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1. Introduction 

1.1 Etiology of CH (Dyshormonogenesis / Dysgenesis) 

1.1.1 Dyshormonogenesis  

Thyroid dyshormonogenesis results from a defect in any one of the steps involved in the 

biosynthesis of thyroid hormone, from the transport of iodine across the apical membrane to 

its intracellular recycling from mono- and di-iodotyrosines. These defects are inherited as 

autosomal recessive traits and occur at higher frequency in consanguineous families. In 

population-based studies, mutations inactivating the thyroperoxidase gene (TPO)1-4 and the 

dual oxidase-like domains 2 gene (DUOX2; see www.endocrine-abstracts.org/ea/ 

0020/ea0020s14.2.htm) seem to be the most commonly involved. 

1.1.2 Congenital Hypothyroidism from Thyroid Dysgenesis (CHTD) – The most 

frequent form 

Congenital hypothyroidism from thyroid dysgenesis (CHTD) is a common disorder with a 

birth prevalence of 1 case in 4,000 live births 5. CHTD is the consequence of a failure of the 

thyroid to migrate to its anatomical location (anterior part of the neck), which results in 

thyroid ectopy (lingual or sub-lingual) or of a complete absence of thyroid (athyreosis). The 

most common diagnostic category is thyroid ectopy (up to 80%). The majority of CHTD cases 

has no known cause, but is associated with a severe deficiency in thyroid hormones 

(hypothyroidism), which can lead to severe mental retardation if left untreated. Therefore, 

CHTD is detected by biochemical screening at 2 days of life, which enables initiation of thyroid 

hormone therapy during the second week of life. Even with early treatment (on average at 9 

d), developmental delay may still be observed in severe cases (i.e., IQ loss of 10 points)6. 

CHTD is predominantly non-syndromic and sporadic (i.e. 98% of cases are non-familial), 
has a discordance rate of 92% in MZ twins, and has a female and ethnic (i.e., Caucasian) 
predominance 7, 8. Moreover, germinal mutations in thyroid related transcription factors 
NKX2.1, FOXE1, PAX-8, and NKX2.5 have been identified in only 3% of patients with 
sporadic CHTD 9 and linkage analysis excluded these genes in some multiplex families with 
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CHTD 9. Recent works have shown that (i) ectopic thyroids show a differential gene 
expression compared to that of normal thyroids (with enrichment for the Wnt signaling 
pathway)10 and (ii) cases of CHTD are associated with rare CNVs 11. 

1.2 Thyroid embryology  

In all vertebrates, the developing thyroid is first visible as a thickening of the endodermal 

epithelium emerging at the most anterior part of the foregut, named foramen caecum in 

humans. This structure, the median thyroid anlage, is evident by E8-8.5 day in mice, 24 hpf 

in zebrafish and by E20-22 day in humans 12. At this time, primitive thyroid cells already 

have a distinct molecular signature, with co-expression of four transcription factors Hhex, 

Tift1, Pax8 and Foxe1 12. Thereafter, the primitive thyroid moves progressively to reach its 

final location by the seventh week in humans (see Table 1 below for comparison between 

species). 

 

Species Specification Budding Migration Follicle 
formation 

Human 12 E20-22 E24 E25-50 E70 

Mouse 13 E8.5 E10 E10.5-13.5 E15.5 

Zebrafish 14, 15 24 hpf 36-46 hpf 48-55 hpf 55 hpf 

E, embryonic day; hpf, hours post-fertilization. 

Table 1. Timing of key morphogenic events during thyroid development in different species 
(adapted from 13). 

2. Epidemiology of CH 

2.1 Basics 

Permanent primary congenital hypothyroidism is the most common form of congenital 

hypothyroidism, and is in fact the most common congenital endocrine disorder: estimates of 

its prevalence depend on the screening methods, algorithms and cut-offs used but average 1 

in 2,500 newborn infants 16-18. Two thirds of the cases are due to thyroid dysgenesis (thyroid 

ectopy, athyreosis and thyroid hypoplasia) with a prevalence of 1 in 4,000 newborn infants, 

which has remained stable over the last 20 years in our jurisdiction17 and which is not 

influenced by seasonal factors 5. Ten to fifteen percent are due to recessively inherited 

defects in hormone synthesis resulting in goiter (birth prevalence of 1:30,000), while a 

growing number of cases, as a consequence of lower TSH cut-offs, are due to mild functional 

disorders with a normal thyroid gland in situ (15-20%, birth prevalence of 1:20,000 to 

1:15,000)17. 

2.2 Controversies about neonatal screening program for CH  

While screening for CH is an unqualified public-health success 19, a number of controversies 

mark the almost four decades since it was first implemented. All these controversies have 
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three points in common: (a) the biochemical identification of CH and the lack of agreement 

on the cutoffs used to detect CH 16, (b) whether there is a correlation between neonatal TSH 

and T4 values and later mental development 20, 21, and (c) the fact that CH encompasses a 

variety of different thyroid etiologies (dysgenesis, dyshormogenesis with goiter, normal-size 

gland in situ) 12. Consequently, a uniform definition of CH is difficult considering the 

spectrum of pathologies and the continuous nature of the distribution of TSH levels 22, 23. 

2.2.1 Which biochemical test to use for neonatal CH screening? 

The first controversy was about the nature of the biochemical test to use for neonatal CH 

screening. For technical reasons related to the precision of the measurements around the 

cutoff values, Dussault and Laberge had initially developed a screening program based on 

total T4 as the primary measurement 24. However, because primary CH is at least 10-fold 

more common than central hypothyroidism, TSH is the most logical analyte to measure 25. 

Technical improvements leading to accurate TSH measurements on eluates of blood 

collected on dried spots have led to the adoption of TSH-based screening by an increasing 

number of jurisdictions, including Québec since 1987. 

2.2.2 Should there be specific guidelines for screening for CH in premature and/or 
(very) low birth weight newborns? 

A second controversy relates to whether there should be specific guidelines for screening 

for CH in premature and/or (very) low birth weight ((V)LBW) newborns. These 

newborns generally have low T4 with normal TSH, a condition that has been named 

hypothyroxinemia of prematurity for which there is at present no evidence that it should 

be screened for or treated 26. By contrast, transient primary CH has been convincingly 

shown to be more frequent in premature newborns only in areas with a borderline low 

iodine intake 27 and attributed in large part to the use of iodine-containing disinfectants 28. 

However, permanent CH from dysgenesis or dyshormonogenesis is not more frequent in 

premature newborns. On the contrary, it tends to be associated with prolonged gestation 
29 and with a skewing of the birth weight distribution to the right 30. Nevertheless, the 

New England CH Cooperative reported in 2003 that a ‘delayed TSH rise’ occurred more 

often in VLBW newborns and suggested that a second sample be systematically obtained; 

scintigraphic scans to determine the possible cause of this delayed-onset 

hyperthyrotropinemia were not performed 31 and a recent update on a subset of these 

VLBW newborns has shown that the problem was transient, with no evidence of benefit 

from treatment 32. Other studies showed that lowering the TSH cutoff on the first blood 

sample increased the number of preterm infants labeled as having CH 33-35. Our previous 

study did not support the need for a specific protocol for low birth weight infants 36 and 

our more recent one confirms that the incidence of CH in LBW newborns has remained 

stable in spite of the decreased cutoff on the repeat screening specimen 17. Additionally, 

we have not identified a single patient with trisomy 21 and CH at screening. This is 

consistent with the observations of van Trotsenburg et al. 37 that the rightward shift of the 

distribution of neonatal screening TSH is minimal (95% confidence intervals: 4.8-7.6 vs 3-

3.1 mU/L in controls) and insufficient to result in these patients being identified as having 

CH with our screening algorithm. 
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2.2.3 Is CH incidence increasing? 

The last controversy arose from the reported increase in global incidence of CH in the 

United States 38. The cause of this increase is difficult to ascertain for the following reasons: 

(a) CH is a spectrum of different disorders which have only an elevated TSH in common, (b) 

newborn screening practices vary between jurisdictions, even within the same country, as 

does the documentation of the etiology or of the transient or permanent nature of CH, (c) 

most studies reporting an increased incidence of CH did not classify cases through the 

systematic use of thyroid scintigraphy 38-40. 

In a recent study, we were able to assess the impact of a change (made in 2001) in screening 

practice on the incidence of CH, globally and by diagnostic sub-groups over a period of 20 

years. Had the TSH cutoff remained unchanged in 2001, the incidence of CH (global and by 

diagnostic sub-groups) would have remained stable 17. Moreover, our lowering of the TSH 

cutoff at re-testing did not significantly increase the incidence of the most severe types of 

CH (athyreosis, ectopy and dyshormonogenesis with goiter). Rather, the additional cases 

identified predominantly had functional disorders with a normal-size gland in situ and a 

normal or low isotope uptake. Of note, even though these cases were associated with mild 

primary hypothyroidism, 86% were permanent. This finding is consistent with previous 

studies showing that even mild CH diagnosed after lowering the TSH cutoff was permanent 

in 75 to 89% of cases 33, 34, 41. 

The next question is whether these cases of mild CH require L-T4 treatment to attain their 
full intellectual potential. The original purpose of screening for CH was to identify severe 
cases in which a benefit was clear (i.e., prevention of intellectual disability) 42. Over the last 
two decades, this original paradigm progressively shifted to the detection and treatment of 
all CH cases, including isolated hyperthyrotropinemias. With lower TSH cutoffs, additional 
cases are detected and treated but without evidence of benefit of this intervention on 
intellectual outcome. This lack of obvious benefit might be the reason why, in the United 
States, more than a third of children labeled as having CH on the basis of neonatal screening 
no longer receive treatment after age 4 years 43. If we are to treat patients and not numbers, 
there is an urgent need to come back to the original intent of screening for CH and, 
consequently, to evaluate whether newborns with mildly elevated TSH benefit from early 
diagnosis and treatment 26, 44, 45. Given that pediatric endocrinologists tend to recommend 
treatment, a controlled study to answer that question is unlikely to be performed. An 
alternative could be to track children with TSH levels in the upper 10 % of the distribution 
of screening results but lower than the cutoff and to evaluate whether they have any 
evidence of intellectual disability. Such a ‘retrospective screening study’ was reported in 
1984 by Alm and colleagues46 and did not suggest any harm from transient and untreated 
neonatal hyperthyrotropinemia. Whether the same would be true of persistent infantile 
hyperthyrotropinemia remains to be determined. 

2.3 CH and its impact on neurocognitive development 

Before biochemical screening of newborn infants for hypothyroidism was introduced, the 
mean IQ of children with congenital hypothyroidism was 85 19, mainly because less than 
20% of affected infants were diagnosed within three months after birth; even those with a 
normal IQ had deficits in fine motor control and learning disabilities 47. When biochemical 
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screening was implemented, it was rapidly shown that most infants with hypothyroidism 
treated soon after birth have normal psychomotor development 48. However, some 
controversy remains as to whether the consequences of very severe congenital 
hypothyroidism can be entirely avoided 6, 49. Indeed, with early treatment, normalization of 
neurocognitive development is generally achieved 50, 51, but a relative developmental delay 
is still observed in the most severely affected (i.e., IQ of 101 vs 111 in controls, loss of 10 
points)6. 

2.4 From epidemiology to molecular mechanisms 

CHTD is predominantly not inherited (98% of cases are non-familial52), it has a high 

discordance rate of 92% in monozygotic (MZ) twins, and it has a female and ethnic (i.e., 

Caucasian) predominance 7, 53. Germinal mutations in thyroid-related transcription factors 

NKX2.1, FOXE1, PAX-8, and NKX2.5 have been identified by candidate gene screening in a 

small subset (3%) of patients with sporadic CHTD 9. Linkage analysis has excluded these 

genes in rare multiplex families with CHTD 54. Moreover, evidence of non-penetrance of 

mutations in close relatives of patients (e.g. NKX2.5 55) suggests that modifiers, possibly 

additional de novo germline mutations such as copy number variants (CNVs) and/or 

somatic mutations, are associated with CHTD. Therefore, we hypothesize that the lack of 

clear familial transmission of CTHD may result from a requirement for two different genetic 

hits in genes involved in thyroid development 56. The first hit could be a rare inherited or de 

novo mutation in the germline, while the second mutation, in a different gene, could be 

germinal or somatic . 

3. Genetic determinants of CHTD  

3.1 Thyroid dysgenesis and genes, a complex duet 

Currently, 26 genes (see Table 2) have been directly implicated in thyroid development, 
based on animal models and/or on their role in known human syndromes including CHTD. 
At the present time, sytematic sequencing of four candidate genes (i.e., thyroid related 
transcription factors TITF-1/NKX2.1, FOXE1, PAX-8, and NKX2.5) identified mutations in 
only 3% of human CHTD 9, 55, 57-61. 

Evidence from animal models to date suggests that the embryonic development of the 

gland and its normal migration are dependent on the interplay among several 

transcription factors. In mice, the simultaneous expression of Titf1, Foxe1 and Pax8 is 

required for thyroid survival and migration, and all knockouts present with athyreosis at 

birth, although Foxe1 -/- mouse embryos at E11.5 have either thyroid ectopy (50%) or 

athyreosis (50%) 12. Titf1, Foxe1 and Pax8 expression in thyroid follicular cells persist into 

adulthood 62. A multigenic model has been proposed based on studies of different strains 

of mice heterozygous for Pax8 and Titf1 genetic ablation. The two strains showed a 

differential predisposition to CHTD depending on several single-nucleotide 

polymorphisms in a third locus 63, 64. Furthermore, inactivation of endodermic genes 

implicated in thyroid bud formation (i.e Hoxa5, Hoxa3, Hoxb3, Hoxd3, Shh and Hes1) 65-67 or 

of genes implicated in cardiac (i.e. Nkx2.5, Nkx2.6, Hhex, Tbx1, Fibulin-1, Isl1 and Chordin)55, 

68-71 or musculoskeletal malformations (Shh inversion in short digits mice, Fgf10) 72 point to 
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new candidate genes in humans with CHTD. Genes implicated in congenital heart 

malformations or in musculoskeletal malformations are of particular interest, as these 

conditions occur in up to 8% of CHTD cases 73, 74. Another animal model, the zebrafish, 

has recently been used to study the origin of the thyroid by fate-mapping. Embryonic 

progenitor of thyroid cells stem from the definitive endoderm 75 and inactivation of genes 

implicated in endoderm formation (e.g. bon, cas, and oep) subsequently impair thyroid 

gland formation in zebrafish 76. In contrast to human and mice, TSH-TSHR axis seem to be 

necessary at early steps of thyroid morphogenesis 15. Moreover, work in zebrafish also 

highlights the role of tissue-tissue interactions in normal thyroid development. For 

example, impaired activity of the transcription factor hand2 in cardiac mesoderm has been 

shown to result in defective thyroid development 77. 

In humans, mutations have been found in leukocyte DNA of CHTD patients in the genes 

encoding transcription factors TITF-1/NKX2.1 57, 58, 78, 79, FOXE1 59, 60, PAX8 61, and NKX2.5 55. 

In these genes, all reported mutations so far were heterozygous and patients presented with 

thyroid gland hypoplasia; except for FOXE1 mutations which have been found exclusively in 

the homozygous state in patients presenting with athyreosis, cleft palate and spiky hair 59. 

TITF-1/NKX2.1 mutations are almost always de novo, whereas PAX8 and NKX2.5 mutations 

are often inherited with incomplete penetrance (i.e. a mutation-carrier parent is unaffected) 
55, 57-61. Other genes (GLIS3, URB1, SALL1 and TBX1) are mutated in syndromes where 

thyroid dysfunction is associated with other dysmorphisms and is generally mild, except for 

GLIS3 patients, which can have severe CH 80, 81. 

Current knowledge on possible causes of CHTD suggests multiple loci that interact with 

modifiers such as sex and genetic background whereas environmental factors seem to have 

little impact. CHTD is sporadic in 98% of cases (i.e. nonetheless, 2% of cases are familial) 82. 

A systematic survey of monozygotic (MZ) twins, which yielded a discordance rate of 92% 7, 

as well as the documented ethnic (Caucasian) 53 and female predominance in CHTD (i.e. 2:1 

female:male) 73 suggest that the genetic predisposition to CHTD is complex. Our published 

studies, showing no temporal or seasonal trends for CHTD and no effect of maternal folate 

supplementation on CHTD incidence, suggest that major environmental co-factors are 

unlikely 5, 17. 

3.2 Rationale to study genetic determinants of thyroid dysgenesis 

Another sporadic congenital endocrine disorder that is much less common than thyroid 

dysgenesis, focal hyperinsulinism, has been shown to result from a two-hit model 

combining a germinal mutational hit (consistent with the rare occurrence of familial cases 83) 

with a somatic loss of genomic imprinting 84: in the pancreatic lesions found in these 

patients, a paternally inherited mutation in the SUR1 or KIR6.2 gene is found together with 

loss of the maternal 11p15 allele (loss of heterozygosity), a locus which contains many 

imprinted genes. The loss of heterozygosity is a somatic event restricted to the pancreatic 

lesion, which explains why focal congenital hyperinsulinism is a sporadic disease with a 

genetic etiology. A two-hit model combining inherited susceptibility polymorphisms with 

germ line or somatic mutation at a second locus in threshold-sensitive genes has recently 

been shown to be relevant for a severe form of mental retardation 85.  
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Table 2. Human genes and animal models of thyroid dysgenesis (adapted from 13). 
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3.3 Discordance between MZ twins for CHTD argues for association of somatic 
mutations with CHTD 

Discordance between MZ twins argues against a germline mutation of high penetrance. 
However, the occurrence of familial cases (2%, 15 times more than expected by chance alone 
52) and evidence of non-penetrance of mutations in close relatives of patients (e.g. NKX2.5, 
55) suggests that modifiers, possibly additional de novo germline mutations such as copy 
number variants (CNVs) and/or somatic mutations are associated with CHTD. Postzygotic 
(somatic) mutations, resulting in mosaicism, has been associated with discordance in MZ 
pairs for genetic conditions such as otopalatodigital syndrome spectrum disorders 86 or 
Dravet’s syndrome 87. Classical twin studies (i.e., studies of affected vs unaffected MZ pairs) 
have limitations because: (i) the process of twining might itself be a risk factor for congenital 
birth defects (CHTD included) and (ii) a differential extent of chimerism in blood versus 
other tissues could interfere with detection of clear genetic differences between MZ twins 
using leukocyte-derived DNA 88, 89. These limitations are potentially overcome by studying 
the genomes in somatic tissue of MZ twins discordant for CHTD. 

4. Conclusion: Thyroid dysgenesis is a model disorder for congenital 
malformations and neurocognitive development 

CHTD is a common disorder with a birth prevalence of 1 case in 4,000 live births5. Even with 
early treatment (on average at 9 d), developmental delay is still observed in some patients 
(with an average IQ reduction of 10 points)6. The severity of the hypothyroidism is not solely 
responsible for this. Therefore, molecular markers are necessary to identify patients with 
possible susceptibility for mental retardation (i.e. genes involved both in neuronal and thyroid 
migration during development, such as NKX2.1). Patients in this category will benefit from 
earlier intervention to stimulate their neurocognitive development. The next logical goals will 
be (i) to determine whether mutations of discovered genes are associated with poor 
neurocognitive outcome, by sequencing these genes in CHTD patients with significant 
intellectual disabilities (need of special educational support) and (ii) to assess if patients in this 
category will benefit from earlier intervention to stimulate their neurocognitive development.  

More generally, unraveling the etiology of CHTD may shed light on other more complex 

and less easily treatable congenital malformations (e.g. of the brain and heart) and provides 

a prototype approach for the study of congenital disorders currently unexplained by 

classical genetics.  
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