
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



12 

Therapeutic Targets in Colorectal Cancer 

Rajunor Ettarh1, Alvise Calamai2 and Anthony Cullen2 
1Department of Structural and Cellular Biology, 

Tulane University School of Medicine, New Orleans,  
2School of Medicine and Medical Sciences, University College, Dublin,  

1USA 
2Ireland 

1. Introduction  

Colon cancer is common worldwide: nearly a million people develop the disease every year 
and in the United States, colorectal cancer ranks third for frequency of occurrence and 
mortality in both men and women, with projected estimates for 2011 for occurrence and 
mortality put respectively at approximately 140,000 and 49,000 (American Cancer Society, 
2011; Jemal et al, 2005). The projection for total deaths from all cancers in 2010 was 569,490 
(Aliperti et al, 2011). 
Significant progress in understanding colon cancer has produced a wealth of information 

that has aided improvements in aspects of diagnosis and disease management, contributing 

in the process to reduced mortality rates. The mechanisms that facilitate colorectal 

carcinogenesis and sustain progression and metastatic spread have been extensively 

investigated. The cause of colorectal cancer is multi-factorial. Notwithstanding the various 

contributing elements to the disease, the primary manifestation of colorectal carcinoma is 

the relentless and uncontrolled proliferation of cells and tissues in the intestinal mucosal 

epithelium. This pattern of abnormal proliferation is a disruption of the normal balance 

between new cell production by the epithelial cells in the mucosal crypts, and the release 

and loss of epithelial cells into the intestinal lumen i.e. cell-producing proliferation is 

normally finely and properly counter-balanced by regulated apoptotic and physical cell loss 

(Raz, 2002). 
Given the multistep, multifactor origins of colorectal cancer, the rationale for targeted 
therapies and the identification of therapeutic targets is that the disease can be (a) prevented 
prior to initiation (b) obstructed in its progression by blocking or inhibiting mechanisms that 
sustain progression and facilitate metastasis (c) reversed. The list of potential targets include 
microbes and bacteria that facilitate tumor initiation, molecular targets such as adenomatous 
polyposis coli (APC), and cancer stem cells (CSCs) where targeted destruction is thought to 
be central to preventing metastatic tumor spread. 
As with all cancers, finding and delivering therapeutic targets in colorectal cancer is based 
on the premise that there is one originating cell type (van der Flier & Clevers, 2009). If this 
population of mutant originating cells is eliminated, the ability for new initiation, 
progression and distant seeding of tumor cells should be impaired and eventually 
abolished. Several therapeutic approaches have shown promising results in experimental 
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studies. However, this chapter will focus largely on molecular targets in Wnt signaling, the 
nuclear receptor peroxisome proliferator-activated receptor (PPAR), and cancer stem cells 
(also known as cancer initiating cells).  

2. Colonic epithelial cell renewal 

The colon is the distal part of the intestinal tract and is lined internally by a simple layer of 
columnar epithelial cells (colonocytes) that send tube-like extensions called crypts into the 
mucosal layer of the intestinal wall. The crypts provide a conducive environment for the 
regulation and renewal of the epithelial covering of the colonic mucosa.  
The epithelial cells in the crypt divide continuously and rapidly, achieving a turnover rate of 
epithelial renewal of between 5-6 days in mammals, with much shorter cell kinetic data 
reported for rodents (Di Garbo et al, 2010; Hall et al, 1994; Heath, 1996; Giles et al, 2003; Li et 
al, 1994; Loeffler et al, 1986; Potten & Loeffler, 1990; Okamoto & Watanabe, 2004; Wright & 
Alison, 1984). In the small intestine, between 8-9 cells are produced by each crypt epithelium 
every hour in mice; 2-3 dividing cells per crypt support cell production in the proximal 
intestine while up to 5 dividing cells are required to maintain cell production in the distal 
intestine (McGarvey et al, 2007a, 2007b). The renewal mechanism is sustained by a 
hierarchical arrangement of epithelial cells within the crypts, exemplified by the model 
described by Tomlinson and Bodmer (1995), with stem cells thought to reside in the lower 
part of the crypts, while differentiated cells populate the upper part of the crypt. By dividing 
and supplying transit (semi-differentiated) cells that migrate up the crypts, the stem cells are 
capable of and responsible for producing the various cell types that are found in the colonic 
epithelium. Differentiated cells at the top of the crypt and colonic mucosal surface 
eventually undergo spontaneous apoptosis and are released into the intestinal lumen (Fig 1).  
 

 

Fig. 1. Schematic diagram of colonic crypt, illustrating the three zones and cell categories 
that constitute the kinetic framework for cell production and regeneration. 
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The maintenance of functional and structural integrity and viability of the enteric mucosal 
epithelium depends on the preservation of the crypt cell renewing and emigration 
mechanisms for repopulating the continuously shedding epithelial cell cover (McGarvey 
et al, 2007a, 2007b). Several models for investigating the dynamics of colon cell regulation 
have been described (Boman et al, 2001; Hardy & Stark, 2002; Lander, 2009; Michor et al, 
2004; Paulus et al, 1992; van Leeuwen et al, 2006; Wodarz, 2007). Many of these models 
have been employed in studies of the mechanisms that underlie normal colonic epithelial 
cell regulation and regeneration, as well as the dysregulated proliferation in colorectal 
cancer. 

3. Apoptosis 

All of the new cells that are produced by proliferation of the cells in the stem cell 
compartment of the crypt, and numerically amplified in the semi-differentiated 
compartment, are distributed to the colonic mucosal epithelium to provide functionally 
important roles in absorption and secretion as well as providing a selectively permeable 
surface cover (Hall et al, 1994). The supply of new cells towards the upper crypt and surface 
epithelium is designed to satisfy the losses caused by cell injury, loss and programmed 
death (apoptosis). Surface cover cells are therefore removed or shed by processes that are as 
controlled and as balanced as the crypt-mediated cell renewal mechanism, and involves a 
cessation of proliferative processes in conjunction with the initiation of disposal and cell loss 
pathways (Leblond, 1964; Wright & Alison, 1984; Hall et al, 1994). Because the enteric 
epithelium is associated with underlying connective tissue fibroblasts, the accompanying 
fluxes in these cells are also correspondingly regulated in a controlled manner for 
proliferation and for cell loss (Marsh & Trier, 1974a, 1974b; Parker et al, 1974; Pascal et al, 
1968a, 1968b). Together, the careful balance of cell production and cell loss maintains 
homeostasis in the colonic epithelium. Apoptosis does not occur randomly, rather it is seen 
towards the distal end of the cell migration route up the crypt (Hall et al, 1994). In colon 
cancer, proliferation is elevated and apoptosis is dysregulated, making the restoration of 
apoptosis an attractive proposition for therapeutic control of colon cancer growth (Evan & 
Vousden, 2001, Johnstone et al, 2002). 
A number of cyclooxygenase (COX) inhibitors induce apoptosis by activating mechanisms 
that are either upstream (via the lipid metabolite 13-S-hydroxyoctadecadienoic acid) or 
downstream (via 14-3-3ǆ proteins) of the nuclear hormone receptor PPAR∂ (Liou et al, 2007; 
Shureiqi et al, 2003), indicating that the pro-apoptotic effect of COX inhibitors on cancer cells 
is dependent on down-regulation of PPAR∂. In APC min mice, short-term treatment with 
nitric-oxide-donating aspirin (NO-ASA) induces apoptosis in differentiated intestinal 
epithelial cells while prolonged treatment with sulindac reverses the anti-apoptotic effect of 
APC (Mahmoud et al, 1998; Ouyang et al, 2006). In contrast, celecoxib administration 
produces no effect on apoptosis (Williams et al, 2000).  
Other agents that have been shown to reduce colorectal cancer growth in vitro include 
CDDO-Me, an oleanane synthetic triterpenoid that achieves its apoptotic effect partly 
through the generation of reactive oxygen (ROS) and the activation of procaspases (Gao et 
al, 2011), green tea polyphenols that achieve their apoptotic effect through the induction of 
caspases (Oz & Ebersole, 2010), and tocotrienol, a member of the vitamin E family of 
compounds that induces morphological changes similar to apoptosis (paraptosis) and an 
accompanying reduction in Wnt signaling and its down-stream genes (Zhang et al, 2011). 
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4. Wnt and colorectal cancer 

One of the primary regulators of epithelial cell proliferation is Wnt signaling (Di Garbo et al, 
2010). This signaling pathway involves the intermediate elements beta catenin, glycogen 
synthase kinase 3 beta (GSK3ǃ), casein kinase I (CKI), axin, adenomatous polyposis coli 
(APC) and T-cell factor/lymphoid enhancer factor (TCF/LEF). Inappropriate activation or 
disruption of Wnt signaling upsets the careful regulatory balance in epithelial kinetics, leads 
to disorderly proliferation, and is an important contributor to the process of colorectal 
carcinogenesis. Wnt signaling helps to control the levels of cytoplasmic beta catenin, 
between pools bound to APC and to the cell adhesion molecule E-cadherin. The APC-bound 
pool of beta catenin is held in a stable complex of axin, GSK3ǃ, CKI and APC that serves to 
regulate its cytoplasmic levels via targeted ubiquitin-mediated proteasomal degradation 
(Kikuchi et al, 2003; Pinto & Clevers, 2005). Wnt ligand signaling via membrane receptor 
proteins triggers a cascade that alters the relationship between the scaffold protein axin and 
GSK3ǃ, interrupts regulated destruction of beta catenin, and leads to accumulation of non-
phosphorylated beta catenin in the cytoplasm that then reaches the nucleus. Translocation of 
beta catenin into the nucleus after binding with TCF/LEF leads to the activation of target 
genes that regulate proliferation, differentiation and apoptosis (Araki et al, 2003; Coghlan et 
al, 2000; DiGarbo et al, 2010; Fagotto et al, 1998; He et al, 1998; Kishida et al, 1999; Shtutman 
et al, 1999; Tetsu & McCormick, 1999; van der Flier & Clevers, 2009; Yamamoto et al, 1999; 
Yanagawa et al, 1995; Yost et al, 1996). Direct binding of TCF to regulatory elements in 
downstream genes have aided identification of target genes and suggest that Wnt-activated 
gene expression shows a gradient-wise concentration of activity in intestinal crypts with the 
highest expression in the bottom of the crypt (Gregorieff et al, 2005). Most of these target 
genes are expressed in normal crypts and in adenomas (van der Flier et al, 2007; van der 
Wetering et al, 2002).  

5. Wnt and COX inhibition 

Colon cancer is associated with dysregulation and overexpression of COX, a key enzyme in 
the biosynthetic conversion of arachidonic acid to eicosanoids (Botting, 2006). Increased 
levels of expression of COX-2 are seen in up to 85% of colorectal adenomas and carcinomas 
(Eberhart et al, 1994; Fujita et al, 1998; Rigas et al, 1993; Sheng et al, 1997).  
COX inhibitors demonstrate an ability to disrupt proliferation in several CRC cell lines. In 

HT29 colorectal adenoma cell lines, suppression of proliferation is evident as early as 48 

hours after treatment with naproxen and piroxicam and at later timepoints with aspirin, 

indomethacin, aspirin and NS398 (Shiff et al, 1996; Shureiqi et al, 2000). But in some studies, 

naproxen and salicylic acid showed no effect on proliferation in the same cell lines pointing 

to differing potencies for inhibition of COX as well as effects on growth and apoptosis 

(Piazza et al, 1997). Although anti-proliferative effects have been reported in studies using 

HCA7, HT115 and SW620 cell lines which all express COX, the non-COX expressing cell line 

HT116 also shows reduced growth when treated with celecoxib for 72 hours (Shureiqi et al, 

2003). Most of the evidence allows the conclusion that the anti-proliferative effects of COX 

inhibitors on colon cancer cell lines are not related to COX expression or activity. 
When COX inhibitors are administered to APC min mice, initiation and progression of 
intestinal and colonic polyps is inhibited and polyp load is reduced (Jacoby et al, 1996, 2000; 
Kohno et al, 2005; Mahmoud et al, 1998, Moorghen et al, 1988, 1998; Narisawa et al, 1983; 
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Rao et al, 1995, 2009; Reddy et al, 1993). Prevention of tumorigenesis or tumor load 
reduction reflects either decreased cell proliferation or increased cell death but findings 
from animal studies are inconsistent (Table 1). For example, celecoxib treatment reduces 
tumor numbers and inhibits cell proliferation but data from studies using various sulindac 
preparations point to a variability that may be rodent species dependent (Jacoby et al, 2000; 
Mahmoud et al, 1998; Moorghen et al, 1988, 1998; Rao et al 1995, 2009).  
 

Model Inhibitor Dose & duration (wks) Inhibition effect Reference 

APC      

mouse sulindac 160ppm 10 none Shiff et al 1996 

mouse  sulindac S2 20mg/kg 11 none Swamy et al 2006 

mouse celecoxib 1500ppm 6 tumor number Han et al 2008 

      
DMH     

mouse sulindac 5mg/kg 24 tumorigenesis Shureiqi et al 2000 

mouse sulindac 5mg/kg 18 n/a Kim et al 2009 

      
AOM     

mouse nimesulide 0.04%w/w 14 n/a Shureiqi et al 2003 

rat celecoxib 300ppm 46 n/a Guo et al 2009 

rat aspirin 200-400ppm 52 tumorigenesis Piazza et al 1997 

      

NMNU     

rat indomethacin 10ppm 1-30 tumorigenesis Hanif et al 1996 

      

Table 1. Effect of COX inhibitors on initiation and progression of experimental colon cancer 
in vivo. S2 = sulfide, NMNU = n-methyl-N-nitrosourea, AOM = azoxymethane, DMH = 1,2-
dimethylhydrazine, APC = adenomatous polyposis coli, n/a = not measured 

Some of the inconsistency in findings from animal studies is reflected in the results from 
clinical investigations in patients. Treatment with aspirin and celecoxib shows beneficial 
prevention of colorectal cancer in patients, and treatment with 150mg sulindac twice daily 
for nine months reduces number and size of colorectal adenomas. However, treatment with 
standard sulindac doses (25-150 mg twice daily) for 48 months did not prevent adenomas in 
patients (Giardiello et al, 1993, 2002; Giovannucci et al, 1994; Lanas & Fernandez, 2009; Thun 
et al, 1991). 

6. PPAR and COX inhibition 

Peroxisome proliferator-activated receptors (PPAR) are part of the nuclear hormone 
receptor superfamily. While PPARǂ and PPARǄ have been shown to be involved in various 
aspects of dietary lipid and glucose metabolism, PPAR∂ is implicated in the control of cell 
proliferation, differentiation and colorectal carcinogenesis (Desvergne & Wahil, 1999; 
Michalik et al, 2003; Wang & Dubois, 2010). Ligand activation of PPAR∂ is associated with 
suppressed induction of colon cancer (genetic and chemical treatment models) in mice via 
mechanisms that are linked to colonocyte differentiation and apoptosis (Harman et al, 2004; 
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Marin et al, 2006). Conversely, inactivation of PPAR∂ in APC-min mice enhances 
predisposition to multiple intestinal and colorectal polyps (Harman et al, 2004; Reed et al, 
2004). Such evidence suggests that PPAR∂ attenuates colon cancer. However, Park and 
colleagues found a reduction in the ability of PPAR∂-/-(null) cells to form tumors in nude 
mice and they concluded that PPAR∂ might function to assist the tumor-suppressing 
function of adenomatous polyposis coli (APC) protein (Park et al, 2001).  
Despite significant insights into the role of PPAR∂ in colorectal cancer, the physiological role of 
PPAR∂ in epithelia is still not completely understood. The unresolved nature of the available 
data has not prevented studies that have explored the possibility of targeting PPAR∂ 
therapeutically in colorectal cancer. Prostacyclin I2 can act as a natural ligand for PPAR∂ 
(Gupta et al, 2000), and because COX-2 inhibitors can suppress carcinogenesis and reduce 
intestinal polyposis (Hollingshead et al, 2008; Jacoby et al, 1996; Mahmoud et al, 1998), a 
number of studies examined the use of COX inhibtion to influence PPAR∂ activity. Sulindac 
and indomethacin inhibit colorectal carcinogenesis in vitro by rapidly downregulating 
transcriptional activity of PPAR∂ via disruption of DNA binding to PPAR∂-response elements 
(He et al, 1999). A similar effect on PPAR∂ is also observed following administration of 
sulindac and celecoxib but this is preceded by induction of the enzyme 15-lipoxygenase-1 
(Shureiqi et al, 2003). Administration of nitric-oxide-donating aspirin reduces PPAR∂ 
expression and intestinal polyp numbers in mice but neither nimesulide nor GW0742 (a 
PPAR∂ ligand) has an effect on PPAR∂ mRNA levels, despite the fact that both agents reduce 
intestinal polyp numbers (Gupta et al, 2004; Hollingshead et al, 2008; Kohno et al, 2005). 
COX-2 inhibitors and PPAR∂ ligands can separately attenuate cancer growth, however 
combinatorial protocols have so far failed to produce potentiated inhibition of colon cancer 
indicating that COX-inhibitory and PPAR∂ pathways are mechanistically separate 
(Hollingshead et al, 2008). In addition, concurrent expression of PPAR∂ and COX-2 in 
colorectal tumors has poor prognostic implications for patients (Yoshinaga et al, 2011). 
Ligand activation of PPARǄ is also anti-neoplastic in several tissues, but the data regarding 
its role in colorectal cancer is just as conflicting as the data for PPAR∂. PPARǄ activation 
inhibits colon cancer cell growth in vitro whereas a mutation-dependent pro-tumorigenic 
effect has been reported in vivo (Girnun et al, 2002; Yoshizumi et al, 2004). The 
mechanistically interrelated and inter-dependent nature of colorectal cancer is illustrated by 
the finding that PPARǄ agonists induce apoptosis by suppressing activation of NFκB and 
GSK3ǃ (Ban et al, 2010). Other investigators have shown that PPARǄ induces apoptosis via 
inactivation of survivin and activation of caspase-3 in colorectal cancer cell lines and were 
able to inhibit PPARǄ-ligand induced apoptosis by activating PPAR∂ (Wang et al, 2011). 

7. Clones and stem cells 

The crypt structure of the colonic epithelium is maintained by the putative presence of 
pluripotent intestinal crypt stem cells (Schmidt et al, 1988). Initially crypts are polyclonal 
and subsequently become monoclonal. Two kinetic models of the stem-cell-sustained 
intestinal crypt have been described. In the classic model, intestinal stem cells are thought to 
reside in the 4th cell position from the bottom of the crypt (the +4 cell). These stem cells 
supply daughter cells to the proliferative, transit-amplifying zone of the crypt; stem cells can 
be replaced by these daughter cells if necessary (Marshman et al, 2002; Pottten, 1977; Potten 
et al, 1974, 2002). The zone model localizes stem cells to the bottom of the crypt; these cells 
are proposed to be the undifferentiated crypt base columnar (CBC) cells (Bjerknes & Cheng 
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1981a, 1981b, 1999, 2006). On the basis of modelling studies, it is proposed that stem cells 
and crypts can suffer losses and be replaced (Cairnie & Millen, 1975; Nicolas et al, 2007; 
Yatabe et al, 2001).  
Unequivocal stem cell identification has long remained elusive but, using genetic lineage 
tracing experiments, Barker et al (2007) showed that Lgr5, a G-protein-coupled receptor, is 
expressed in CBC cells. The study followed Lgr5-positive daughter cells up intestinal crypts 
and on to the intestinal villous epithelium, where all differentiated epithelial cell types could 
be demonstrated. The ability of Lgr5-positive stem cells in the crypt to give rise to crypt-
villus units appear to be dependent on proximity to CD24+ cells at the bottom of the crypt 
(Sato et al, 2011). Stem cells have also been identified in mammalian epidermal hair follicles 
where they express Lgr6 (Snippert et al, 2010). Deletion of the APC gene in crypt stem cells 
in Lgr5 knock-in mice facilitates intestinal microadenoma growth; deletion of APC in 
transit-amplifying, semi-differentiated crypt cells in Lgr5 knock-in mice significantly 
reduces the growth of intestinal adenomas. Together this suggests that APC loss needs to be 
stem cell specific to propagate unrestrained tumor growth (Barker et al, 2009). The finding 
that single isolated Lgr5-positive stem cells can give rise to self-organizing crypt-villus units 
(Sato et al, 2009) raises the possibility that these cells may be useful in treatment strategies 
that aim to repopulate enteric epithelia. 
There is experimental evidence for several proposed colon cancer stem cell markers 
including CD133, CD44, CD166, the extracellular matrix protein olfactomedin-4 (OLFM4), 
aldehyde dehydrogenase (ALDH1A1), Lgr5, and pleckstrin homology-like domain family A 
member 1 (PHLDA1). Some of these markers are associated with IL6-STAT3-JAK2 signaling 
(Becker et al, 2008; Dalerba et al, 2007; O’Brien et al, 2007; Ricci-Vitani et al, 2007; 
Sakthianandeswaren et al, 2011; Sanders & Majumdar, 2011; Shmelkov et al, 2008; Tsai et al, 
2011; Uchida et al, 2010; van der Flier et al, 2009). 
In contrast to the idea that carcinogenic mutations can occur in any cell, the cancer stem cell 
model (first described in 1997 for hematologic malignancies) proposes that tumor 
transformation, progression and metastatic initiation is driven by the acquisition of 
oncogenic self-renewal properties by tissue stem cells, contributing to differentiation and the 
cellular heterogeneity of tumors (Chen et al, 2011; Sanders & Majumdar, 2011). This has led 
to the idea that conventional cancer therapies that target only proliferating cells in tumors 
may not necessarily be effective against cancer stem cells that mediate metastasis (Abdul 
Khalek et al, 2010, Sanders & Majumdar, 2011; Soltanian & Matin, 2011), and that these 
therapies may therefore be ineffective in producing long-term remissions. CSCs have greater 
DNA repair capacity and expression of ABC transporter genes, both of which contribute to 
relatively higher resistance to chemotherapy and radiation (Bao et al, 2006; Cho & Clarke, 
2008; Hirschmann-Jax et al, 2004; Zhou et al, 2009). GO-Y030, a curcumin analogue has been 
shown to inhibit STAT3 phosphorylation signaling in colon cancer stem cells, offering the 
possibility of targeting STAT3 signaling in colon CSCs (Lin et al, 2011). The clonogenic and 
proliferative properties of CSCs are significantly interrupted by histone deacetylase (HDAC) 
inhibitors and this effect is associated with apoptotic cell death and modified Wnt signalling 
(Sikandar et al 2010). 

8. Conclusion 

1. When applied to colorectal cancer, the concept of hierarchical compartmentalization (as 
described in crypt kinetic models) offers target environments for stemness, proliferation 

www.intechopen.com



 
Colorectal Cancer – From Prevention to Patient Care 

 

236 

and differentiation. Potential targets in each compartment include dividing cells, 
apoptotic mechanisms and cancer stem cells. 

2. Wnt signalling has been targeted for inhibition because of its relationship with 
proliferation. Activity in this pathway is highest in the stem zone which provides the 
source of new cells.  

3. COX inhibitors have variable effects on proliferation that may be related to differing 
potencies, and the evidence suggests that these effects may not be due to any inhibitory 
action by the compounds on COX. Inconsistencies remain in trying to reproduce in 
patients the experimental outcomes on tumor loads seen following treatment with COX 
inhibitors.  

4. A range of compounds, including nutritional and synthetic substances, induce 
apoptosis in colorectal cancer cell lines. Not all COX inhibitors induce apoptosis. 

5. Some COX inhibitors down-regulate PPAR∂, other inhibitors do not. However, 
combination treatments do not produce the expected potentiation effect. The conflicting 
evidence of the roles of PPAR∂ and PPARǄ in colorectal cancer remains unresolved. 

6. Stem cells markers are increasingly being identified and involvement in signalling 
pathways such as IL6-STAT3 point to new targets that may be modulated using 
therapeutic agents or genetic manipulations. 
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