009). In addition, 
supplementary motor area has been demonstrated to be organized into two functional 
anterior-posterior structures based on their respective functional networks (Kim et al., 2010), 
and a lateral-medial structure has been found in anterior bank of central gyrus (Long et al., 
2010). These findings strongly suggest that functional network is a useful approach to 
delineating functionally unique brain regions. Underlying the strength of this approach is 
the hypothesis that differential functional connectivity is associated with differentiable 
functional roles. 

4.1.2 Methods for investigating neuroanatomy 

As previously described, the seed-based correlation approach creates a spatial map for an 
individual seed. These spatial maps can then be used as features to distinguish seed regions 
from one another. This can be done through both visual inspection, direct contrasts of the 
respective functional connectivity maps, and also through computationally based clustering 
techniques (e.g., Cohen et al., 2008; Kelly et al., 2010)  
As the seed-based functional connectivity approach aims to describe the connectivity of a 

single region-of-interest, regions can also be delineated as whole networks (or ‘functional 

systems’). The ICA approach previously described aims to pull out whole networks 

simultaneously using a multivariate approach. The primary advantage of this approach is 

that it can describe independent systems without a priori hypotheses about the spatial 

location of such systems. Notable early examples of this approach aimed to characterize the 

number of unique “resting-state networks” throughout the brain (Beckmann et al., 2005; 

Damoiseaux et al., 2006; De Luca et al., 2006; Smith et al., 2009). Discriminating the 

appropriate number of networks is still a challenge to the community, as the number of 

networks derived using ICA requires a priori assumptions. However, this data-driven 

approach also offers the advantage of not requiring prior assumptions about the location of 

networks. 

4.2.1 Investigation of dynamics: simultaneous EEG-fMRI 

Although fMRI is widely used in clinical and scientific approaches, many fundamental 
questions are still unknown; most notably, the precise relationship to the underlying 
neuronal activity. Despite significant progress in understanding this relationship (Lauritzen 
& Gold, 2003; Logothetis et al., 2001; Shibasaki, 2008), based on BOLD signal alone, the 
underlying neuronal activity cannot be recovered unambiguously (“Inverse Problem of 
fMRI”). This is not only due to the poor temporal resolution of the vascular response but 
also due to the fact that different types of neuronal (and non-neuronal) events such as 
excitatory/inhibitory postsynaptic potentials (EPSP/IPSP), action potentials, glia-activity, 
etc., are being translated into only a one-dimensional variable of “more or less" BOLD 
signal. Additional sources of information are frequently needed for further clarification of 
the underlying processes in the respective brain areas. Particularly, the combination of fMRI 
with electrophysiological methods such as EEG may be useful for this purpose. 
Simultaneous EEG-fMRI approaches allow for investigation of the link between changes in 
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EEG patterns and changes in the vascular signal. For functional connectivity studies, 
investigating intrinsic brain activity at rest, the EEG signal then can be used as independent 
variable, classifying brain states in the absence of any stimulation or task paradigm. 
Of special interest for the investigation of intrinsic brain activity is spectral analysis of the 
ongoing EEG. Many perceptual and cognitive processes emerge from recurrent network 
interactions, which are induced by, but not necessarily phased-locked to external events. 
Analysis of event-related potentials (ERP)7 excludes these non-phase-locked signal 
components from investigation. Different background rhythms in a large range of frequency 
bands have been described, not only recorded during 'rest', but also with relation to various 
cognitive states, mental activity, and showing specific temporal pattern following external 
events (for a review see Nierhaus et al., 2009). Since different sensory networks were found 
to exhibit distinct background rhythms8, resting rhythmic activity denotes a network 
specific attribute, describing network activity from a different angle. Thus, investigating the 
relationship of spectral EEG phenomena and functional connectivity maps derived from 
fMRI data is an obvious and promising challenge. 

4.2.2 Associating EEG rhythms and resting-state networks 

Simultaneous EEG-fMRI measurements have been applied to investigate the relationship of 

electrophysiological background rhythms and BOLD signal fluctuations (for reviews see 

Laufs 2008; Ritter & Villringer 2006). Most of these studies show an inverse correlation of the 

background rhythm strength with the spontaneous BOLD signal fluctuations in the cortical 

sensory area generating the respective rhythm. However, positive correlations between 

subcortical, i.e., thalamic BOLD signals and occipital EEG alpha power have also been 

reported. Investigation of stimulus driven responses revealed a close coupling between 

gamma-band (40-100 Hz) activity and BOLD signal of sensory cortical regions, 

demonstrated using intracranial recordings in human (Lachaux et al., 2007; Mukamel et al., 

2005) and in animals (Logothetis et al., 2001; Niessing et al., 2005). Since gamma-band 

activity is associated with sensory information processing, further investigation with 

simultaneous EEG-fMRI should allow for a better understanding of resting-state network 

behaviour during mental work. First attempts of such investigations were recently 

performed using direct intracerebral recordings in the default-mode network (Jerbi et al., 

2010). Execution of attention-demanding tasks were shown to suppress gamma power 

accompanied by BOLD deactivation. 

The default-mode network (DMN) has also been investigated in several EEG-fMRI studies. 
Using the power of spontaneous EEG oscillations, a positive correlation of the beta frequency 
band with the DMN was shown (Laufs et al., 2003). The DMN activity has also been found 
to be negatively correlated to frontal theta power derived using ICA on the EEG data in a 

                                                 
7 Repeated measures of external events with subsequent averaging enables investigation of the isolated 
neural response phase-locked to the event.  
8 Most prominent is the occipital alpha rhythm with a frequency between 8-12 Hz. Since occipital alpha 
is strongest in the absence of visual input, it is referred to as the "idle rhythm" of the visual system. Such 
inverse relationship of rhythm strength and sensory input is also found for pericentral rhythms, with 
peak frequencies around 12 Hz (mu) and 20 Hz (beta), which are known to desynchronise following 
motor activation or somatosensory stimulation. Oscillations with a frequency of 3-8 Hz are termed theta, 
which are most prominent in hippocampus and frontal cortex and are associated with the neural basis 
of learning and memory. Delta oscillations (1-3 Hz) are a characteristic feature of deeper sleep stages. 

www.intechopen.com



 
Neuroimaging – Methods 

 

40

resting state experiment (Scheeringa et al., 2008) and, in a second study, even at the single 
trial level increases of frontal theta power induced by a working memory task were 
correlated to decreased DMN activity (Scheeringa et al., 2009). 
Mantini et al. used ICA to identify resting-state networks in fMRI data and then correlated 
the time courses of these networks with the power of five specific EEG frequency bands 
(delta, theta, alpha, beta, gamma), averaged across the entire scalp (Mantini et al., 2007). Four of 
six networks, including a dorsal attention network and a somatomotor network, showed 
exclusively negative correlations with EEG frequency band power. Again, the DMN showed 
a positive correlation with beta activity, and here additionally with alpha power. Also 
gamma power was found to be positively correlated with one network, well in line with the 
previous described invasive findings. Improved results could be expected from EEG source 
separation with direct correlation of source and network activity. 
A common way to integrate EEG data into fMRI analyses is to take EEG frequency band 
power as a regressor in a general linear model, thus, investigating how well fMRI data is 
explained by certain features of the EEG. Vice versa it would be interesting if the EEG data 
can be explained by fMRI activity pattern. To address this question, MVPA might be a 
helpful technique: brain activation or connectivity pattern could be used as features to train 
a classifier, which capability then would be verified using EEG data. 
Also "centrality mapping" could be a promising approach for analysing simultaneous 
acquired EEG-fMRI data. Therefor, the average time course of regions indicated by high 
centrality must be correlated with the time course of frequency band power of EEG source 
activity. The results would show whether regions of high "hubness" are also involved in 
EEG rhythm generation. 

5. Conclusion  

In the past decades the view on background fluctuations in brain activity, which were 
previously assumed to reflect (stochastic) “physiological noise”, has changed dramatically: 
Spontaneous fluctuations have been identified to contain important information reflecting 
brain function. Specifically, it has been shown that the brain ‘at rest' is characterised by 
several distinct pattern of correlated brain activity – resting state networks – and that 
changes in network activity can be associated with cognitive states, mental activity and 
pathophysiological conditions. 
Numerous techniques can be applied to fMRI data for investigating functional connectivity, 
each with different weaknesses and strengths, depending on the experimental design and 
the kind of research question/hypothesis. Although described very briefly, we endeavoured 
to provide insight into each of the various options for investigating functional brain 
organisation with fMRI data. Further, two main research fields were broadly categorized by 
anatomical and dynamical lines of investigation, covering meaningful applications of the 
aforementioned analysis techniques. 
The use of functional connectivity to investigate spatial aspects of brain organization is 
based on the assumption that brain areas with different functional roles exhibit differential 
functional connectivity pattern. Parcellating brain regions by their functional network 
patterns allows for a more precise localisation of brain function and there is no doubt that a 
well-investigated function-based human mapping will be created in future studies. 
Investigating dynamical changes using EEG and fMRI indicate that EEG background 
rhythms and fMRI-based resting state measures are closely related, revealing network 
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specific attributes from different angles. Furthermore, simultaneous EEG/fMRI provides 
insights into the spatio-temporal organization of intrinsic signal fluctuations, whether 
measured at rest or during stimulation or task. Thereby, the interplay of these rhythmic 
fluctuations measured with different modalities at rest can be analysed in a straightforward 
manner. However, tasks involving perception and cognition are accompanied by fast 
changes in EEG signals, and it is still a major challenge for cognitive neuroscience to link 
these transient EEG features to measures of functional connectivity. A proper combination 
of the aforementioned analytic tools will help to further understand this link with task-
based approaches, and will enable future investigation of the interaction between ongoing 
dynamical changes and transient activations evoked by task or stimulation. 
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well established and newly emerging techniques. Taken together, these chapters provide a broad sense of

how the limits of what is achievable with neuroimaging methods are being stretched.
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