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1. Introduction 

Lung transplantation provides a curative hope for many with end-stage pulmonary disease. 

Since the first attempt at human lung transplantation in 1963, scientific and surgical 

advancements have supported improved survival and quality of life for lung transplant 

recipients (Hardy, et al., 1963). Significant contributions in cardiopulmonary bypass, 

pharmacologic immunosuppression, and donor-recipient risk stratification have increased 

the success and associated clinical adoption of this treatment strategy. Continued research 

efforts in novel methods for organ preservation, donor graft selection, and recipient risk 

stratification support a promising future for lung transplantation. 

Improvements in surgical technique and perioperative care over the past two decades have 

led to a 30-fold increase in the number of lung transplant recipients worldwide to 2,769 

patients in 2008 (Christie, et al., 2010). Since 1994, bilateral lung transplantation has 

supplanted single lung transplantation as the primary strategy for organ replacement to 

now account for 71% of lung transplants performed worldwide (Christie, et al., 2010). In 

2010, the primary indications for lung transplantation included chronic obstructive 

pulmonary disease (35.5%), idiopathic pulmonary fibrosis (22.1%), and cystic fibrosis 

(16.0%) (Christie, et al., 2010). Despite this promising evolution and the increasing number 

of indications for lung transplantation, long-term survival has shown minimal 

improvement. Lung transplant outcomes remain the poorest of any solid organ transplant, 

with international survival estimates demonstrating a 21% one-year and 50% five-year 

mortality (Christie, et al., 2010).  

Lung ischemia-reperfusion (IR) injury following transplantation imposes a significant threat 

to graft and recipient survival (Diamond & Christie, 2010). IR injury is the main cause of 

primary graft failure and significantly increases the risk for acute rejection and long-term 

graft dysfunction (de Perrot, et al., 2003). Multivariate analysis of long-term graft function 

has implicated IR injury as an independent predictor for bronchiolitis obliterans syndrome 

(BOS), the most common cause of long-term morbidity and mortality after lung 

transplantation (Fiser, et al., 2002). IR-induced lung injury is characterized by nonspecific 

alveolar damage, lung edema, and hypoxemia occurring within 72 hours after lung 

transplantation (de Perrot, et al., 2003). The estimated incidence of IR injury is 41% following 

lung transplantation with an associated 30-day mortality of 40%, compared to 7% for 

www.intechopen.com



 
 Topics in Thoracic Surgery 378 

patients with no IR injury (Granton, 2006). Clinical studies have demonstrated increased in-

hospital mortality and morbidity associated with IR injury resulting in prolonged 

ventilation, postoperative systolic pulmonary hypertension, longer intensive care unit stay, 

and increased cost of hospitalization (Cottini, et al., 2006; King, et al., 2000).  

Currently no clinical therapies are available to prevent IR injury. The standard method used 

to help minimize IR injury for lung transplantation incorporates a universal cold crystalloid 

flush of the donor organ prior to explantation. Cold storage on ice during the preservation 

period limits metabolic activity, vasospasm, and thrombosis (Puri & Patterson, 2008). 

Reimplantation into the recipient restores warm perfusion to the allograft, initiating a 

characteristic inflammatory cascade leading to IR injury. Hypothermic organ storage is 

associated with oxidative stress, sodium pump inactivation, intracellular calcium overload, 

iron release, and cell death that induce cell surface expression patterns and proinflammatory 

mediators for leukocyte activation during the reperfusion period (de Perrot, et al., 2003). 

This inherent response mechanism implicates IR injury as a primary determinant of both 

immediate and long-term graft survival. 

Quality of the donor allograft and nature of recipient pathophysiology are primary 

determinants for the severity of IR injury, with a defined spectrum from mild pulmonary 

infiltration to the most severe acute respiratory distress syndrome (King, et al., 2000). A 

significant research commitment in lung transplantation is focused on organ selection and 

preservation to limit the deleterious effects of IR injury. Currently a disparaging 10-30% of 

donor lungs are approved for transplantation based on predictive criteria incorporating 

donor history, arterial blood gas assessment, chest x-ray and bronchoscopic findings, and 

physical examination upon lung retrieval. Inherent limitations are present in the subjective 

assessment of the donor allograft, as evidenced in comparable outcomes with extended 

donor criteria with marginal donor organs (Sundaresan, et al., 1995). This finding supports 

continued research commitment to risk stratification and predictive modeling for IR injury 

in donor lung selection. 

Allograft selection and donor pool expansion are primary aims for current lung 

transplantation research. Traditional organ procurements for lung transplantation involve 

donation following brain death, excluding donations after cardiac death as a result of the 

inherent extended period of ischemia. Study of systemic markers for inflammation in brain 

dead donors has established interleukin-8 as a predictive cytokine marker for primary graft 

failure after reperfusion (Fisher, et al., 2001). This foundational research exemplifies the 

potential role for systemic markers of inflammation in the predictive modeling of graft 

survival.  

A recent study on lung donation after controlled cardiac death has demonstrated 

comparable early- and medium-term outcomes in contrast to donation after brain death (de 

Vleeschauwer, et al., 2011). These promising results introduce a potential for donor pool 

expansion in coordination with lung rehabilitation strategies prior to recipient lung 

implantation. A multicenter study has demonstrated a close relationship between graft 

ischemic time and both early gas exchange and long-term survival following single and 

double lung transplantation. The coordinated aim to increase the donor pool with donation 

after cardiac death and the principle strategy to minimize periods of warm and cold 

ischemia have inspired novel ex-vivo perfusion methods for the donor lung prior to recipient 

implantation (Cypel, et al., 2011a). An international commitment to technologic 
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advancement and scientific understanding promises to support improved outcomes and 

needed expansion of the donor pool for future generations. 

The focus of this chapter is to define the principle immunologic and inflammatory 

mediators of IR injury, providing a mechanistic understanding for the multi-factorial 

pathogenesis of this clinical condition. Novel treatment strategies and current clinical 

methods for donor allograft treatment are reviewed as a foundational discussion for future 

research initiatives in the prevention of IR injury.  

2. Cellular mediators of lung IR injury 

A major complication after lung transplantation is IR injury. After the ischemic insult, 

reperfusion of the lungs is critical to maintain organ viability; however, reperfusion can also 

cause a wide variety of complex pathophysiological changes to the lung leading to 

inflammation and injury. IR causes a multi-faceted cascade of signal transduction events 

involving a milieu of pro-inflammatory cytokines and chemokines and the generation of 

reactive oxygen species (ROS) by a myriad of cells in the lung. The crosstalk between these 

cells via a plethora of molecules leads to the initiation and amplification of a signaling 

cascade that ultimately culminates in pulmonary injury and dysfunction. Many studies have 

now established that cells of the innate immune system (bone marrow-derived cells such as 

T cells, macrophages, dendritic cells and neutrophils) play an important role in lung IR 

injury. In addition, resident pulmonary cells, such as alveolar epithelial cells and endothelial 

cells, are also critical mediators of lung IR injury. These cell populations will be discussed 

below. 

2.1 Neutrophils 

One of the effector cells responsible for causing lung inflammation and injury are known to 
be neutrophils. Lung injury can be manifested by the multi-faceted role of infiltrating 
neutrophils to the site of injury, which adhere to and cross the endothelium upon activation. 
Although neutrophils play an important role in perpetuating lung IR injury, the role of 
neutrophils in the early phase is less predominant. Studies from Deeb and colleagues have 
shown that during the first few hours of IR injury, it is the neutrophil-independent events 
that play a major role and that neutrophil-dependent events exert their effects after several 
hours of reperfusion (Deeb, et al., 1990). Other studies have confirmed this biphasic cellular 
response and have suggested that T cells and macrophages have a more prominent role in 
the early phase of IR injury while neutrophils play a late, effector role in the execution of 
lung IR injury (Eppinger, et al., 1995; Fiser, et al., 2001). The infiltration and activation of 
neutrophils causes lung injury via release of oxygen free radicals and disruption of 
capillary-epithelial barrier which leads to increased microvascular permeability and 
pulmonary edema causing irreversible tissue damage.  

2.2 Macrophages and dendritic cells  

The role of antigen presenting cells such as macrophages and dendritic cells has been 
implicated in lung IR injury. Several studies suggest that lung IR injury is biphasic, with 
distinct acute macrophage-mediated injury followed later by neutrophil-dependent injury  
(Eppinger, et al., 1995, 1997; Fiser, et al., 2001a, 2001b). Abundant evidence suggests that 
alveolar macrophages in the donor lung are quickly activated by IR to subsequently release 
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pro-inflammatory chemokines and cytokines, and it has been demonstrated that depletion 
of alveolar macrophages attenuates lung IR injury (Naidu, et al., 2003; Zhao, et al., 2006). 
This acute pulmonary damage is followed by a cascade of events leading to activation of the 
recipient inflammatory system against the already damaged vascular endothelium and 
airway epithelium. A number of studies have strengthened a position for alveolar 

macrophages and TNF-α in acute IR injury (Eppinger, et al., 1997; Maxey, et al., 2004; Zhao, 
et al., 2006). One possible mechanism for decreased injury after suppression of macrophage 

function involves the attenuation of TNF-α or IFN-γ in respiratory burst activity and other 
inflammatory functions of macrophages (Arenzana-Seisdedos, et al., 1985; Eden & Turino, 
1986; Issekutz & Issekutz, 1993; Mayer, et al., 1993; Phillips, et al., 1990). These studies 
indicate that IR injury is in part initiated by activated macrophages whereas delayed injury 
is mediated by activated neutrophils. 
Recent studies have implicated a contributory role for dendritic cells in organ injury after 

transplantation including lung IR injury (He, et al., 2007; Saemann, et al., 2009). The cross-

talk between antigen presenting cells like macrophages or dendritic cells and T lymphocytes 

has been postulated to play an important role in the initiation of lung IR injury. A detailed 

role for dendritic cells in lung IR injury, however, remains to be defined. 

2.3 T lymphocytes 

Involvement of T cells in IR injury until recently has not been considered; however, it has 

been demonstrated that T cells can be activated by antigen-independent mechanisms 

including oxygen radicals and cytokines such as TNF-α, IFN-γ, IL-23, IL-6, and RANTES 

(Bacon, et al., 1995). It is well known that the lung harbors a substantial reservoir of 

lymphocytes, and various subsets of T cells such as CD4+ T cells, CD8+ T cells, iNKT cells 

and γδT cells, have been implicated in lung IR injury. Yang et al. have recently demonstrated 

a key role for CD4+ T cells in an in vivo hilar clamp model of lung IR injury (Yang, et al., 

2009). In the microcirculation, T cells may amplify inflammation by simultaneously binding 

to endothelial cells, macrophages, platelets and neutrophils. Several studies describe lung, 

renal and hepatic protection from IR injury in either null mice or T cell-depleted mice (Le 

Moine, et al., 2000; Rabb, et al., 2000; Sharma, et al., 2008; Zwacka, et al., 1997). These studies 

demonstrate significantly reduced neutrophil recruitment and inflammation in T cell-

deficient mice after IR injury and suggest a role for T cells in the amplification of innate 

inflammatory signals. Clavien et al. described the activation of T cells by ROS during rat 

liver IR (Clavien, et al., 1993), and it appears that CD4+ T cells, but not CD8+ T cells, play a 

key role in the initiation of lung IR injury in mice (Sharma, et al., 2008). It has also been 

shown that acute lymphocyte-mediated lung IR injury involves CD40-CD40L signaling 

mechanisms (Moore, et al., 2002). CD4+ T cells play an important role in the initiation of 

immune responses by providing help to other cells and by taking on a variety of effector 

functions during immune reactions. CD4+ T cell priming results in the differentiation of 

various T cell subsets distinguished by the production of particular cytokines and effector 

functions.  

Classically, CD4+ effector cells were viewed in the context of the Th1-Th2 cell paradigm, but 

other subsets have recently emerged including IL-17-producing T cells (Th17 cells), T cells 

with regulatory function (Treg cells) and invariant natural killer T (iNKT) cells (Larosa & 

Orange, 2008). There is also evidence that IL-23, IL-6, and TGF-β are proximal regulators of 
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IL-17 production by Th17 cells (Kolls & Linden, 2004) and iNKT cells (Rachitskaya, et al., 

2008). iNKT cells are typically CD4+ T cells that share receptor structure with conventional 

T and NK cells and are characterized by their ability to rapidly produce immunoregulatory 

cytokines such as IL-4 and/or IFN-γ. NKT cells also constitutively express IL-23R and RORγt 

which can be rapidly activated during a variety of infections and inflammatory responses, 

and are recruited to produce IL-17 under emergency conditions. In the setting of renal IR, 

iNKT cell activation mediates neutrophil infiltration, IFN-γ production, and renal IR injury 

(Li, et al., 2007). Accumulating evidence suggest that Th17 cells are highly pro-inflammatory 

in that IL-17 is a key cytokine for the recruitment, activation and migration of neutrophils 

(Kolls & Linden, 2004), and Th17 cell-produced IL-17 is implicated in the pathogenesis of 

autoimmunity in various animal models (Bettelli, et al., 2007). However, the acute time 

frame of IL-17 production in lung IR injury is not consistent with a role for Th17 cells, which 

are not normally present in the lung and which require differentiation from naïve CD4+ T 

cells. Recent studies have revealed a critical role for the IL-23/IL-17 axis in various models 

of inflammation including IR injury (Edgerton, et al., 2008; Hanschen, et al., 2008; Wu, et al., 

2007; Yen, et al., 2006). A critical role for iNKT cells and their rapid production of IL-17A in 

lung IR injury and neutrophil infiltration has been recently demonstrated using a mouse 

lung IR model (Sharma, et al., 2011). These studies support the concept that T lymphocytes 

can and do mediate IR injury. 

2.4 Alveolar epithelial cells 

The role of alveolar type II epithelial cells in lung IR injury has been described in recent 

studies (Sharma, et al., 2007). Alveolar type II epithelial cells contribute to lung IR injury via 

release of pro-inflammatory cytokines and chemokines. For example, it is well known that 

KC mediates lung injury by promoting infiltration of neutrophils. The crosstalk between 

macrophages and type II epithelial cells also contributes to the exacerbation of lung injury 

after IR. Sharma et al. showed that TNF-α production by alveolar macrophages mediates 

alveolar type II epithelial cell activation and KC production in an in vitro hypoxia-

reoxygenation model (Sharma, et al., 2007). Recent studies also implicate alveolar type I cell-

released mediators such as soluble receptor for advanced glycation end products (sRAGE) 

as a potential biomarker and indicator of lung injury after lung transplantation (Calfee, et 

al., 2007). This new marker may be useful given the recent discovery of the role of alveolar 

type I cells in alveolar fluid clearance (Johnson, et al., 2006). However, the exact role of 

alveolar type I cells in lung transplant biology remains less understood. 

2.5 Endothelial cells 

Increased endothelial permeability has been postulated to be the primary cause of IR-

induced pulmonary edema (Hidalgo, et al., 1996). In a syngeneic rat lung transplantation 

model, it has been reported that the destruction of endothelial cell barrier promotes 

pulmonary edema and lymphocyte migration and that sphingosine 1-phosphate, a G 

protein coupled receptor agonist, reduces endothelial cell permeability and protects lung 

function and injury after IR (Okazaki, et al., 2007). Lung endothelial cells also mediate lung 

injury by contributing to oxidative stress (Balyasnikova, et al., 2005; Shuvaev & 

Muzykantov, 2011). Free radical production in endothelial cells via NADPH oxidase- or 

xanthine oxidase-dependent pathways results in elevated lung oxidant burden during 
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reperfusion (Al-Mehdi, et al., 1998). However, other cells such as leukocytes also contribute 

to free radical-mediated lung damage during IR injury (Shimoyama, et al., 2005). The 

prevention of the disruption of endothelial cell barrier is crucial for attenuation of lung 

injury after IR.  

3. Reactive oxygen species (ROS) in lung IR injury 

Lung IR injury is a complex pathological phenomenon encompassing various cellular, 
biochemical and molecular mechanisms. One of the key signaling pathways involving 
multiple cell types includes oxidative stress due to the generation of reactive oxygen species 
(ROS). Several groups have demonstrated that inhibition of enzymes involved in ROS 
generation can dramatically reduce the pro-inflammatory profile after IR. 

3.1 ROS generation 

A burst of ROS production occurs immediately upon reperfusion of hypoxic cells including 

leukocytes, epithelial cells and endothelial cells. The antioxidant defense capabilities of the 

lung are unable to cope with this ROS burst leading to altered cellular metabolic functions and 

redox signaling. Oxidative stress due to ROS generation causes pro-inflammatory cytokine 

release and enhanced transcription of numerous genes resulting in inflammation, cell injury, 

and neutrophil recruitment and activation in the lung after IR. Reperfusion of ischemic tissue 

results in generation of ROS such as superoxide (�O2-), hydrogen peroxide (H2O2), and the 

hydroxyl radical (�OH), which leads to oxidative damage to lung tissue (Al-Mehdi, et al., 1994; 

Al-Mehdi, et al., 1997; Ayene, et al., 1992; Eckenhoff, et al., 1992; Fisher, et al., 1991; Zhao, et al., 

1997). This oxidative burst begins to directly increase the adherence of neutrophils to the 

endothelium (McIntyre, et al., 1995). The release of ROS not only induces cellular lipid 

membrane peroxidation and the production of inflammatory cytokines, but also plays a role in 

regulating the activity of several antioxidant enzymes (e.g. glutathione peroxidase, catalase 

and superoxide dismutase) as well as key transcription factors such as NF-κB and activator 

protein-1 (AP-1) (Cho, et al., 2006; Morimoto, 1993; Schreck, et al., 1992). Fisher et al. 

demonstrated oxygen-dependent lipid peroxidation during rat lung ischemia (Fisher, et al., 

1991). Two key mechanisms of ROS generation in the lung include the NADPH oxidase 

system and activated xanthine oxidase, as discussed further below. 

3.2 NADPH oxidase 

Recent studies have demonstrated a key role of the NADPH-oxidase enzyme complex in 
ROS generation after IR (Goyal, et al., 2004; Jackson, et al., 2004; van der Vliet, 2008; Yang, et 
al., 2008; Yao, et al., 2007). NADPH oxidase, which is present in epithelial cells, endothelial 
cells, macrophages, T cells and neutrophils, among others, utilizes NADPH as a substrate to 
generate superoxide from molecular oxygen. Superoxide is usually rapidly converted to 
hydrogen peroxide (H2O2) or can react with nitric oxide (NO�) to generate peroxynitrite 
(ONOO−). Thus NADPH oxidase activity is a major source of ROS in the lung after IR. The 
upregulation of NADPH oxidase-generated ROS can contribute to IR injury through 

important redox signaling pathways such as the activation of MAP kinases, NF-κΒ and AP-
1, which stimulates the production of proinflammatory cytokines. Pharmacological 
antagonism of NADPH oxidase by apocynin has been shown to protect against lung IR 
injury (Pearse & Dodd, 1999; Zhu, et al., 2008).  
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3.3 Xanthine and xanthine oxidase  

Xanthine oxidase-dependent superoxide generation after IR is also a possible mechanism of 
lung injury (Kennedy, et al., 1989; Lynch, et al., 1988). Under ischemic conditions, xanthine 
dehydrogenase is converted to xanthine oxidase, which in turn converts hypoxanthine to 
xanthine and then further catalyzes the oxidation of xanthine to uric acid. In lung 
endothelium and alveolar type II epithelial cells, this conversion changes the normal 
degradation of hypoxanthine to uric acid into a source of oxygen radicals. The xanthine 
oxidase-generated free radicals damage endothelial cells as well as aid the sequestration of 
neutrophils thereby leading to further injury after IR. Treatment with xanthine oxidase 
inhibitors, such as allopurinol or iodoxamide, has been shown to attenuate superoxide 
generation and lung IR injury in rabbit and mouse models of lung IR injury (Adkins & 
Taylor, 1990; Kennedy, et al., 1989; Lynch, et al., 1988). These investigations suggest an 
important role for xanthine oxidase in the production of ROS during lung IR. 

4. Cytokines and transcription factors 

A multitude of experimental studies have shown that IR injury entails a rapid release of pro-
inflammatory cytokines and chemokines. Additionally, measurable amounts of pro- and 
anti-inflammatory cytokines have been reported in lung tissue after lung transplantation in 

humans (de Perrot, et al., 2002). Important roles for TNF-α, IL-8 (KC in mice), IL-10 and IL-
17 in the initiation and progression of lung IR injury have now been demonstrated. Gene 

modulation of transcription factors like NF-κB and AP-1 has also been correlated to the 
sequential events involved in lung IR injury. 

4.1 Cytokines and chemokines 

Cytokines and chemokines are immunomodulating protein molecules secreted by bone 

marrow derived cells as well as resident lung cells after IR injury. Pro-inflammatory 

cytokines and chemokines are known to play roles in IR injury of the heart, kidney, small 

bowel, skin, and liver; however, until recently less was known about their role in lung IR. 

The C-C family of cytokines and chemokines includes many putative mediators of 

macrophages, lymphocytes, and granulocyte-derived responses in IR injury (Oppenheim, et 

al., 1991; Strieter & Kunkel, 1993). This family includes MCP-1 (CCL2), MIP-1α (CCL3),  

MIP-1β (CCL4), RANTES (CCL5), MCP-3 (CCL7), MCP-2 (CCL8), as well as others. In 

addition to serving as chemotactic factors, C-C chemokines can modulate cytokine 

production, adhesion molecule expression, and mononuclear cell proliferation. 

Krishnadasan et al. demonstrated that TNF-α and IL-1β promote lung IR injury likely by 

altering the expression of other pro-inflammatory cytokines and by influencing neutrophil 

recruitment (Krishnadasan, et al., 2003). Antibodies to TNF-α, IFN-γ, and MCP-1 have been 

utilized to demonstrate the importance of these mediators in lung IR injury (Eppinger, et al., 

1997). A prominent role for TNF-α was demonstrated both in the acute (30 min) and delayed 

(4 hr) phases of IR injury, while IFN-γ and MCP-1 appear to have roles only in the acute 

phase (Eppinger, et al., 1997). Not only is TNF-α produced by stimulated alveolar 

macrophages, it can also have significant effects on the macrophage respiratory burst, which 

may lead to oxidative tissue injury (Phillips, et al., 1990). In human lung transplantation, 

cytokines such as TNF-α, IFN-γ, IL-8, IL-10, IL-12 and IL-18 have been detected in lung 

tissue (de Perrot, et al., 2002). Mal et al. showed that early failure of lung transplants is 
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associated with massive release of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6 

and IL-8 (Mal, et al., 1998).  

Recent evidence has demonstrated a crucial role of IL-17 produced by iNKT cells in the 
initiation of lung IR injury via modulation of neutrophil infiltration and activation in an in 
vivo mouse model (Sharma, et al., 2011). On the other hand, a potent role for IL-10 as an anti-
inflammatory molecule, promoting the abrogation of lung IR injury, has been shown in 
experimental lung IR models (Boehler, et al., 1998; de Perrot, et al., 2003; Fischer, et al., 2001; 
Martins, et al., 2004; McRae, et al., 2001). The cytotoxic and immunomodulatory effects of 
cytokines and chemokines are critical in the progression of lung IR injury. Taken together, 
the balance between pro- and anti-inflammatory cytokines is key to the outcome of lung 
injury after IR, and pharmacological modulation of these specific cytokine targets offers 
therapeutic potential for patients with primary graft dysfunction after lung transplantation.  

4.2 Transcription factors 

The activation of several aforementioned cytokines has been linked to the increased 

expression of key transcription factors like NF-κB and AP-1 after lung IR. A prominent role 
of gene regulation via these transcription factors in lung IR injury has been summarized by 
a number of previous studies.  

4.2.1 NF-κB 

In the cytoplasm, NF-κB is normally inhibited by IκB. Thus, a decrease in NF-κB activity, 

due to prevention of IκB degradation by pharmacological agents, leads to the attenuation of 
pro-inflammatory cytokine activation thereby leading to protection after lung IR. Inhibition 

of NF-κB via pharmacological agents like cyclosporine A or tacrolimus has been shown to 
offer protection from lung IR injury (Krishnadasan, et al., 2002). Treatment with pyrrolidine 

dithiocarbonate (another NF-κB inhibitor) has also been shown to improve lung function 
and attenuate lung IR injury in a porcine lung transplantation model (Ross, et al., 2000). 
Naidu et al. reported that simvastatin treatment attenuates lung IR injury via inhibition of 

NF-κB activity (Naidu, et al., 2003). Prevention of lung IR injury by pharmacological agents 

that inhibit NF-κB may offer a therapeutic strategy for patients with primary graft 
dysfunction after lung transplantation. 

4.2.2 AP-1 

The JNK/AP-1 pathway involves regulation of AP-1 by c-Jun kinase (JNK). Like NF-κB, AP-
1 is also involved in the activation of several pro-inflammatory cytokines including TNF-

α (Zhang, et al., 2002). For example, in a rat lung transplantation model, inhibition of AP-1 

leads to decreased TNF-α expression in bronchoalveolar lavage fluid and a significant 
decrease in protein leakage resulting in decreased lung injury (Ishii, et al., 2004). Inhibition 
of the JNK/AP-1 pathway may also offer a potential therapeutic target to reduce lung IR 
injury. 

5. Role of endogenous receptors in lung IR injury  

Improving outcomes after lung transplantation and extending the donor pool and recipient 
criteria are predicated on the ability to minimize the deleterious inflammatory responses 
that occur with lung IR. Cellular receptor-mediated signaling is critical for the initiation and 
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modulation of inflammation and injury after IR. Using pharmacological agents that regulate 
receptor activation or antagonism, several ubiquitous cellular receptors like adenosine 
receptors, toll like receptors (TLRs) and receptor for advanced glycation end products 
(RAGE) have been shown to orchestrate lung IR injury. 

5.1 Adenosine receptors 

Adenosine is an endogenous mediator that generally serves as a cytoprotective modulator 
in response to various stress stimuli, and the protective effects of adenosine in the setting of 
organ IR injury have been shown in various studies (Day, et al., 2005, 2006; Reece, et al., 
2008; Rork, et al., 2008). Adenosine signals through 4 subtypes of the G protein-coupled 
receptors, A1R, A2AR, A2BR, and A3R, all of which are expressed in the lung. Protective 
effects of adenosine receptor signaling classically occur through second messenger 
pathways such as the cAMP/PKA or phospholipase C pathways. Most studies have 
provided evidence that A1R, A2AR and A3R may primarily be involved in anti-inflammatory 
actions whereas the A2BR may have more pro-inflammatory actions in the lung (Anvari, et 
al., 2010; Ellman, et al., 2008; Gazoni, et al., 2010; Reece, et al., 2005, 2008; Rivo, et al., 2004; 
Sharma, et al., 2009, 2010; Sun, et al., 2006). However, the role of the A2BR in IR injury 
remains less understood. A2AR activation has shown remarkable attenuation of lung 
inflammation, decreased neutrophil infiltration, decreased vascular permeability and 
improved lung function in rabbit, rat and murine models of lung IR injury (Ellman, et al., 
2008; Gazoni, et al., 2008; Lau, et al., 2009; Sharma, et al., 2009) as well as in a pig lung 
transplant model (Reece, et al., 2005). The anti-inflammatory effects of A2AR activation on 
CD4+ T cells has been shown to attenuate lung IR injury (Sharma, et al., 2010). In recent 
literature involving lung IR injury, pharmacological compounds modulating adenosine 
receptor agonism or antagonism have shown tremendous potential as possible therapeutic 
strategies for clinical applications to prevent or treat primary graft dysfunction after lung 
transplantation.  

5.2 Toll-like receptors (TLRs) 

TLRs are transmembrane receptors that play a crucial role in the innate immune response to 
a variety of trigger factors including IR injury (Marshak-Rothstein & Rifkin, 2007). TLR-2 
and TLR-4 have been implicated in various models of IR injury (Arslan, et al., 2010; 
Leemans, et al., 2005; Oyama, et al., 2004). Lung biopsies of patients after lung 
transplantation showed elevated expression of mRNA for multiple TLRs (Andrade, et al., 
2006), and lungs from TLR-4 knockout mice showed marked protection from lung IR injury 
(Shimamoto, et al., 2006; Zanotti, et al., 2009). Shimamoto et al. reported that TLR-4-
mediated injury appears to occur through activation of c-Jun NH2-terminal kinase (JNK) and 

translocation of NF-κβ. 

5.3 Receptor for advanced glycation end products (RAGE) 

RAGE is a multi-ligand receptor of the immunoglobulin superfamily expressed in most 
tissues and present on a wide range of cells where it plays a key role in inflammatory 
processes, especially at sites where its ligands accumulate. High-mobility group box 1 
(HMGB1) is an intracellular protein, readily released from necrotic or damaged cells, that 
can signal through RAGE, TLR-2 or TLR-4, initiating an inflammatory response to further 
damage viable cells (Scaffidi, et al., 2002). Prior studies suggest that HMGB1 can interact 
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with both TLR-2 and TLR-4 to induce an inflammatory response during liver IR injury 
(Park, et al., 2006). Similarly, recent reports suggest a predominant role of RAGE and its 
ligand HMGB1 in the initiation of lung IR injury (Sternberg, et al., 2008). In a multi-center 
study, Christie et al. reported that an elevated plasma level of soluble RAGE (a truncated 
form of RAGE) was associated with primary graft dysfunction in patients undergoing lung 
transplantation (Christie, et al., 2009). An in depth characterization of the role of HMGB1, 
TLRs and RAGE remains to be elucidated in pulmonary injury after IR and transplantation. 

5.4 Complement and fibrinolytic pathways  

The complement system encompasses a collective term used for plasma and cell membrane 

proteins that play a role in cell defense processes. In lung IR injury, it has been shown that 

activation of the complement system leads to cellular injury through direct or indirect 

mechanisms (Bishop, et al., 1991; Naka, et al., 1997). In a swine single-lung transplantation 

model, the administration of soluble complement receptor 1, a potent inhibitor of 

complement activation, significantly reduces lung edema and improves lung function 

(Pierre, et al., 1998; Schmid, et al., 1998). In a clinical study, it was shown that complement 

inhibition by TP-10, a soluble complement receptor 1, significantly decreases the duration of 

mechanical ventilation in lung transplant recipients (Keshavjee, et al., 2005). This suggests 

that complement inhibition may offer additional therapeutic strategies for lung transplant 

patients. Further research is required to elucidate the specific pathways of the complement-

mediated inflammation in lung IR pathophysiology.  

The interplay between the fibrinolytic cascade and the inflammatory process in acute lung 

injury has been shown to be involved in lung IR injury. Tissue plasminogen activator (tPA), 

a member of the serine proteinase family, is expressed by vascular endothelial cells and 

functions to convert zymogen plasminogen to the active protease plasmin, thus initiating a 

potent fibrinolytic process. tPA knockout mice have attenuated lung inflammation by 

decreased neutrophil extravasation in a mouse model of lung IR (Zhao, et al., 2011). In the 

same study, it was shown that deletion of tPA leads to the concomitant downregulation of 

PECAM-1 expression via tPA/LRP/NF-κB signaling pathway and upregulation of P-

selectin expression in small pulmonary vessels as well as to decreased MMP-9 expression. It 

has also been demonstrated that increased fibrinolysis through depletion of plasminogen 

activator inhibitor-1 (PAI-1), the endogenous tPA inhibitor, attenuated lung IR injury (Lau, 

et al., 2009). The complex molecular mechanisms involved in the fibrinolytic pathway and 

its potential role in clinical primary graft dysfunction remains to be further investigated. 

6. Therapeutic strategies 

Advancements in our understanding of molecular and pathophysiologic mechanisms for 
lung IR injury have supported significant research contributions aimed at improved 
allograft function. While no standardized treatment strategies specifically targeting IR injury 
exist, promising early results have demonstrated a potential role for ex vivo allograft 
treatment, nitric oxide therapy, and ischemic preconditioning in the prevention of IR injury. 

6.1 Lung preservation strategies 

A significant research commitment over the past decade has been invested in the creation of 

an ideal preservation and flush solution for lung transplantation. Intracellular solutions 
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with high potassium and low sodium are the current standard for kidney and liver 

transplantation, while extracellular solutions such as Perfadex® (Vitrolife, Gothenburg, 

Sweden) with low potassium, high sodium and dextran have emerged as the superior 

method for lung preservation (de Perrot, et al., 2003; Fischer, et al., 2001). Dextran induces 

erythrocyte deformation and prevents aggregation, preserving the pulmonary 

microcirculation and endothelial-epithelial barrier (Keshavjee, et al., 1992). This inherent 

quality may limit ischemia in regions of microcirculation thrombosis while creating an 

osmotic gradient that reduces protein and water extravasation during the reperfusion 

period (de Perrot, et al., 2003). In a clinical study, the absence of dextrose in extracellular 

solutions has been associated with an increased incidence of primary graft dysfunction and 

mortality (Marasco, et al., 2011; Oto, et al., 2006). While long-term outcomes remain the 

focus of future investigation, these findings support the clinical adoption of low-potassium 

dextran solutions as the primary method for lung allograft preservation. 

6.2 Ex vivo lung perfusion (EVLP) 

EVLP is an emerging technique for normothermic donor lung perfusion during the 

preservation period. EVLP with warm acellular Steen Solution (Vitrolife, Gothenburg, 

Sweden) following a period of cold storage is a promising modality for lung preservation 

with a demonstrated efficacy in the maintenance of lung function (Cypel, et al., 2008). This 

novel treatment strategy prevents ongoing injury and accelerates lung recovery (Cypel, et 

al., 2009). Recent prospective clinical data has demonstrated the successful transplantation 

of high-risk donor lungs following EVLP with comparable physiology to lungs transplanted 

under conventional methods of selection and transplantation (Cypel, et al., 2011b). These 

studies promote EVLP as a potential strategy for donor pool expansion and pre-

implantation pulmonary function testing. In addition, this promising treatment strategy for 

lung rehabilitation may serve as a vehicle for future therapeutic treatment of the donor 

allograft during the inherent ischemic period. 

6.3 Nitric oxide (NO) 

NO is a messenger gas molecule with potent vasoregulatory and immunomodulatory 

properties (de Perrot, et al., 2003; Meyer, et al., 1998). NO inhibits xanthine oxidase as well 

as neutrophil chemotaxis and activation (de Perrot, et al., 2003; Meyer, et al., 1998). This 

mechanism of action establishes therapeutic potential for inhaled NO in the prevention of 

lung IR injury. NO ventilation during ischemia and following graft implantation in 

experimental models with ex vivo perfusion has demonstrated a reduction in pulmonary 

edema, improvement in oxygenation capacity, reduction in pulmonary vascular resistance, 

and decreased TNF-α with treatment (Dong, et al., 2009). Treatment of experimental 

recipient lungs with inhalational NO during reperfusion improved the ventilation-perfusion 

mismatch and decreased pulmonary artery pressures associated with IR injury (Adatia, et 

al., 1994). Unfortunately, this promising experimental data for inhalational NO has had 

limited translation to the clinical prevention of human lung IR injury. In a randomized 

clinical trial to evaluate the use of inhaled NO treatment, no significant differences in 

immediate oxygenation, time to extubation, length of intensive care unit stay or 30-day 

mortality were demonstrated (Meade, et al., 2001). While experimental data supports 

improved gas exchange with inhaled NO treatment, clinical lung transplantation data has 
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not yet demonstrated significant improvements in outcomes for lung transplantation 

recipients with inhaled NO treatment (de Perrot, et al., 2003) . 

6.4 Preconditioning 

Ischemic preconditioning enhances the ability of organs to withstand a sustained IR injury 
through repeated exposure to short periods of ischemia prior to the primary ischemic insult 
(Jun, et al., 2011). Ischemic preconditioning has demonstrated an ability to alter gene 
expression profiles within 6 hours of ischemia which is sustained until 24 hours following 
insult (Jun, et al., 2011). The proposed mechanism for ischemic preconditioning in the lung 
involves anti-inflammatory mediators, antioxidant stress, and the regulation of cellular 
energy metabolism (Jun, et al., 2011). Further experimental studies have suggested a role for 
adenosine A1 receptor activation in the modulation of protective ischemic preconditioning 
(Yildiz, et al., 2007). Additional potential therapeutic preconditioning methods include 
hyperthermic and pharmacologic administration to improve the allograft response to the 
period of ischemia and subsequent reperfusion (Hiratsuka, et al., 1998; Schutte, et al., 2001). 
The role of preconditioning in clinical lung transplantation remains undefined (de Perrot, et 
al., 2003). Future application and study of preconditioning methods in the lung may 
demonstrate parallel beneficial effects to other organ systems, establishing this strategy for 
lung IR injury prevention. 

7. Conclusions 

Lung IR injury involves many cellular and molecular mechanisms making it a complex 
pathological process. Improvements in the technique of lung preservation and better 
understanding of the molecular mechanisms of IR injury are needed to prevent the 
occurrence of primary graft dysfunction after lung transplantation. The development of new 
strategies to improve the number of donor lungs available for transplantation could have a 
significant impact on the number of transplants performed and thus reduce the number of 
patients on the transplant waiting list. Additionally, improvements in lung preservation 
solution can help attenuate acute lung IR injury as well as chronic graft dysfunction. It is 
imperative that further experimental studies and multicenter clinical trials continue to be 
performed to reduce the morbidity and mortality associated with lung IR injury.  
Research commitment to further define cellular responses to IR within the lung promises to 
support therapeutic advancement. Novel ex vivo treatment strategies may provide a 
therapeutic bridge for treatment of the donor allograft prior to recipient implantation. The 
combination of pharmacologic mechanistic inhibition and innovative approaches to 
sustained allograft perfusion support a promising future for lung transplantation. A 
dedicated and multidisciplinary approach to IR injury prevention is critical. Therapeutic 
advancement to ameliorate IR injury will increase the number of available donor grafts and 
improve lung transplantation outcomes for the increasing number of potential transplant 
recipients with end-stage pulmonary disease. 
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