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1. Introduction  

In the last decades, research worldwide in areas of national defense and homeland security 

has focused on the search for new technologies for the detection and characterization of 

explosives, chemical and biological threats (CBT) and narcotics in different environments 

and scenarios. In the case of in situ field detection of explosives, the technique generally 

used is ion mobility spectrometry (IMS). The major advantages of IMS are its sensitivity in 

the picogram range, its continuous real time monitoring capability, reasonable price due to 

instrumental simplicity and ease of automation (Steinfeld and Wormhoudt, 1998). However, 

in general terms, IMS has a limited linear range and cannot be used for quantitative 

analysis. Also, analyte and background responses exhibit variations that occur with 

different reactive gas compositions and sample compositions. Moreover, it is relatively easy 

to overload an IMS. Therefore, sample mass and size must be limited. 

Optical spectroscopy is routinely used for the measurement of many different species at 
trace levels. However, optical spectroscopy has not been extensively applied in the highly 
energetic materials (HEM) detection arena. This is due, in part, to physical constraints such 
as low vapor pressure, limited sample size, concealment, interferences and in part, to the 
spectroscopic characteristics of the compounds themselves (Steinfeld and Wormhoudt, 
1998). Spectroscopic techniques have the potential to provide the best selectivity for 
explosives and offer an information-rich fingerprint that allows for near unambiguous 
identification. In the 1990’s, direct detection by infrared absorption spectroscopy was not 
possible because of the limited sensitivity of this method. In addition, the test materials had 
to be placed physically within the spectrometer’s sample compartment for measurement. 
The production of optical fibers cables (OFCs) that transmit in the mid-IR range made 
possible the development of a range of spectroscopic probes for in situ analysis (Melling and 
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Shelley, 2002); (Mehta et al., 2002). FTIR spectroscopy can now be effectively used outside 
the confinement of the sample compartment, making it available for field work. The 
establishment of RAIRS as an active area in the trace detection of chemicals is the result of a 
combination of high extinction coefficients in the MIR and the optical advantages of 
working at the grazing angle (Umemura, 2002). By combining a grazing angle head or probe 
(GAP) with a OFC that transmits in the MIR, the instrumentation becomes a platform for 
developing methodologies for real time, remotely sensed, in situ analysis (Mehta et al, 2002). 
GAP-FTIR operating in RAIRS mode with a sensing probe coupled to fiber optics has been 
used for the detection of active pharmaceutical ingredients (APIs) on metals (Mehta et al, 
2003) and on glass surfaces (Hamilton et al., 2005). In these reports, combined teams from 
academia and the private sector demonstrated that the technique is an excellent alternative 
for the validation of cleanliness of metal walls of pharmaceutical reactors. Low limits of 
detection (LOD) ranging from 10 to 50 ng/cm2 of single API were achieved (Mehta et al, 
2003). In addition, the methodology was applied to quantify APIs in mixtures and was 
demonstrated to not depend solely on the reflective properties of metallic surfaces, making 
detection on other surfaces such as glass and plastic surfaces viable (Person et al., 2007). 
These characteristics of the methodology offer clear advantages over the traditional, time 
consuming, laborious and operator driven, swab-based HPLC method of analysis routinely 
used by the pharmaceutical industry in the validation of the cleanliness of batch reactors 
and other vessels and pipes. 
Over the last ten years our group has dedicated many of its research efforts to the 
development and use of coupling optical fibers (OF) to spectroscopic instrumentation for 
applications in CBT and explosives detection: from near field close to the sample to far field at 
sample to detector distances over 100 m. From transmitting the excitation source energy to 
collecting the sample emitted/scattered energy from the ultraviolet (UV) to the mid-infrared 
(MIR) regions of the electromagnetic spectrum, optical fibers have led the way to doing 
experiments outside the traditional sample compartments, thus taking the experiments to the 
sample rather than the sample to the instrument. In this chapter, three applications in which 
optical fibers play the central role of interfacing the samples with the sensors are reviewed. 
First, MIR transmitting optical fibers used to couple an FTIR interferometer to a grazing angle 
probe and measure the reflectance/absorption IR (RAIS) spectra of highly energetic materials 
(HEM) in neat form, in mixtures of HEM and in quantification and discrimination 
experiments. In the second application, bundles of optical fibers and single strands of fibers 
were use to guide laser beams to act as Raman excitation sources. Another set of fibers were 
used to collect the scattered Raman signal to the guide it to the entrance slit/plane of a high 
throughput optical spectrometer. In the third application discussed, optical fibers were used to 
couple visible and UV reflective telescopes to imaging spectrometers in order to implement a 
remote Raman system for standoff detection to 140 m of hazardous chemicals. 

2. Optical fiber coupled grazing angle probe reflectance-absorption infrared 
spectroscopy 

The analysis of traces of solid phase highly energetic materials (HEM) deposited onto 
substrates is essential in homeland security and national defense applications (Gillen et al, 
2004). Moreover, the preparation of HEM standards is critical during system detection design 
for field applications and post-delivery instrument operation validation (MacCrehan, 2004). 
The practical development of high-quality solid-on-solid standards depends on the material 
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type, on the physical properties of the deposited analyte, such as its vapor pressure and 
solubility in an appropriate solvent, on HEM adhesion forces to the test surface, on 
temperature, on the solvents used for mass transfer and on the sample preparation method. 
Several analytical techniques have been used to ensure reliable and reproducible in situ trace 
HEM detection. Among these techniques, ion mobility spectrometry (IMS) (Hernandez et at., 
2004; Hallowell, 2001; Ewing et al., 2001; Phares et al., 2000), secondary ion mass spectrometry: 
SIMS (Gillen et al., 2004) and optical fiber coupled grazing angle probe/Fourier transform 
reflection absorption infrared spectroscopy: OFC-GAP/FT-RAIRS (Pacheco-Londoño et al., 
2007; Primera-Pedrozo el at., 2008; Primera-Pedrozo et al., 2009) have been used the most 
frequently. In the first two techniques, chemical analysis takes place after sample collection. 
This is typically used for handbags and carry-on luggage detection in airports (Ewing et al., 
2001). In OFC-RAIRS, the mid IR (MIR) beam is directly focused on the sample area, and the 
measurements are done in situ without sample consumption or destruction (Primera-Pedrozo 
el at., 2008). Remote detection using remote infrared spectroscopy (RIRS) and remote Raman 
spectroscopy (RRS) systems have become important for detecting highly energetic materials as 
well as their formulations and mixtures on surfaces (Pacheco-Londoño et al., 2009). Thus, in 
the development of new techniques and instrumentation for trace detection, the incorporation 
of methodologies for production of high-quality samples and standards is required. For proper 
functioning of sensors, reliable standards are essential. Calibration curves can then be 
generated to quantify known analytes, sensors can be trained with standards to detect samples 
of unknown identity with chemical/physical properties similar to compounds in the data base 
and thus detection methods can be significantly enhanced. The applications of these specially 
prepared samples include use in experiments that require fine control of the distribution of 
loadings of analytes on surfaces. Another important application is in the establishment of 
reliable standards that may support an instrument response validation program. 
The sample analysis setup is schematically presented in Fig. 1. A Remspec MIR grazing 
angle probe was used to collect the spectra. The grazing-angle head uses carefully aligned 
mirrors to deliver the beam to the sample surface at the grazing angle (approximately 80° 
from normal), to collect the reflected beam, and to return it to a detector (liquid nitrogen 
cooled MCT detector).  
 

 

Fig. 1. Experimental setup for Fiber Optic Coupled-Grazing Angle Probe FTIR. 
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The signal is delivered from the spectrometer to the head by IR transmitting optical fiber 
cables. The grazing angle accessory is connected to the external beam port of the Bruker 
Vector 22 spectrometer by a 1.5 m, 19–fiber chalcogenide glass optical bundle in the As-Se-
Te system, which transmits throughout the MIR with the exception of a strong H-Se 
absorbance band at 2200 cm-1. The IR footprint produced by the grazing angle probe is 
elliptical with the intensity decaying from the middle towards the edges. The specially 
configured head illuminates a large spot on the sample surface. The spot is an ellipse 1 inch 
by six inches that is defined by a Gaussian distribution with a center spot about 1/8 inch by 
an inch. Electric signal from the MCT is delivered to the FTIR using an amplifier.  
Sample smearing (Soto-Feliciano et al., 2006; Primera-Pedrozo, 2007; Primera-Pedrozo el at., 
2008; Primera-Pedrozo et al., 2009) aerosol spray deposition, thermal inkjet deposition 
(Primera-Pedrozo et al, 2005; Wrable et al. 2010), deposition by rotary evaporation 
(MacCrehan, 2009), and direct transfer deposition using micropipettes (Primera-Pedrozo, 
2005) have been reported previously as methods for sample and standards preparation on 
metals, silica, glass and plastic surfaces. Also, trinitrotoluene (TNT) was deposited on cloth 
and planar surfaces with post removal by air jets. The results proved that the particles that 
were less efficiently removed from the polycarbonate surface (Fletcher et al, 2008). Stickiness 
constitutes another method for producing plastic explosives deposits (Heimerl, 1999). A 
standard deposit on fibrous substrates method was developed by Phares and collaborators 
(Phares et al, 2000), in which the explosive suspension is first transferred to the Teflon with 
post drying. Then, the dried explosive deposit is pressed onto the tested substrate and 
mechanically transferring the sample without the associated liquid. 
Piezoelectric and bubble-jet printing technologies have been used for microfabrication of 
biological samples with a rapid preparation of a large number of printed arrays at extremely 
low cost (Gillen et al. 2004). Both technologies have enabled deposition of femtomoles of 
analytes at an inkjet printer dot. These results make sample printing technologies excellent 
means for trace hazardous chemicals samples and standard manufacture. Thermal inkjet 
(TIJ) printers offer the advantages of being easy to wash and load and transfer of analytes 

using small amounts of sample (~ 20 L). However, TIJ would be inappropriate for delivery 
of proteins on account of possible denaturation caused by exposure to a high temperature 
gradient. Inkjet printers can be used to fabricate microarrays containing biological materials 
(proteins, enzymes, etc). Thermal inkjet printers offer advantages compared to piezoelectric 
ones because they are easier to wash and reload and have the capability of depositing small 
volume samples. However, piezoelectric inkjet are preferred for protein and other biological 
molecules deposition because of heat stimulated denaturalization problems (Allain et al., 
2004). In TIJ printing, a thin film resistor superheats less than 0.5% of the fluid in the 

chamber to form a gas bubble. This bubble rapidly expands (in less than 10 s) and forces a 
drop to be ejected through a very small orifice (Beeson and Skip, 2000). The loading 
concentration of the sample on the surface can be controlled by varying parameters, such as 
the number of passes, the dispensing frequency, the applied energy and the pen 
architecture. Precise delivery of a known number of droplets with known mass and 
concentration is achieved. Also, by proper selection of the dispensing solution 
concentration, only one solution is required to dispense a broad range of surface 
concentrations, avoiding the preparation of several dilutions that could lead to analytical 
errors. In previous work, it was demonstrated that TIJ technology can be used for depositing 
2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) onto stainless steel 
surfaces, and TIJ-based deposition has been shown to be a superior method for further 
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detection using OFC-GAP/FT-RAIRS (Primera-Pedrozo et al., 2005). Visualization of 
deposits, using optical microscopy images, showed that there was a close dependence 
between the number of passes and the crystallization of the explosives on the surface. Even 

at a low (1.25 g/cm2) loading concentration, the surface was practically covered by crystals. 
Below this surface concentration, the formation of a metastable form of TNT was observed 
(Primera-Pedrozo et al., 2005). 
 

 
a b c 

Fig. 2. Chemical structures of some of the highly energetic materials studied in OGC-GAP-
RAIS experiments. (a) TNT; (b) RDX; (c) AN. 

As demonstrated by Thundat and co-workers (Van Neste et al., 2009), the residence time of 
an analyte on a substrate depends on the surface energies, on the analyte-surface interaction 
forces and on the physical properties of the analyte deposited on the surface. Highly 
energetic materials, such RDX and PETN, take days to months to desorb from the surface. 
Thus, the physical properties of the deposited analytes and the substrate characteristics, 
such as vapor pressure and analyte-surface interactions, influence the preparation schemes 
of samples and standards. This report presents a broad view, from start to completion, of 
two schemes that can be used to establish efficient, reproducible and representative 
methodologies for preparing samples and standards of common contamination compounds. 
In this research, the following three HEMs were selected for the experiments: TNT, RDX and 
ammonium nitrate. Their chemical structures are shown in Fig. 2. Through the testing of 
various variables from materials to methods, a tailored approach will be apparent. This 
paper follows the timeline in which the experiments were performed, allowing the reader to 
easily follow why and how certain materials (solvents) and methods were modified based 
on the deposition characteristics desired. Each HEM studied required a unique mixture of 
solvents to prepare the optimum solutions for TIJ dispensing. The solvents used were all of 
HPLC grade and included methanol (MeOH, CH3OH), acetonitrile (ACN, CH3CN) and 
isopropyl alcohol, (IPA, (CH3)2CHOH)). These solvents were purchased from Fisher 
Scientific International. Distilled, deionized water was purified by reverse osmosis, followed 
by deionization and filtration through four stages of cartridges to remove organic and 
inorganic impurities and by exposure to far UV light to remove bacterial impurities 
(Nanopure Diamond, Barnstead, Thermo-Fisher Scientific, Inc., Waltham, MA). 
A thermal inkjet (TIJ) X-Y-Z dispenser, model IIS-300S manufactured by ImTech, Inc. 
(Corvallis, OR), was used for printing the HEM onto the target surfaces. To begin the 
experiment, a bitmap (.bmp) image file of the desired design (1, 2 or 3 blocks) was chosen 
and loaded. The user-coordinates (print zone coordinate system) were as follows: x = 3.5 in, 

+ 

- 
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y = 10 in. and z = 0.7 in. For the print head commands, the following settings were used: fire 

pulse = 2 sec, warm pulse = 0.5 sec, dead pulse = 0 sec, voltage = 0 volts and the 
maximum frequency was 12 kHz. The IIS acceleration was as follows: x = 100 in/sec2, y =100 
in/sec2 and z = 100 in/sec2. The velocity was x = 10 in/sec, y=10 in/sec, z =10 in/sec and 
the IIS cap location was x = 1.90 in, y = 1.83 in, and z = 1.30 in. The solutions were dispensed 
using zero-dot spacing script (space between drops using HP inkjet) at a printing resolution 
of 600 dots per inch (dpi). Once the above specifications were set, the bitmap image was 
loaded and selected to print on the TIJ dispenser. The total printer area per substrate 
(“chip”) was 1.0 cm × 0.8 cm (area = 0.8 cm2). The bitmap images had three 0.8 cm2 chips to 
be deposited per image, allowing 3 substrates to be printed at the same time. The total 
dispensing time for the surface area of 0.8 cm2 was 14 s for a total of 56 s for three substrates. 
To allow enough drying time, a waiting period of 60 s was employed between printing 
passes. This waiting period was particularly important for high loading substrates that 
involved many passes. To carry out shelf life experiments, FOC-GAP/FT-RAIRS was used 
as a non destructive technique during a period of 15 hr. Details of the setup have been 
described previously (Primera et al. 2009).The most intense peak of the IR spectrum for each 
HEM was selected for the kinetics studies. In the case of RDX, the experiments were 
performed over one year. The experimental conditions were co-addition of 64 scans, 4 cm-1 
resolution and a spectral range of 900–4,000 wavenumbers (cm-1). In terms of consecutive 
measurements, the repeat setting was 100 times, and the delay between measurements was 
100 s. Background spectra from clean test substrates were acquired using the same 
instrumental conditions as the sample spectra prior to each sample measurement session. 
All spectra were recorded in reflectance mode to facilitate data processing. To compare the 
influence of the surface type on the shelf life, experiments were performed on gold-on-
silicon, glass, and stainless steel (SS) plates. 
White light images of samples were acquired in order to maintain a record of the 
information concerning the loading surface distributions. This allowed comparisons 
between the two sample preparation methods and between the solvent mixtures used. An 
Olympus America, Inc. (Center Valley, PA) model BH2-UMA high resolution optical 
microscope designed for mineralogy studies and equipped with 10-250× magnification and 
a 6.0 MB PAX-Cam image capturing CCD camera controlled by the PAX-it! Software 
(Midwest Information Systems, Inc., Villa Park, IL) was used to capture white light images 
(micrographs) of the substrates with HEM loadings on them. Most of the images captured 
were taken with a 10× objective, but some micrographs required the use of infinity-corrected 
ultra long working distance Olympus objectives of 100× and 250× magnification. Nine 
images per sample were obtained by dividing the CCD chip into three rows and three 
columns. 
For chemical analysis of the surface loadings of RDX and TNT, a model 1100 high 
performance liquid chromatograph (HPLC) from Agilent Technologies (Santa Clara, CA) 
equipped with a C-18 column (platinum, 100 A, 5 µm, 150 mm x 4.6 mm, Eclipse XDB 
Alltech), and a variable wavelength detector was used. The HPLC conditions employed 
were a flow of 1.0 mL/min, a stop time of 5 min and 3 min for TNT and RDX, respectively, a 
solvent mixture of 50% water and 50% methanol and a pressure limit of 400 bar. The 
chromatographic column was operated at 40 °C. Other conditions included a detector 
wavelength of 224 nm and 254 nm for TNT and RDX, respectively, with a pump time of 5 
min, a peak width (response time) of less than 0.1 min, post time = off and an analysis time 
of 5 min. A model 732 IC ion chromatograph (Metrohm, Riverview, FL) was used for surface 
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loading analysis of AN. IC conditions included a retention time of 3.94 min, a mobile phase 

of 0.1 mM L-tartaric acid and 0.1 mM picolinic acid, an injection volume of 10 L and a flow 
rate of 1 mL/min. Experiments were performed in cationic mode, and ammonium cations 
were detected. 
The two methods tested for preparation of homogeneous samples and standards of 
solids/traces deposited onto surfaces were sample smearing (Primera-Pedrozo et al., 2008) 
and TIJ sample delivery (Primera-Pedrozo et al., 2005). Both methods were compared in the 
study. Two important parameters for dispensing analytes using TIJ are the solvent viscosity 
and surface tension. The value of the solvent viscosity must be between 2 and 6 x 10-2 g·cm-

1·s-1 (centipoises, cp), whereas the surface tension of the solution must be between 30 and 40 
mN/m. IPA has a high viscosity compared to methanol and acetonitrile (2.8 cp), resulting in 
the formation of uniform spherical deposits (Van Neste et al., 2009). However, due the slight 
solubility of TNT and RDX in methanol and IPA, it was necessary first to dissolve them in 
acetonitrile and then to prepare a mixture of methanol and 2-propanol in order to have the 
adequate viscosity to dispense. The composition of the solvent was 10% acetonitrile, 20% 
methanol and 70% isopropanol. The use of 100% IPA as the solvent results in the formation 
of non-uniform droplets on silicon wafer surface and spread-out is observed. AN is highly 
soluble in water, and this constitutes a problem while dispensing. Thus, for the preparation 
of AN solutions, a small amount of the reagent was added to 3 mL of methanol and heated 

to 35C until dissolved. This mixture was then transferred to a flask, and the vial was rinsed 
three times and transfer to the flask with IPA. The solvent ratio was changed until uniform, 
spherical deposits were found on the substrate images. Once the solutions were prepared, 
the analytes were deposited onto gold-on-silicon, glass or stainless steel substrates. The 
latter two substrates were used for comparison and as a means of obtaining information on 
analyte-substrate interactions. HEM solutions were prepared as explained in the previous 
section and, using a syringe, were transferred into one of the printer cartridges that was then 
used to print directly onto the substrates studied using the TIJ dispenser (Fig. 3). Low 
concentrations were used to avoid HEM nucleation and subsequent crystallization in the jet 
nozzles.  
 

 

Fig. 3. Deposition method: thermal inkjet printer used for sample dispensing.  

To obtain higher surface concentrations as 20-50 g/cm2, several print layers of solutions 
(passes) were applied. The cartridges were filled completely with 40 mL of HEM solution 
and then sealed shut with a small glass bead secured in place using adhesive tape. A 
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vacuum was then applied to the nozzle of the cartridge to ensure that the solution was 
ready to dispense. The cartridge was then placed in the printer head, and a personal 
computer (PC) was used to control the deposition program for dispensing by TIJ printing. 
Before dispensing by TIJ, a bitmap (*.bmp) image was required to determine precisely 

where to place the substrates. An MS Word (Microsoft Corporation, Redmond, WA) file 
was used to scale the target boxes until the dimensions matched those of the substrate. A 
width of 2.25 in and height of 2.00 in was found to produce an image that is 1.0 cm × 0.8 cm. 
Three samples were printed at one time (Fig. 4). These small squares were printed out in 
black to clearly show where the surfaces needed to be placed to ensure proper deposition. 
 

 

Fig. 4. Substrate deposition area for TIJ dispensing. Surface coverage was not complete, 
leaving 1 mm of surface uncoated on two sides for handling purposes. 

The HEM loadings or surface concentrations (g/cm2) deposited by TIJ or smearing were 
determined by HPLC or IC. To determine the total mass deposited onto the substrates, the 
latter were rinsed with an appropriate solvent and volume in which the HEM were highly 
soluble. Acetonitrile was used for rinsing RDX and TNT, but water was used for rinsing AN 
samples due to the high solubility of this HEM in water. Rinsing is the first and most critical 
step for determining how much explosive was originally deposited using both deposition 
methods. The substrates were printed onto an area of 0.8 cm × 1.0 cm, with 0.1 cm left free 
(Fig. 4) on each side to enable handling the substrate. To ensure that the analyte was rinsed 
entirely from the surface with as little loss as possible, tweezers were used to clamp the 
substrates by their corners, and a Pasteur pipette was used to rinse the substrate with the 
appropriate solvents. Care was taken to ensure that as much analyte as possible was 
removed. Once completed, the rinses were collected, transferred to small 1.0-mL vials, 
stirred to ensure uniform concentrations and analyzed for total mass collected using HPLC 
or IC. In the case of smeared samples, the total mass recovered was converted to percent 
recovery; however, in the case of TIJ deposition, this was not possible because the initial 
mass deposited was not readily known. 
TIJ technology offers several advantages to smearing deposition. The method is less subject 

to human errors and provides more uniform target surface coverage. Moreover, the surface 

loading concentration can be varied by changing the numbers of passes delivered to the 

sample, the dispensing frequency, the applied energy and the dispensing pen architecture. 

Also, the method includes precise delivery of a number of droplets with well-characterized 

mass and concentration. Furthermore, only one solution is required, avoiding the need for 

serial dilutions that can increase the analytical errors caused by human intervention. 

To ensure the feasibility of the method, the prepared dispensing solutions were also run in 
HPLC or IC to determine their exact concentration. Table 1 shows the results of the 
calibration curves used for determining the concentration of the HEM studied using HPLC 
or IC. RDX and TNT calibration curves were prepared using acetonitrile as the solvent, 

Printer stage 

Deposited areas 

Gold –Silicon slides 

0.8 cm

1.0 cm 
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while ultra high purity water was used for AN. Limits of detection (LOD) and limits of 
quantification (LOQ) for TNT and RDX using HPLC analysis and for AN using IC analysis 
are also reported. TNT had the lowest LOD and LOQ compared to RDX and AN. The 
exactly concentration of HEM solutions was also determined by HPLC or IC. The 
concentrations of these HEM solutions transferred to the ink cartridge were higher than the 
concentrations in the calibration curves (See Table 1), and thus it was necessary to prepare 
1:10 (v/v) dilutions in acetonitrile to ensure the data fell into the proper concentration range. 
 
 

 
HEM 

 

Concentration 
range (ppm) 

Method of 
analysis 

R2 
LOD 
(ppm) 

LOQ 
(ppm) 

Significance        
 F-value 

TNT 0.1-1.5 HPLC 0.9990 0.05 0.15 1.30x10-05 
RDX 0.1-1.5 HPLC 0.9978 0.07 0.23 4.43x10-05 
AN 1.0-5.0 IC 0.9601 0.2 0.6 3.25x10-06 

 

Table 1. HPLC and IC calibration curve results for the highly energetic materials (HEM) 
studied. 

A different solvent was used for the rinsing step of each HEM on account of their distinct 
physical properties. Many factors had to be taken into account such as HEM-solvent affinity 
(in terms of solubility), deposition methodology and HEM vapor pressure. The first step 
consisted of finding the right solvent for each HEM. TNT and RDX were soluble in 
methanol, but AN was soluble in water. The inorganic AN is a highly hygroscopic chemical, 
and it was difficult to avoid the absorption of water during the preparation of standards. To 
remove as much water as possible, AN was dried at room temperature in a vacuum oven 
and maintained in a desiccator for 24 hr prior to use. The solubility of TNT and RDX is high 
in acetonitrile and low in isopropanol. According to Primera-Pedrozo and co-workers, using 
methanol as the solvent for sample smearing gave the most uniform surface concentrations 
as determined by micro-FTIR surface analysis (Primera-Pedrozo et al., 2009). For TNT and 
RDX, a solvent mixture of 10% ACN, 20% MeOH and 70% IPA was used, whereas a mixture 
of 12% MeOH and 88% IPA was used in the case of AN. 
The second step of the methodology was to find a solvent mixture compatible with each 
deposition method. Smearing requires a solution that can be easily spread over the substrate 
and dries quickly in order to achieve a uniform coverage and surface concentration. In 
addition, the size of the substrate where the deposition takes places influences the 
distribution and the readiness of the smearing process. When the size of the substrate is 
relatively large (> 10 cm2), it is very easy to dispense the mixture containing the analyte with 
the Teflon applicator, resulting in a uniform surface coverage (Fierro-Mercado et al., 2010). 
Another parameter that plays an important role in the nature of the coverage of the 
substrate is analyte-surface interactions, and this effect will be discussed later. TIJ deposition 
requires the use of a moderately viscous solution for high quality printing. Thus, the solvent 
solutions used were tailored to each specific deposition method. Depending on the speed of 
drying of the solution containing the dispensed analyte, the mix was modified with a higher 
or lower vapor pressure adsolvent. If the solution took too long to dry, then the percentage 
of MeOH in the solvent was increased. It was found that HEMs studied were soluble in 
methanol. The high vapor pressure of MeOH resulted in quick evaporation and uniform 
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surface loading (Primera-Pedrozo et al., 2009). However, if the solvent mix required higher 
viscosity, then the percentage of IPA was increased to compensate for the lower viscosity of 
the adsolvent added. These modifications to the solvent mix tailored the vapor pressure and 
physical characteristics of the mix as well as the deposition characteristics of the HEMs 
studied. 
Fig. 5 contains white light micrographs of RDX deposits on gold coated silicon substrates 
obtained after a single thermal inkjet pass. The dispensing experiments were performed 
using an 812 ppm RDX stock solution in 10% ACN, 20% MeOH and 70% IPA. Figure 5a 
shows that the central portion of the substrate is covered by a nearly uniform distribution of 
RDX deposits. The micrographs of the borders (Figure 5b, inner part of border) showed the 
presence of small RDX crystals, while the micrograph included in Figure 5c (outer part of 
the border) shows the formation of elongated, larger RDX crystals. The onset of 
crystallization of the deposited RDX sample was observed immediately, even after a single 
TIJ pass. RDX crystal formation was observed only at the edges (inner and outer rim) of the 
deposited sample on the substrate. Although crystallization was observed to a small degree 
and only at the substrate edges, the solvent mixture used was considered adequate for the 
depositions and was left unchanged. The idea of decreasing the dispensing solution 
concentration and increasing the numbers of passes to increase the surface loading 
concentration also led to crystallization, as was demonstrated by Manrique-Bastidas and 
collaborators for TNT (Manrique-Bastidas et al. 2004a; Manrique-Bastidas et al., 2004b). 
However, this behavior is not general, and each case depends on the solvent mixture/HEM 
combination. For example, the high affinity of AN for water made its deposition onto 
surfaces a challenge.  
 

 

Fig. 5. White light microscope images of TIJ-deposited RDX on a gold-silicon substrate: (a) 
center section of the substrate; (b) inner edge of the substrate; (c) outer edge of the substrate. 
(d) center section of the substrate after five TIJ pass. The conditions included a stock solution 
of 892 ppm RDX and a solvent consisting of 10% ACN, 20% MeOH and 70% IPA. The image 
was acquired at an optical magnification of 100×. 

Although water is the optimum solvent for TIJ because of its high surface tension and low 
viscosity, attempts to dispense aqueous solutions of AN resulted in poor spreading of the 
deposited analyte/solvent mix over the surface; instead of spreading evenly, the mixture 
remained in isolated droplets on the surface. Fig. 6 depicts the micrographs of the results of 
dispensing AN on gold-silicon substrate using a solvent mixture of 10% H2O and 90% IPA. 
The results were similar after one TIJ pass (Fig. 6a) and five TIJ passes (Fig. 6b). The lack of 
homogeneity of the distributions obtained can be clearly observed. Instead forming of a 
uniform layer of analyte on the surface, the formation of dispersed, isolated droplets is 
favored. When initially deposited, the droplets were much more finely dispersed, but 

a. Center: 1 pass            b. Inner Edge      c. Outer Edge           d. Center: 5 passes 
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moisture in the air was enough to induce the formation of larger droplets on the substrates. 
Because of the problems related with using water as the solvent for depositions of AN, a 
solvent mixture was prepared containing 12% MeOH and 88% IPA. The appearance of AN 
in this solvent mixture after dispensing onto the gold-coated silicon slides is depicted in Fig. 
6. The difference in comparison to the water-based solvent mix can be clearly seen as a 
collection of fine and uniformly dispersed deposits, especially along the edges. While 
absorption of water from the atmosphere was still taking place in the center of the substrate, 
this process occurred to a much smaller degree than in the samples deposited with 
AN/water solutions only. The conditions included a stock solution of ~ 812 ppm AN and a 
solvent consisting of ~ 10% H2O and 90% IPA. Optical magnificationused was 10×. White 
light 100× magnification micrographs of TIJ deposits of 1059 ppm TNT in MeOH after 25 
passes: (c) edges; (d) center. 
 
 

 
 

Fig. 6. White light micrographs of TIJ deposits of AN onto a gold-silicon substrate. (a) one 
TIJ pass; (b) five TIJ passes. The conditions included a stock solution of ~ 812 ppm AN and a 
solvent consisting of ~ 10% H2O and 90% IPA. The optical magnification is ~ 10×. (c) one TIJ 
pass; (d) five TIJ passes. The conditions included a stock solution of ~ 812 ppm AN and a 
solvent containing ~ 12% MeOH and 88% IPA. The optical magnification is ~ 10×. 

Smearing deposition has been used as a method for sample preparation of solid 
compounds on substrates. Samples and standards of nitrocompounds [7, 9] and cyclic 
organic peroxides as well as pharmaceutically active ingredients and excipients have been 
prepared (Primera-Pedrozo et al., 2004). These studies centered on covering relatively 
large surface areas (~43 cm2) on stainless steel, aluminum or glass (Hamilton et al, 2005; 
Perston et al., 2007). In all mentioned applications, smearing proved to be a high-quality 
deposition technique as judged by the excellent agreement between the amount aimed to 
be deposited, the actual amount deposited, coverage uniformity and the percent of 
analyte recovered after substrate rinsing. The introduction of TIJ to design new 
methodologies for preparation of samples and standards required a comparison with the 
well established sample smearing technique. As already mentioned, samples were 
prepared by both deposition methods using the same solvent mixtures to make a real 
comparison. After sample preparation, the substrates were rinsed and analyzed using 

1 pass  a. edge:                 b. center

5 passes   a. edge:                b. center

c d 

Five passes 

   Center                   Inner Edge          Outer 
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     Center         Inner Edge     Outer Edge 
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protocols based on HPLC or IC in order to determine the total mass collected in the 
solution. Results obtained from the chemical analyses were then expressed in terms of 

surface loadings (g/cm2). 
The images acquired after each carrying out each method were excellent tools in assessing 
the performance of the methods. In general, smearing was a somewhat inconsistent process 
because it relies on human intervention to be carried out. At times, even the environment in 
which the method took place altered the reproducibility. Examples including wind drifts 
from a fan or high lab humidity altered the way in which the solution adhered, spread out 
or dried on the substrate surface. The smearing process was more exposed to the local 
environment than the TIJ method because surface depositions using the latter technique 
took place within a custom acrylic built covering with a controlled atmosphere. Images were 
acquired at several locations. Another important observation during smearing depositions 
on these substrates was the poor adhesion of the HEM studied to the gold coated silicon 
surface, in contrast to the strong adhesion experienced by analytes (including 
nitrocompounds and cyclic peroxide HEMs) to other test surfaces such glasses, stainless 
steel, aluminum and plastics. Solid-phase residues of HEM were often left on the Teflon 
applicator after smearing was performed in one or two passes. This residue was considered 
an indication that the surface used in the experiments was very inert and thus rejected the 
adhesion of the analytes. 
Images acquired of thermal inkjet depositions showed entirely different results compared to 

smearing. TIJ reduced significantly the direct operator interaction during the deposition 

process. Thus, reproducible results with uniform surface concentrations were obtained for 

TIJ depositions. Figure 5 shows an even distribution of TNT/10% ACN, 20% MeOH and 

70% IPA droplets on the right edge and center of the substrate after dispensing. It is possible 

to observe slight differences in various areas depending on the location of the deposited 

sample on the substrate, but overall, even surface concentration dominated the depositions. 

An interesting finding was that the droplets were in a metastable state (similar to super 

cooled water in a refrigerator) instead of in the assumed crystalline state (Manrique-Bastidas 

et al. 2004a; Manrique-Bastidas et al., 2004b). As a result, the images captured show the TIJ 

method of deposition to yield more favorable results than smearing with respect to 

achieving consistent homogeneous surface concentrations. 

Both deposition methods have positive and negative aspects. Smearing is fast and easy to 

use. Typically, it has a relatively high susceptibility to human error, at times leading to 

irreproducible results, and requires large amounts of time for dispensing a wide range of 

concentrations. Moreover, it produces poor surface loading concentrations over surface 

areas of ~ 1.0 cm2 and smaller on highly inert surfaces such as gold coated silicon. As can be 

observed in Table 2, only between 29% and 70% of the deposited material could be 

recovered after deposition by rinsing and subsequent HPLC analysis. The highest deposited 

surface concentration tested in this work (50 g/cm2) was very difficult to achieve because 

of the low adhesion of TNT to the small sample area of the surface and the high affinity of 

TNT for the Teflon applicator. These characteristics explain why the lowest percent recovery 

(37% – 55%) was obtained for this surface loading. Deposition of extremely low 

concentrations of approximately 1.0 g/cm2 failed because the small volume of HEM in 

solution was not enough to cover the entire surface, without modifying the protocol 

established. This could be attributed to the fact that the pressure applied to the substrates or 

the speed of spreading are both operator-dependent. Also, because the deposition takes 
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place in the open air, explosives with high vapor pressures would sublimate quickly during 

this procedure. Thus, smearing was prone to a large degree of human variability during its 

preparation stage. 

 
 

Deposited 

(g/cm2) 

Recovered 

(g/cm2) 
Recovered 

(%) 

50 29.8 - 18.8 37.6 - 55.7 

10 6.1 - 7.1 60.6-70.9 

5.0 2.9 - 3.6 57.8 - 71.4 

1.0 0.3 – 0.7 29.8 - 66.3 

Table 2. Comparison of the theoretical amount of TNT deposited using smearing and the 
real surface concentration detected after rinsing. 

TIJ, however, has a small margin for operator error, resulting in reproducible and even 
surface loadings. TIJ also has the possibility of becoming even more useful in conjunction 
with simple programming. Different shapes, different surface loadings on the same 
substrate and the spacing between deposited areas can all be optimized using this 
technique, whereas sample smearing has fewer degrees of freedom available for 
improvement. Thus, with respect to overall ease of use and functionality, TIJ was 
demonstrated to be the superior method of deposition when compared to sample smearing. 
Sample deposition using TIJ was time consuming for high surface loadings, even for a 
substrate of only 0.8 cm2. Each successive pass required the operator to manually push a 
button that alerted the software to perform another pass. Thus, although depositions with 
TIJ can take a significant amount of time, particularly for high surface concentrations, the 
operation results in high mass transfer yields and there is a finer control over the place 
where the dispensing takes place. The TIJ dispenser took roughly 14 s to complete a single 
pass on the 0.8 cm2 surface area, and, depending on the behavior of the solutions used, some 
depositions required a delay of up to 60 s between passes to allow the sample to dry. 
The main advantage offered by TIJ is that, in principle and in practice, only one 

concentration is required for dispensing a broad range of surface loadings, reducing 

significantly the errors associated with operator intervention and with the preparation and 

use of multiple dilutions. In this work, it was estimated that HEMs stock solutions of 

concentrations in the range of 800 to 1100 ppm would result in loadings of the desired 

surface concentrations so that each TIJ pass added an easily traceable amount. The devised 

protocol proved to be very simple and limited the number of steps in the methodology. In 

addition, the number of TIJ passes controlled the surface loading concentration very 

efficiently, as shown in Table 3 for TNT. For example, after performing one TIJ pass using a 

1059 ppm TNT stock solution, 1.04 g/cm2 were deposited onto the gold-silicon surface. In 

Figure 6, the relationship between the number of TIJ passes and the surface loadings for the 

HEMs studied is represented. The deposition of RDX and TNT exhibited linear behavior 

with respect of the number of TIJ passes applied to the substrates, but the deposition of AN 

stock solutions with TIJ was not. 
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This non-linear behavior of AN was attributed to the affinity of the analyte for water in the 
form of ambient humidity; as time passed, AN absorbed additional water from the air. This 
phenomenon would explain why, when more AN was available, the surface concentration 
began to increase exponentially, but the precise reason behind this behavior is currently 
unknown. These results demonstrate that, using the TIJ method, it is possible to generate 
samples and standards of HEMs with more uniform coverage and surface loading 
concentrations that can be varied by changing the numbers of TIJ passes without the need 

for serial dilutions. Attempts to prepare standards lower than 5 g/cm2 for AN were 
unsuccessful because that solution, after rinsing, was outside of the lower value of the IC 
calibration range (1.0 ppm). As explained above, for TNT there was a direct relationship in 
the number of passes and loading concentration. For TNT, one pass resulted in a surface 

loading of 1.0 g/cm2, and 10 passes led to a surface concentration of 9.2 g/cm2. For RDX, 

one pass led to 0.55 g/cm2, five passes generated a loading of 3.2 g/cm2 and 10 passes 

resulted in a deposition of 5.4 g/cm2. This result confirms that the amount dispensed by 
TIJ is markedly dependent on the substance to be deposited and also on the solvents and 
surfaces used for the depositions. 
 

Number of passes 
Rinsing Vol. 

(mL) 
Loading concentration 

(g/cm2) 

1 5 1.04 

2 10 2.08 

5 10 5.58 

7 10 7.88 

10 10 9.19 

Table 3. HPLC analysis of TNT loading concentrations obtained by varying the number of 
TIJ passes. 

Even though TIJ promises to be a good method for the preparation of samples and 
standards on surfaces, maintenance of the TIJ print is a potential problem, and care must 
also be exercised when re-using solutions stored in the cartridges. If the cartridges are not 
properly sealed after use, then the solutions could leak out of the nozzles and solidify, 
clogging the pores of the inkjet cartridge. This clog eventually could lead to disruptions in 
the depositions of the desired surface concentrations upon further use. 
The shelf life is a critical parameter to evaluate during the production of samples and 
standards of solid analytes deposited onto substrates. Materials with high vapor pressure will 
not stay on the surface for a long time. However, the sublimation of the material depends on 
the material-surface interactions. TNT, which has a higher vapor pressure than RDX, will 
sublimate faster than RDX. As will be shown, RDX stays on the stainless steel surface for 
almost an entire year without any significant changes of the FTIR band intensities (expressed 
as peak areas). Another significant parameter to be considered is the photodecomposition of 
analytes by exposure to light (Irrazabal et al., 2007) leading to the formation of new products. 
To perform comparisons of surface effects, samples were dispensed using TIJ onto gold coated 
silicon, glass and stainless steel (SS) substrates. Three samples of TNT were prepared on each 
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surface using 10 passes, leading to a final surface concentration of approximately 10 g/cm2. 
The samples were then analyzed by OFC-GAP/FT-RAIRS for 900 min (15 hr) to examine 
sublimation from the test surfaces. In the case of RDX, experiments were performed over 11 
months after smearing on a SS substrate. Figure 7 shows the RAIRS spectra of 10 g/cm2 TNT 
on glass, SS and gold-silicon surfaces. The vibrational signatures of the HEM can be clearly 
observed (1096 cm-1, 1181 cm-1, 1354 cm-1, 1559 cm-1) (Lin-Vien et al., 1991). The nitro 
symmetric stretching vibration of TNT band appeared at 1354 cm-1, and the nitro asymmetric 
stretching vibration was found at 1559 cm-1. The locations of persistent IR bands were almost 
the same on the different test surfaces, with only a few changes in intensity. The presence of a 
strong band at about 1267 cm-1 can be attributed to Si-O vibration in the glass. The spectra of 
TNT on gold-silicon are shown at 0 hr and at 15 hr, after completing the sublimation studies. 
At 15 hr, the TNT vibrational signatures disappeared from the spectrum, indicating that the 
compound had sublimated from the surface. 
 

 
              (a)         (b)             (c) 

Fig. 6. Surface loadings obtained by variation of the number of TIJ passes dispensed to gold-
coated silicon substrates. (a) AN, 892 ppm; (b) RDX, 812 ppm; (c) TNT, 1059 ppm. 

 

 

Fig. 7. FTIR spectra using a grazing angle objective for 10 g/cm2 RDX (smearing) and TNT 
(TIJ): (a). RDX/SS; (b) TNT/Au@Si, 0 h; (c). TNT/Au@Si, 15 h; (d) TNT/SS; TNT/glass. 
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Sublimation rate studies were performed for TNT deposited onto the mentioned surfaces. 
Peak areas were calculated for the IR band centered at 1354 cm-1 using the OPUSTM Bruker 
Optics software (Billerica, MA) for all the spectra recorded over 15 hr. Peak areas were 
calculated by integration using straight lines that connected the wavenumber limits of the 
peak envelopes as baselines. These results are shown in Figure 8 for TNT on SS, glass and 
gold-silicon. In the same graph, the sublimation behavior of RDX (in days) is observed (the x 
axis is on the top of Figure 8). 
 

 

Fig. 8. Plots of (A-A∞)/(A0-A∞) vs. time for surface sublimation for: TNT on gold-silicon (♦); 
TNT on glass (▲), TNT on stainless steel (●) and RDX on stainless steel (■). 

According to standard procedures in kinetics and dynamics measurements, a physical 

property can be taken to be directly proportional to the concentration of a given species in 

the concentration range used. In the present studies, integrated IR band areas were taken to 

be directly proportional to the surface concentrations. In Equation 1, A∞
 
is the area at infinite 

time, At is the peak area at time t (given in seconds) and k is the surface sublimation 

constant. The decay of peak areas was monitored as a function of time for the different 

surfaces, and the data were plotted as ln (At-A) vs. t. The surface sublimation constant was 

obtained from the value of the slope for the linear regression trend. 

 ( )t xln A A kt     (1)  

The data were adjusted to Equation 1, and the value of the constant parameter k was 
calculated. The results are shown in Table 4. The residence time of the explosive on the 
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surfaces (gold on-silicon, glass and SS) is affected by the sublimation process, vapor 
pressure (Phares et al., 2000) and HEM interaction with the surface. The residence time (RT) 
can be described as the time the material will persist on a surface after exposure to ambient 
conditions. The results indicate that TNT on SS has a residence time longer than the other 
surfaces studied. The half life values (t50) for surface residence are also shown in Table 4 for 
TNT on gold-silicon, glass and SS surfaces and for RDX on SS. Residence time half life 

values for TNT on glass and SS are higher than on gold-silicon. These results are closely 
dependent of the material type. Gold on silicon is a very inert surface compared to glass and 
SS surfaces. This caused the poor adhesion of the material on the gold-silicon indicating that 
the interaction between the HEM and substrate is stronger in glass and SS than gold on 
silicon.  However, for the gold coated silicon surface, this interaction should be minimal, 
due to small value of t50 = 195 min. The high value of 630.1 days for t50 of RDX is an 
indication of strong interactions between the HEM and the stainless steel surface compared 
to gold on silicon, and it is closely related to the low vapor pressure of RDX. 
 

Kinetics Parameters 
TNT @ Gold 

(min) 
TNT @ Glass (min) 

TNT @ SS
(min) 

RDX @ SS 
(day) 

k 0.00356 0.00142 0.00081 0.0011 
t1/2 195 488 857 630 

Table 4. Kinetics parameters of the sublimation of TNT on different surfaces and RDX on SS. 

The results presented above confirm that physical properties such vapor pressures and 
surface type influence the lifetime of the highly energetic materials on the substrates and the 
practical limits of substrates for preparation of samples and standards. Although AN was 
not tested in sublimation studies, it is estimated that it will remain on the surfaces for a long 
time due to its ionic character and low vapor pressure. However, the high affinity for water 
constitutes a practical limitation, particularly if the samples/standards are meant to be used 
for IR detection applications. 

3. Detection of hazardous liquids concealed in commercial products by OFC-
Raman spectroscopy 

In August 2006 a terrorist plot to destroy aircrafts on transatlantic flights was discovered 

and timely stopped in London. The plan involved the use of liquid explosives stored in 

beverage bottles that would pass check points without being detected. The liquids were 

going to be mixed in flight, generating an improvised explosive device (IED) and were 

going to be left in the aircraft and detonated remotely after the aircraft landed (CNN news 

report, 2006). Immediately, airport security agencies at UK and USA established a ban to all 

liquids except from medicine and infants food beyond checkpoint.  The position has been 

changed several times to allow certain amount of liquid or gel based products. However, 

when or how terrorists would try to pass hazardous liquids into an aircraft to create a 

threat, explosive or chemical is uncertain. For this reason it is important to develop a 

methodology through which it would be possible to differentiate between common 

products and compounds that can be combined for terrorisms intends. 

The use of hazardous liquids as tools for terrorist intentions is not a new modality. 
Terrorists have used hazardous chemicals that are liquids at room temperature in many 
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occasions. Some examples are the bombing to the World Trade Center in 1993, the attempt 
to a Philippine Air flight in 1994 and the deployment of the CWA Sarin in a Japan subway in 
1995. Some of these attempts involved the use of liquid explosives like nitroglycerin and 
other nitro compounds. Peroxide based explosives are also easily prepared from common 
liquids such as acetone. Other extremely hazardous liquids are chemical warfare agents 
(CWA) and Toxic Industrial Compounds (TIC). TICs are chemicals toxic to humans that are 
widely used in manufacturing or primary material processing.  They have received more 
attention in recent years because ease of accessible in large quantities by potential terrorists. 
Chemical warfare agents (CWA) differ from TICs in that they are intended to immediately 
incapacitate as many soldiers as possible when released against an enemy in war. To do this, 
the CWA must be toxic enough to cause an instant response when it is inhaled or comes into 
contact with the skin.  Table 1 contains examples of some hazardous liquids and their 
volatility. Highly volatile materials can be easily deployed just by opening the container. 
Along with the volatility of these chemical is the Immediately Dangerous to Life or Health 
(IDLH) level and is defined by the US National Institute for Occupational Safety and Health. 
This value is the concentration in air that would cause immediate or delayed adverse health 
effects after 30 min of unprotected exposure. If these chemical are used in large quantities 
toward civilians, the amount of casualties will be huge. However even small quantities of a 
toxic chemical or a small IED can cause chaos specially in closed environments like an 
aircraft or a train or high transit areas like a building or a transportation terminal. 
 

Chemical Description 
Volatility 
(mg/m3) 

IDLH 
(ppm) 

GB (C4H10FO2P) CWA: Sarin, organophosphate nerve agent. 16,091 .03 

AC (HCN) CWA: hydrogen cyanide, blood agent 1,080,000 50 

HNO3 TIC: nitric acid, a highly corrosive acid 63,000 25 

H2SO4 TIC: sulfuric acid, a strong mineral acid 1.3 3.7 

GD (C7H16FO2P) CWA: Soman, a nerve agent 3,900 .008 

PCl3 phosphorus trichloride 130,000 25 

Table 5. Description of liquid CWA and TIC at room temperature. 

Various approaches have been taken to detect and identify chemical agents including 

HPLC/MS GC/MS, Ion Mobility Spectroscopy, Infrared Spectroscopy and Raman 

Spectroscopy (D'Agostino et al., 2006; Sun and Ong, 2005, Marrs et al., 1996). Vibrational 

spectroscopy has the advantage that provides chemical information and provide with the 

sensitivity and selectivity required for Chemical Point Detection systems and has the 

potential for remote sensing.  Specifically, Raman is able to analyze samples though various 

transparent glass and plastic containers, such as beverage bottles or food containers. This 

allows the contents of a container to be analyzed without opening the container, minimizing 

exposure to potentially harmful substances and helping to speed the screening process. In 

this work concealed liquids scenarios are studied by Raman spectroscopy. Hazardous 

liquids including CWAs TICs and other prohibited are studied through the walls of 

commercial drink containers. Fiber optic coupled Raman was used to evaluate the content of 

plastic and glass containers. Standoff Raman detection was used to obtain information of 
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hazardous liquids and mixtures from 20 feet distance.  The objective of this work is to study, 

in real field conditions, the detection of CWAs and TICs by point detection or with a as a 

remote surveillance tool. 

Raman spectroscopy is one of the promising tools under consideration (Fraquharson et al., 
2005; Pearman and Fountain, 1999). Since Raman scattering brings information on 
vibrational modes of molecules it can be used as a specific mean of detection. These days, 
Raman systems are portable, sensitive, flexible tools that are used in the field and the 
laboratory (Marrs et al., 1996). Raman based systems are able to analyze samples through 
various transparent glass and plastic containers (US NRC, 2004). This allows the non-
invasive, non-destructive inspection of the content of a container without opening, 
minimizing exposure to potentially harmful substances and helping to speed the screening 
process. Also water does not present a strong signature in Raman measurements therefore 
Raman based systems result attractive to characterize aqueous based commercial products. 
In this study Optical Fiber Coupled Raman spectroscopy (OFCRS) was used to characterize 
samples where a hazardous liquid is concealed either in a commercial product container or 
mixed with consumer products. Several commercial consumer products such as: 
mouthwash, sodas, juices and liquors were mixed with liquid explosives, flammables and 
CWA’s. FOCRS was used to evaluate the content in plastic and glass containers. The 
dependence on liquid color, container material was also studied. The results suggested that 
the technique can be used to discriminate if the commercial liquids are the intended or a 
hidden hazardous liquid. 
Raman spectroscopy presents various strengths that make it a potential technique for 

detection of chemical agents in the field. Since Raman scattering brings information on 

vibrational modes of molecules it can be used as a specific mean of detection. Water does 

not present a strong spectra making possible to analyze a variety of samples where water 

can be interference. In 1999 Christensen reported the use of a portable Raman system to 

characterize chemical agents sealed on glass containers. Samples were part of a library for 

military training in chemical agent identification. (Christesen et al. 1999). Optic fiber 

coupled Raman spectroscopy (OFCRS) was used to characterize liquid explosives and 

commercial liquids (Alvarez-Rivera, 2002). The results suggested that the technique can be 

used to discriminate if the commercial liquids are the intended or a hazardous liquid. 

Eliasson and colleagues (Elliasson et al., 2007) have reported the detection of drugs and 

liquid explosives concealed in dense colored plastic containers. The technique consists of a 

variation of the angle of detection to collect scattered Raman radiation. This approach 

allowed reducing fluorescence and interferences.  

In 2002 Harvey evaluated a portable Raman system for forensic applications (Harvey et al, 

2002). The evaluation of chemical agents in glass and plastic vials included library matches 

and variability due to containers and the use by operators. The third component of the 

present work is to evaluate Raman as a detection tool for concealed hazardous liquids. 

Liquid explosives and chemical agents were detected in a variety of consumer product 

containers either pure or missed with the commercial product. 

The hazardous materials used for the detection experiments were: hydrogen peroxide 50% 

wt. in water, toluene, benzene and 99.5% ethanol from Aldrich chemicals. Also, acetone, 

dimethylmethyl phosphonate (DMMP) and triethyl phosphate (TEP) from Fisher Scientific 

were used. Fisher chemicals were obtained from Fisher Scientific International, Chicago, IL. 

Aldrich chemicals were obtained from Sigma-Aldrich Chemical Company (St. Louis, MO). 
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DMMP and TEP are structural analogs of chemical warfare agents (CWA) such as TABUN, 

SARIN, SOMAN, and GF and therefore are commonly used as CWA simulants (CWAs). The 

commercial liquid products employed in this study were: Gatorade variety drinks 

(distributed by The Gatorade company, Chicago, USA), Scope mouthwash (distributed by 

Procter and Gamble, Cincinnati, USA), Dewar’s White Label whiskey (imported by Mendez 

& Co., PR), Ron Bacardi light rum (Produced by Bacardi Corp, PR), V8 vegetable juice 

(distributed by Campbell Company, NJ, USA), 7Up (distributed by Coca Cola Company, 

Puerto Rico). The effect of thickness and color of commercial glass and plastic containers 

were evaluated (See Table 2 for details). Raman spectrum of the original liquid in its 

container was obtained. Then the liquid was replaced by a hazardous liquid or mixture. 

Light absorption of containers at different wavelengths was studied. 

 

Container Material Description 

green glass bottle glass soda water (Canada Dry®) 
amber glass bottle glass Malt beverage (Malta India®) 
clear glass bottle glass Perfume (Adidas®) 
clear glass bottle glass Juice (Snapple®) 

blue plastic bottle Plastic (PET) Water (Aquacal®) 
green plastic bottle Plastic (PET) Refreshment (7up®) 
clear plastic bottle Plastic (PET) Baby bottle 
clear plastic bottle Plastic (PET) Perfume (Ralph® body spray) 

Table 6. Description of containers used in the OFC-Raman spectroscopy experiments. 

A Renishaw RM1000 system microscope with a NIR 785 nm laser was used to obtain the 
spectra of explosives mixtures. The Raman shift spectra were obtained from 200 to 3200 cm-1. 
The system was calibrated using silicon single crystal sample as an external standard by 
measuring the vibration at 520.56 cm-1. Two portable fiber optic Raman spectrometers (Raman 
Systems R-3000 HR) were used to evaluate the spectral signature of commercial products. The 
excitation wavelengths used were 532 nm (green) with 25 mw maximum output power and 
785 nm (red) with 250 mw maximum output power. The spectra of the original liquid in its 
container was collected though the walls. A volume of 30 mL of a hazardous liquid compound 
was then transferred and analyzed in different commercials containers varying the time and 
the power. Raman spectra were acquired from 200 cm-1 to 1800 cm-1. The systems were 
calibrated using cyclohexane. 
The spectra of three liquors were obtained in the same clear glass bottle. The results are 
presented in Fig. 9a. As expected the rum, gold tequila and whiskey present the same 
spectra. The yellowish color of the tequila and whiskey presented some fluorescence 
identified by the shift in the baseline of the spectrum. However it is possible to identify the 
main peaks associated to the alcohol content. These spectra as well as the spectrum for 
ethanol, the main component of hard liquors, present peaks at 881(C-C-O stretch), 1048 cm-1 
(ring vibration), 1186 and 1280 cm-1 (ring stretch) and 1456 cm-1 (CH3 deformation). Then the 
content of the clear glass bottle was replaced with acetone and hydrogen peroxide so that 
the content appears to be clear rum. These products can be easily found at beauty supplies 
and drugstores. These are commonly found in consumer products such as nail polish 
remover and hair care products. However together they can be mixed to for acetone 
peroxide, a known homemade explosive. The Raman spectra of acetone, peroxide and the 
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acetone peroxide explosive are presented in Fig. 9b. Acetone’s main peak is located at 789 
cm-1. For peroxide the strong Raman line at 878 cm-1, characteristic O–O stretching mode, is 
stronger than that the other peaks of the spectra. For the AP the main peaks are located at 
588 cm-1, and three characteristic peaks at 780 cm-1, 890 cm-1 and 936 cm-1. The position and 
intensity of the major peaks in acetone and peroxide make them easily detected by Raman 
and can be used as markers for explosive mixtures. 
Fig. 9c presents the Raman spectra of 20% and 60% peroxide in whiskey. As previously 
mentioned, the spectroscopic signature of peroxide is hidden or masked by the whiskey.  
Samples from 0% to 90% peroxide in whiskey were prepared without changing the location of 
peaks. Since the presence of peroxide increased the intensity at 874 cm-1 the peaks ratio can be 
used to discriminate between the original liquid and adulterated liquor. OPUS PLS Package 
was used to build a model to determine the concentration of peroxide in whiskey. The result of 
the cross validation is included in Figure 10a. The data from these same samples was 
correlated just for presence of peroxide. The graph at Figure 10b confirms that peak ratios can 
be used to discriminate between an original liquid and a concealed hazardous material. 
 
 

 
 

 
 

Fig. 9. (a) Raman spectra of liquors in their original containers acquired with optical fiber 
probe. (b) Raman spectra of acetone, peroxide and acetone peroxide explosive in a clear 
glass bottle; (c) Raman spectra of a mixture of hydrogen peroxide and Dewar’s whiskey. 
Conditions: 785 nm laser, 200 mW power and 2 s integration time. 

a b 

c
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The spectra of a perfume and Plax™ mouthwash are shown in Fig. 11. Intensity of the peaks 
is reduced by the fluorescence of the liquid. Most noticeable peaks for the mouthwash 
appear at 875 cm-1, 1000 cm-1, 1080 cm-1, and 1450 cm-1. For the perfume the sharper peaks 
are: 798 cm-1, 878 cm-1, 1260 cm-1, 1090 cm-1, 1450 cm-1 and 1610 cm-1. Consumer products 
such as personal care and cosmetics present a challenge. Commonly these products contain 
ingredients such as alcohols, peroxides and others with chemical composition related to 
hazardous chemicals. Also these liquids are usually colored and present fluorescence. 
The perfume bottle was emptied and replaced by several toxic industrial compounds. Fig. 

11b shows the detection of toxic industrial compounds using a 532 nm laser. These liquids 

will exhibit strong peaks that will differentiate the material from the original liquid 

(perfume). The spectra of dimethyl methyl phosphonate (DMMP), a chemical warfare agent 

simulant is shown in Fig. 12a. This spectrum was collected through the walls of a clear glass 

juice bottle (Snapple) and was detected using 532 nm laser beam with 10 mW and the 

acquisition time was 1 s for recording the spectrum. The peaks at about 715 cm-1 for DMMP 

correspond to a stretching mode involving the phosphorus atom. Fig. 12b shows the OFC 

Raman spectrum of the chemical agent simulant triethylphosphate (TEP). 

 
 
 
 
 

   
 
 

Fig. 10. (a) Prediction of the concentration of peroxide in whiskey; (b) prediction of presence 
of peroxide in whiskey. 

The Raman spectrum of acetone was collected in different bottles using the same acquisition 

parameters at 532 nm (Fig. 11a) and 785 nm (Figure 11b) laser source. The characteristic 

peaks of acetone at 780 cm-1, 1400 cm-1 and 1700 cm-1 were observable for all samples. 

However for 532 nm data the intensity of the peaks decreased in the following order: clear 

glass > clear plastic > green glass > amber glass. When the 785 nm laser was used the order 

was: clear glass > clear plastic > amber glass > green glass. It was not possible to collect a 

spectrum of the chemical in the green glass bottle using 30s of 200 mw of 785 nm laser 

power. 

a b 
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Fig. 11. (a) Raman spectrum of a perfume and mouthwash acquired with optical fiber probe; 
conditions: 785 nm laser, 100 mW and 1 s of integration time. (b) Raman spectra of toxic 
compounds within a perfume clear glass bottle at 532 nm, 1 s and a laser power of 12 mW.  

 

 

 

 

 
 

  
 
 

Fig. 12. Raman based detection of chemical agents simulants in a clear glass bottle at 532 nm 
laser, 1 acquisition, 1 s, 10 mW: (a) DMMP; (b) TEP. 

a b 

a b 
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Fig. 13. Raman spectra of acetone in different bottles. (a) 532 nm 20 s, 33 mW; (b) 785 nm 30 s 
at 200 mW. 

Since it was possible to collect a spectrum from the green plastic bottle, the behavior could 
be associated to thickness of the walls. The thickness of glass and plastic bottles was 
measured. Table 7 present the results that are similar among glass bottles and differing 
considerably from a water plastic bottle. 
 

Product Material Color 
Thickness 

(mm) 

water plastic (PET) clear 0.22 ± 0.02 

fruit juice glass clear 1.92 ± 0.42 

malt beverage glass amber 2.28 ± 0.44 

beer glass green 2.02 ± 0.47 

Table 7. Thickness of common containers evaluated with OFC Raman. 

Then the region between 700 cm-1 and 900 cm-1 of acetone was used to study the effect of 
different collection parameters on the spectra inside different bottles. The acquisition time 
was changed from 1 to 30 s. The laser power was varied from 11 to 32 mW. The power 
intensity of the instrument modulating and the output power was measured at the probe 
with a digital power meter.  At fixed laser power of 18 mW the response was linear with 
increasing acquisition time (Figure 14). For the amber glass bottle the increase in peak area 
was significantly lower.  This suggests that the bottle color is responsible for the 
fluorescence. 
The transmission spectra of different bottles are shown in Fig. 15. These spectra were 
acquired in the 220 nm to 1200 nm range. The objective of this experiment was to measure 
how much light is allowed transmitted in a specific bottle at different wavelengths. Solid 
vertical lines represent the laser wavelengths evaluated in the present work and dashed 
vertical lines mark the wavelength range for Raman spectra with shifts from 200 to  

b a 

Acetone 
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Fig. 14. Detection of acetone at different collection times inside different bottles at 532 nm 
and 18 mW (1 scan). 

1800 cm-1. According to this illustration all clear containers (glass and plastic) will allow 
light of all wavelengths to reach the container as well as allow detecting scattered radiation. 
However for amber containers the optimum range for interrogation will be 600 to 750 nm. 
The comparison with green containers suggests that the container material absorbs most of 
the light but a spectrum of the content would be possible with the appropriate laser power. 
 

 

Fig. 15. Transmission spectra of different bottles materials. Solid vertical lines indicate 
excitation lines in Raman experiments. Dashed lines indicate range for detected scattered 
radiation in the 200-1800 cm-1. 
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The limits of detection of a CWA simulant in heavily colored liquids were studied by OFC 
Raman. Triethyl phosphate (TEP) is commonly used as a simulant of Soman (GD), a nerve 
agent. Fig. 16a presents the spectra of different flavors of Gatorade. The spectra were 
obtained at the same conditions. Fruit punch presents a higher baseline associated to 
endogenous fluorescence. TEP was prepared in random concentration from 0 to 100% 
(V/V). Then the region from 675-855 cm-1 was integrated (Fig. 16b). This region was selected 
because of the presence of the characteristic peaks for phosphates. This region will be the 
same for the real CWA and related simulants.  
Measurements were taken in triplicates from 0 to 100%. Fig. 16c presents average peak areas 
as a function of TEP concentration in the highly colored solutions concentration. The 
objective of these graphs is to compare the limit of detection (LOD) and the limit of 
quantification (LOQ) between colored liquids. Error bars for each data point represent the 
calculated standard deviation derived from all repetitive measurements each.  
 

Gatorade flavor 
LOD
(%)

LOQ 
(%) 

fruit punch 6 21 
lemon 9 30 
orange 9 32 

Table 8. LOD and LOQ for TEP in highly colored Gatorade liquids. 
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Fig. 16. (a) Raman spectra of Gatorade lemon, orange and fruit punch. (b) Spectrum of neat 
triethylphosphonate. (c) Peak areas vs. TEP content in the highly colored solutions. 
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Limits of detection for this analyte have been calculated according to IUPAC by the 3σ 
criteria (3 times standard deviation of the peak-to-peak noise related to the slope of the 
linear regression function). When the signal is 3 times as great as the noise, it is ready 
detectable but still too small for accurate measurement. A signal that is 10 times as great as 
the noise is defined as the lower limit of quantification (LOQ), or the smallest amount that 
can be measured with reasonable accuracy. Table 8 presents the results of LOD and LOQ for 
TEP in Gatorade lemon, orange and fruit punch. 
A 488 nm OFC Raman probe was designed, built and tested in quantification of CWA 

simulants camouflaged as consumer beverages such as purified water and energy drinks.  

 

Laser – 488 nm

Raman

Spectrometer

Fiber

Optic

Edge 45 º 

Beamsplitter

Edge Laser 

Blocking4 cm
 

Fig. 17. Optical fiber coupled Raman probe for excitation at 488 nm. Interface to 
spectrograph was also done with OFC. 

Raman experiments were performed using the strong blue line of an argon ion laser 

INNOVA 310/8 from Coherent, Inc. at 488.0 nm.A single strand optical fiber (non-imaging, 

600 m diameter, model AL 1217, Ocean Optics, Inc.) was used to couple the Raman probe 

to which a set of laser line filter (to clean satellite lines) and Semrock RazorEdge™ edge 

filter was used to filter the Rayleigh scattered light. An Andor Technologies spectrograph: 

Shamrock SR-303i (aperture: f/4; focal length: 303 mm; wavelength resolution: 0.1 nm or 4.2 

cm-1 at the excitation wavelength) equipped with a 1200 grooves/mm grating was used to 

analize the Stokes scattered light. A high performance, back thin illuminated CCD camera 

(Andor Technologies model # DU970N-UVB) with quantum efficiencies of 90% (200 cm-1) to 

95% (3200 cm-1 )  served as light detector. The probe was designed as a combination of two 

edge filters: the first works at 45 and acts as a mirror for 488.0 nm light, blocking the 

backscattered Rayleigh light. The second is an edge filter laser blocking at 0 and blocks of 

remains of the Rayleigh light and transmits the  Stokes component of the inelatically 

scattered signal. The laser light was guided to the probe by optical fiber and the Stoke 

Raman signal was also transmitted to the spectrometer by optical fibers. A 4 cm focal length 
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lens focuses the laser light onto of the interior of the plastic/glass bottles. This makes the 

signal produced at the wall of the bottle minimal.  

Four different bottles: clear glass, green glass, brown glass and plastic were used for 

measure signal Raman of simulant within the container. The simulant used was TEP. 

Mixtures of simulant and water were used for check the limit of detection. Fig. 18a shows 

typical OFC Raman spectra of TEP solutions in plastic bottles excited by 488.0 Ar+ line. The 

calibration curves were obtained by using partial least squares (PLS) regression algorithm of 

chemometrics and two models were generated. The first model used no preprocessing and 

the entire spectral region available. For the second model, selected spectral regions were 

picked by an optimization method, until the best preprocessing was achieved. The optimal 

regions are shown in Fig. 18b. The optimal preprocessing was vector normalization. 
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Fig. 18. (a) OFC Raman spectra of TEP solutions contained in plastic bottles and excited by 
488.0 laser line. (b) Predicted vs. true concentrations of TEP in aqueous solutions. 
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Results of the analysis of the experiments are summarized in Table 9. Both models 
generated worked well for predicting the TEM concentration, with slightly improved results 
when vector normalization was applied to the data and individual spectral windows were 
used instead of the complete spectral range. As can be inferred from Table 9 and using LOD 
values calculated as 3.3xRMSECV,  the detection limit for the model 1 was 7% and for the 
model 2 was 3%.  
 

Model 1 Model 2 

Region 
(cm-1) 

3600-199 
3441.5-3080.2; 2721.3-2360; 

2001-1278.5; 560.5-199.2 

Preprocessing none Vector normalization 

R2 99.87 99.91 

R2CV 99.32 99.88 

RMSEE 1.14 0.914 

RMSECV 2.48 1.03 

Rank 6 5 

Table 9. Summary of statistical inferences for the two methods of analysis of OFC Raman 
spectral data of TEP solutions. 

4. Optical fibers coupled remote raman detection of chemical warfare agents 
simulants 

Chemical warfare agents (CWA) can be classified as weapons of mass destruction (WMD). 
They include nerve agents, blister agents, choking agents and blood agents. Nerve agents 
are a group of particularly toxic chemical warfare compounds (Marrs et al., 1996). They were 
developed just before and during World War II, and they are chemically related to 
organophosphorus insecticides. The principal compounds in this group are Tabun (GA), 
Sarin (GB), Soman (GD) and methylphosphonothioic acid (VX). During last two decades, the 
world has suffered many terrorist attacks that employed chemical warfare agents (CWA) 
and other hazardous compounds. Examples of such events were seen during the Iran-Iraq 
war (Henderson, 1999), and in the terrorist attacks in Matsumoto and the Tokyo subway in 
Japan (Miyaki et al., 2005). These types of terrible events have motivated many countries to 
focus their defense and security-related research toward the detection of explosives, 
hazardous liquids and chemical agents that can be used by terrorist organizations as WMD 
threats against troops or civilians. The anticipation of future attacks requires a wide array of 
detection systems for a variety of potential deployment scenarios (Sun et al., 2005; 
Farquharson et al., 2005). There is a need for more sensitive and selective remote detection 
techniques for chemical threat compounds operating at ambient conditions in situ and on a 
realistic time scale. Remote Raman Spectroscopy (RRS) provides a method for identifying 
chemicals in samples located meters from the excitation source. In fact, telescope-based 
Raman spectroscopy detection methods have been reported for standoff detection of 
chemicals using both visible and UV laser excitation (Hirschfeld, 1974; Angel et al., 1992; Wu 
et al., 2000; Sedlacek et al., 2001; Sharma et al., 2002; Thomson and Batchelder, 2002; Sharma 
et al., 2003; Sharma et al, 2005; Pacheco-Londoño et al., 2009; Ramírez-Cedeño et al, 2010).  
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Recently, our group has applied Remote Raman and Infrared detection systems to the 
detection and quantification of military high explosives (HEs) and homemade explosives: 
HME (Pacheco-Londoño et al., 2009) and also the remote detection of hazardous liquids 
concealed in commercial products bottles (Ramírez-Cedeño et al, 2010). In this manuscript, 
we report on the design, assembly and testing of two RRS Systems: one operating with 
continuous wave (CW) laser lines and the other using a pulsed laser system. The collector 
telescope was modified to operate with both visible (400 - 700 nm) and near-ultraviolet 
(NUV: 200 - 400 nm) excitation sources for use in the detection of CWAS: dimethyl 
methylphosphonate (DMMP), 2-chloroethylethylsulfide (2-CEES) and 2-(butylamino)-
ethanethiol (2-BAET). Raman scattering cross sections of the studied CWAS were measured 
using VIS and NUV excitation lines. 
The remote-sensing spectroscopic system was also used to detect toxic industrial 

compounds (TICs): benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and 

carbon disulfide. The experiments utilizing this remote system used excitation laser lines at 

514.5, 488.0, 363.8 and 351.1 nm and a target-collector telescope at a fixed distance of 6.6 m. 

Further modification of the reflector telescope for use as a receiver allowed for near-field 

sensing applications at target-collector distances as close as 2.2 m to the target threat liquid 

chemicals (CWAS and TIC). The visible CW laser excitation system has been described in 

previous publications (Pacheco-Londoño et al., 2009; Ramírez-Cedeño et al, 2010). Remote 

Raman measurements of TIC, which are typically strong inelastic scatterers, were initially 

carried out using this system without any modifications at a fixed target-collector distance 

of 6.6 m with visible light excitation. In order to measure remote Raman spectra in the NUV 

and to measure at closer target-collector distances, several modifications had to be made to 

the receiver reflector telescope. The modified experimental setup for the prototype RRS-

based system is shown schematically in Fig. 17. The spectroscopic analysis system consisted 

of an Andor Technologies Shamrock SR-303i spectrograph, which was equipped with a high 

quantum response charge-coupled device detector (CCD, Andor Technologies model 

Newton™ DU-970N-UVB), the appropriate filters for the rejection of satellite plasma lines 

(laser line filters), and a laser radiation filter designed to block Rayleigh scattered light (edge 

filters, obtained from Semrock, Inc. Rochester, NY). The nominal detector efficiencies were 

95% (532-570 nm), 93% (514.5 nm), 90% (488 nm) and 35% (350-390 nm). 

The other necessary components were a reflective telescope used as a collector or signal 

receiver, a optical fiber assembly, and a single-line laser system operating at 351.1, 363.8, 

488.0, 514.5 and 532 nm (Coherent INNOVA 308, Coherent SABRE 25/7 argon ion laser 

systems; Coherent VERDI-5 solid state diode laser system). The telescope used was a 

MEADE ETX-125 Maksutov-Cassegrain design (125 mm clear aperture, 1900 mm focal 

length f /15). The reflecting collector was coupled to the Raman spectrometer with a non-

imaging, 600 m diameter optical fiber (model AL 1217, Ocean Optics, Inc., Dunedin, FL). 

Two lenses were used to collimate the light from the telescope output, from which the 

focusing objective was removed, and direct it into the fiber optic assembly. The output of 

the fiber optic assembly was directly coupled to the Raman spectrometer entrance slit. 

The telescope used in the remote detection system was obtained from the manufacturer as a 
reflective receiver operating in the VIS region only. It was modified to allow for the 
collection of scattered Raman signals in the near-ultraviolet region, 350-390 nm, by coating 
the secondary mirror with a thin layer (~ 200 nm) of UV-reflective aluminum. In addition, 
the minimum focal point where a clear image could be formed was 5 m. An anodized 
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aluminum tube with capabilities of rigidly holding two quartz lenses and moving the lenses 
to change the focal distance was integrated to the beam path to allow for a reduction of the 
minimum focal point to 2.0 m adding near-field proximity detection capability. The system 
was successfully tested at a 2.2 m target-collector distance. Although RRS spectra are not 
shown, data is but included as part of system performance tests. The changes made to the 
collector telescope are also illustrated in Fig. 19.  
The pulsed laser standoff Raman system used the components of the CW system with the 
exception of the excitation source and the spectrometer detector. A frequency-doubled 532 
nm Nd:YAG pulsed laser system (Quanta Ray INDI Series, Newport-Spectra Physics, 
Mountain View, CA) was used as the excitation source. The maximum energy/pulse of the 
laser at 532 nm was 200 mJ, and it operated at a repetition rate of 10 Hz. The pulse width 
was approximately 5-8 ns, and the beam divergence was less than 0.5 mrad. A gateable, 

intensified CCD detector (iStar ICCD camera, Model DH-720i-25F-03, Andor Technology, 

Belfast, Northern Ireland) was used as the photon detector. Andor Technology Solis 
software for spectroscopic, imaging and time-resolved studies was used for spectral data 
acquisition and processing from the intensified and gated CCD detector. Using this 
software, the data could be acquired in both imaging and spectroscopic modes.  
 

 

Fig. 19. Design details of the Remote Raman Detection System: (1) laser source; (2) sample; 
(3) reflective telescope signal collector; (4) variable focus secondary mirror; (5) standoff 
distance; (6) fiber optic coupling; (7) details of optical coupling; (8) spectrograph. Movable 
optical elements are represented by double head arrows. 

The remote system was tested using TIC and CWAS. The toxic industrial compounds 
investigated were chlorobenzene, toluene benzene, carbon disulfide, carbon tetrachloride 
and cyclohexane (all from Fisher Scientific International, Chicago, IL). The chemical warfare 
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agents simulants (CWAS) studied were dimethylmethyl phosphonate (DMMP, 99%, Fisher 
Scientific International, Chicago, IL), 2-chloroethyl ethyl sulfide (2-CEES, Sigma Aldrich 
Chemical Company, St. Louis, MO), and 2-(butylamino)-ethanethiol (2-BAET, Sigma-
Aldrich). For CW remote detection experiments, pure liquid samples were transferred to 5 
mL glass or quartz vials and placed 6.6 m away from the receiver telescope/excitation laser. 
The spectra of all compounds were collected with the laboratory lights off to avoid 
background light and mercury lines from fluorescent lamps. The spectra were acquired in 
the Raman Shift range of 100-1800 cm-1 at laser powers (measured at head) ranging from 
0.05 to 1 W and a single acquisition with integration time of 1-30 s. Quantification studies of 
DMMP/water solutions were carried out at a fixed 6.6 m target-collector distance using the 
CW RRS system only. 
Standoff detection experiments on DMMP at 35 m and cyclohexane at 60, 90 and 141 m were 
carried out using pulsed mode laser RRS system. DMMP was contained in clear glass bottles 
2.5 cm in diameter and 5.0 cm high. For acquisition of remote Raman spectra of cyclohexane 
at the longest distances, the sample was contained in clear glass bottles that were 7.5 cm in 
diameter and 15.2 cm high. The criterion used for changing vials at longer distances was 
that the beam diameter at the sample would be smaller than the cross section of the vials 
containing the samples. Liquids were remotely detected in the spectroscopic range of 500 to 
3200 cm-1 using 1 to 1000 pulses of 532 nm excitation wavelength, with pulse energy of 
~ 200 mJ. 
Important industrial solvents and starting materials used for manufacturing in the 
petrochemical, pharmaceutical, electronic, and other chemical industries are highly 
flammable, lachrymatory, toxic, mutagenic or carcinogenic. Some of these compounds are 
used in amounts that constitute potential threats. Thus, it is vital to find ways of monitoring 
these compounds in air and in their container bottles. Remote Raman systems offer new and 
simple alternatives to carry out these monitoring processes by remote sensing of the liquid 
and even the vapor phase (UV Raman). Figures 2 and 3 illustrate the remote CW Raman 
spectra of organic solvents, some of which are constituents of hydrocarbons found in 
petroleum-processing plants. All of the spectra were collected at a distance of 6.6 m from the 
telescope under laboratory conditions using low illumination. Samples were detected using 
514.5 nm laser line excitation at 1W (measured at head) using a single acquisition and 
integration time of 10 s.  
The most prominent feature common among all the spectra in Fig. 20a is the aromatic ring-
breathing mode at ca. 1000 cm-1. This strong Raman band is characteristic of the symmetric 
stretch mode of the benzene ring at 992 cm-1 (Lin Vien et al, 1991; Shrader, 1995; McCreery, 
2000). In the case of toluene and chlorobenzene, the same band appeared at 1003 cm-1. 
Another characteristic band of toluene was found at 786 cm-1. The C-Cl stretching mode of 
chlorobenzene was clearly observed at about 700 cm-1 in the Raman Shift spectrum of this 
TIC. 
Several organic solvents widely used in industry, teaching, and research labs were also 
studied. Among these solvents were carbon disulfide, carbon tetrachloride and cyclohexane. 
Typical Remote Raman spectra are shown in Fig 20b. All of these compounds have 
characteristic physical and chemical properties. Cyclohexane is typically used as a 
calibration standard for the Raman Shift axis in dispersive instruments, particularly in 
Raman studies of liquids (Evans and Bernstein, 1956). In this work, the Remote Raman 
spectra of these compounds were measured for liquids contained in 5 mL clear glass vials in 
the 150–1800 cm-1 range at a standoff distance of 6.6 m (Fig. 20b). 
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In Fig. 20b, it is possible to identify carbon disulfide by its very strong (highly symmetric 
nature) peak at ca. 655 cm-1, corresponding to the C-S symmetric stretching mode 
(Wakabayashi et al., 2007). Carbon tetrachloride shows its three main Raman active peaks. 
The most important band for CCl4 appears at 461 cm-1. This band is attributed to C-Cl 
symmetric stretching mode (Crain et al., 1992). According to the literature, cyclohexane is 
characterized by four prominent bands in the 800-1650 cm-1

 
region: a very strong peak at 801 

cm-1
 
due to the C–C skeletal breathing mode, the weak peak localized at 1029 corresponds to 

C–C stretching modes, and other, weak peaks that appear at 1260 and 1445 cm-1 due to 
twisting and scissoring modes (Evans and Bernstein, 1956; Sharma, 2007). 
The continuous wave (CW) standoff Raman system was originally designed to measure 

Raman Shift spectra excited at visible light frequencies (514.5 and 488.0 nm) at a fixed 

remote distance of 6.6 m. This was based on two main factors: maximum standoff distance 

due to restrictions based on laboratory space and minimum focal distance of the visible 

wavelength reflective telescope used as receiver. After successful measurements under the 

original operating conditions of HE, HME [14] and TICs (the present study), the system was 

switched operate in the near-ultraviolet region (NUV), and the signal receiver (telescope) 

was modified to operate as a close field (proximity) detector (1-2 m). After making the 

necessary changes, the remote detection system was subjected to the challenging task of 

detecting extremely low cross-section liquids: CWASs. 
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Fig. 20. Dependence of Raman Shift signal (vibrational band intensities) with standoff 
distance for benzene and DMMP using the 363.8 nm excitation line from a UV-argon ion 
laser. 
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Fig. 21 shows results of the remote detection system for the intensities of the Raman bands 
of benzene (ring breathing mode at 992 cm-1) and DMMP (C-P stretch at 715 cm-1) at 
various distances from 2 to 7 m using a CW argon ion laser excitation line at 363.8 nm. 
The dependence of the band intensities for the most prominent signals of benzene (used 
as primary external standard) and DMMP were plotted and then a line was fitted to the 

data as a function of the target-receiver distance using Statgraphics-Centurion data 
analysis and statistical software package (StatPoint, Inc., Herndon, VA). The resulting fits, 
shown in Figure 4, were non-linear, as expected, and compared favorably with the  
data.  
The decrease of the Raman intensity of the benzene and DMMP peaks with increasing 
distance is partially attributed to the 1/R2 dependence of the remote Raman signal with 
standoff distance. However, the signal losses are also related to near-field effects and to 
partial defocusing of the image on the slit of the spectrograph (Chistesen, 1988). The current 
version of the CW laser remote spectroscopic system is probably less able to detect very long 
source-target distances (standoff distances) compared to pulsed laser systems because of the 
higher energy densities in the beam axis of the pulsed systems. However, at close range, 
working as a near field detector, the CW standoff Raman detection system works equal or 
better than the pulsed system. The following two cases will provide experimental evidence 
for this supposition. 
Remote Raman spectra were excited using uncollimated CW and pulsed laser beams. Laser 

power levels of CW lasers were 0.140 to 5.1 W. The calculated values for energy/area taking 

into account the laser beams spot size at the sample were 1.5 to 8.3 W/cm2 (1.5 – 8.3 W/cm3 

energy densities for a sample vial 1-cm in diam). For the pulsed laser experiments, up to 

1000 pulses of 200 mJ/pulse (6 ns, 10 Hz) were used, resulting in a maximum average power 

of 2.0 W. At a standoff distance of 6.6 m, the pulsed laser spot was an ellipse with a major 

semi-axis of 2.5 cm and minor semi-axis of 1.5 cm. This corresponds to an energy/area of 

0.68 W/cm2 (0.68 W/cm3 in a 1-cm diam. vial) or roughly 47% of the minimum value for the 

steady-state detection system. Table 10 lists the relevant laser beam characteristics of the 

standoff system. In contrast, typical normal or spontaneous Raman measurements under the 

microscope use power density values on the order of 12,500 W/cm3 to excite the Raman  

Shift spectra of samples contained in capillary tubes (100 mW, 10x objective, 10 m spot size 

in confocal mode, 8x10-6 cm3 interrogation volume). This represents a 1,500 to 8,000-fold 

higher energy density value for the microscope experiments than the telescope-based CW 

Raman experiments. Raman scattering cross sections, (d/d)s, of CWAS were calculated 

by performing intensity measurements and relating them according to the treatment of 

Christesen (1988) via Eq. 1: 

 

s

s s s s

r r r rr

dσ
A  N  n  EdΩ

=
dσ A  N  n  E

dΩ

 
 
 
 
 
 

  (1) 

In the above equation, the subscripts s and r indicate the CWAS and reference values, 

respectively. As and Ar are the sample and reference integrated peak areas, which was 

measured from the spectra, and Ni is the number of molecules per unit volume, which was 

obtained from the sample and reference densities. The collection solid angle of the 
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spectrometer is a function of the index of refraction of the liquid (ni) and was accounted for 

by the ratio (ns/nr). Ei is an instrument efficiency factor that depends on the wavelength of 

the scattered light. If the sample and reference bands are close together (as they are typically 

chosen) the ratio Es/Er can be taken as 1. An additional factor would be necessary in Eq. 1 if 

either the sample or reference absorb at the laser wavelength (Christesen, 1988).  
 

 
(nm) 

Spot Diam. at 6.6 m
(cm) 

Area
(cm2)

Laser Power (Energy)
(W / mJ) 

Energy/Area (W/cm2) 
 

532.0 (CW) 1.0 0.79 5.10 6.49 
514.5 0.4 0.13 1.00 7.96 
488.0 0.4 0.13 1.00 7.96 
363.8 0.35 0.10 0.80 8.32 
351.1 0.35 0.10 0.14 1.46 

532.0 (pulsed) 2.5x1.5* 2.95 2.00 / 200 0.68 

* spot is elliptical in shape 

Table 10. Remote Raman spectroscopy systems laser beams characteristics. 

This method was applied to a comparison between the most prominent Raman band of the 
CWAS and the 992 cm-1 band of benzene and/or the 801 cm-1 band of cyclohexane. Benzene 
and cyclohexane were chosen as references (external primary standards). The cross-section 
data for the CWAS and reference compounds studied are shown in Table 11. These 
compounds are relatively weak Raman scatterers in comparison to the reference 
compounds. For this reason, the standoff detection of CWAS was an important instrument 
challenge, as suggested by Christesen (Christesen, 1988).  
The Remote Raman spectra of three CWASs: 2-BAET, 2-CEES and DMMP, are shown in Fig. 
21. All spectra were collected in the visible and NUV at a distance of 6.6 m from the collector 
telescope. The samples were detected using the strong blue line of the argon ion laser at 
488.0 nm and NUV lines at 363.8 and 351.1 nm with 1 W laser power (at head) and a spectral 
acquisition time of 10 s. Raman peaks at 660 and 1440 cm-1 were tentatively assigned to C-S 
and C-N stretching vibrations, respectively, for the 2-BAET simulant (Fig. 21, top). A strong 
line appearing at about 700 cm-1 was tentatively assigned to C-Cl in 2-CEES (Fig. 5, center). 
Raman signals located about 660 and 750 cm-1 were attributed to the C-S and C-S-C of this 
simulant, respectively. The peak at 715 cm-1 for DMMP (Fig. 21, bottom trace) was assigned 
to a P-C stretching mode. 
 

Cross Sections 
(10-30 cm2/sr/molecule) 

Exc. line 
(nm) 

benzene 
(992 cm-1) 

cyclohexane 
(801 cm-1) 

DMMP 
(715 cm-1) 

2-CEES 
(700 cm-1) 

2-BAET 
(1440 cm-1) 

532.0 13.4 c 3.6 3.7 2.8 2.7 
488.0 32.5 c 9.06 b 18.0 a 15.1 20.3 
363.8 328.4 105.6 58.0 a 21.4 10.3 
351.1 160.0 b 17.2 5.4 3.3 

Data adapted from: a ~ (Evans and Bernstein, 1956); b ~ (Wakabayashi et al., 2007); c ~ (Crain et al., 
1992). 

Table 11. Relative differential Raman scattering cross sections. 
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Fig. 21. Remote Raman spectra of CWAS using excitation lines of 488.0, 363.8 and 351.1 nm 
at 6.6 m target-collector distance, 1 W laser power (at head) and one acquisition time of 10 s 
integration. Top: 2-(butylamino)-ethanethiol (2-BAET); center: 2-chloroethyl-ethyl sulfide (2-
CEES); bottom: dimethylmethyl phosphonate (DMMP).  

Pulsed laser Standoff Raman spectra of cyclohexane and DMMP in the spectral range 500 - 

3200 cm−1 are shown in Figs. 22a and 22b. The measurements were collected at distances of 

35 m (DMMP) and 60, 90 and 141 m (cyclohexane) with gated detection using several 532 

nm laser pulses (from 1 to 1000 shots) with 200 mJ per pulse. These experiments were 

performed under “lights on” conditions. The most relevant spectroscopic information for 

both compounds was presented in the CW laser excitation section. Pulsed mode 

experiments (Figs. 6 and 7) were obtained using the ICCD camera, which was gated and 

synchronized with laser pulses to minimize interference from ambient light. The 

cyclohexane RRS spectra at 60 m and 90 m standoff distances were nearly identical. This 

similarity was the result of a size beam smaller that the target at both distances. However, 

the beam diameter at 141 m was significantly larger than the sample, which resulted in a 

reduced energy density and a lower scattering signal. However, even operating under these 

conditions, the cyclohexane spectrum at 141 m obtained with 1000 laser pulses had a good 

signal-to-noise ratio (S/N = 450). The S/N value was determined by dividing the highest 

intensity Raman band of cyclohexane by the Root-Mean-Square (RMS) noise, calculated by 

taking a portion of the flattest region of the cyclohexane spectrum (1900-2100 cm-1). Both 
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compounds can be detected with a single laser shot, but S/N became statistically significant 

by averaging the intensity collected after 10 laser shots, as can be seen in Fig. 22a. It is 

important to note the advantages of a pulsed laser system over CW systems for Raman 

detection at a distance. When operating in a gated detection mode, the background light 

signal and fluorescence signal are significantly reduced. Because the detector is acquiring for 

400 ns, the fluorescence contributions that dominate at a longer time scale (~ s) are 

minimized. One of the main disadvantages of the CW Remote Raman detection system is 

the necessity of operating under low-illumination conditions. This problem can be readily 

circumvented by using a gated Intensified-Charge Coupled Device (I-CCD), UV-VIS-capable 

detector. 

An even more challenging application for the standoff Raman spectroscopy detection 

system was to perform quantification studies of a weak Raman scatterer mixed to less than 

10% dilution with water. This task was undertaken using DMMP. In order to carry out the 

quantification experiments on DMMP, water, solutions of the analyte ranging from 1 to 50 % 

w/v were prepared and analyzed using CW RRS. For the quantification studies, peak areas 

of the strongest DMMP Raman signal located about 715 cm-1 were used (Fig. 8). 
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Fig. 22. Left: Remote Raman spectra of DMMP using a 532 nm pulsed laser excitation source 
at a distance of 35 m, measured with various laser shots in gated mode. Laser: 532 nm, 200 
mJ/pulse, 10 Hz. Right: Remote Raman spectra of cyclohexane using a 532 nm pulse laser at 
standoff distances of 60, 90 and 141 m, measured with 1000 laser shots in gated mode. Laser: 
532 nm, 200 mJ/pulse, 10 Hz; gate width 400 ns. 

5. Conclusion 

In this contribution, TIJ and sample smearing were used as deposition methods for the 

preparation of samples and standards of highly energetic materials deposited as solid 

traces onto gold coated silicon substrates. Inkjet printing of HEM was demonstrated to 

have the following important characteristics: precision in sample deposition, drop 

delivery with non-contact fluid transfer and high reproducibility. These characteristics led 

to the production of evenly distributed analytes on the test surfaces. The methodology 

promises to be a good method for development of samples and standards for trace HEM 

a b 
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reference materials on substrates. Sample smearing, a technique that had been proven 

successful for similar operations on stainless steel, glass and plastics, although easy to 

implement and of inherently low cost, yielded very poor yields on the gold on silicon 

substrate because of weak interactions between the analytes studied and the test surfaces. 

Gold coated silicon is probably an excellent test surface for IR reflection studies, but it 

lacks the sample adhesion forces required to deposit and retain analytes for long enough 

periods of time to be of value in samples and standards preparation. The residence time of 

TNT on gold coated silicon was twice as short as TNT on glass and four times shorter than 

TNT on a stainless steel substrate. 

Both methods demanded relatively long preparation and analysis times, depending on the 

specific sample and substrate requirements, and thus neither methodology stands out as 

superior from these points of view. Sample deposition by smearing requires higher human 

intervention, both in the pre-deposition steps and in the actual smearing operation. TIJ 

requires minimal operator intervention. Deposition by TIJ is a more efficient process than 

smearing with regard to ease of use, fine control of the amount deposited and the surface 

loadings achieved. The actual amounts deposited (loadings) had to be determined post-

deposition by destructive chemical analysis. This is in contrast to sample smearing 

deposition, for which the amount deposited is accurately known except in cases of 

insufficient adhesion such as with gold coated substrates. 
The loading concentrations of the highly energetic materials studied (TNT, RDX and 

ammonium nitrate) were varied by changing the number of passes of the TIJ dispenser. TIJ 

samples and standards were deposited onto three surfaces, gold-silicon, glass and SS, for 

surface comparison experiments. Studies are required when searching for substances that 

stabilize the analytes on the substrate by delaying sample loss through sublimation, which 

would ultimately interfere with detection applications. The characteristics of the stabilizing 

agent must not alter or mask the activity and reactivity of the energetic materials with 

respect to the detection applications. 

A standoff technique using an open-path Fourier transform infrared (OP/FTIR) 

spectrometer has been demonstrated in In another contribution, concealed liquids scenarios 

are studied by Raman spectroscopy. The Raman spectra of hazardous liquids were 

differentiated from common drinks and consumer products. A fiber optic coupled Raman 

probe was applied to the detection of hazardous liquids mixed with consumer products and 

drinks. The results demonstrated that Raman can be used as tool to quickly characterize if 

the content of a bottle is the intended commercial product or a hazardous liquid that could 

be used as a threat to property or human beings. The fluorescence of a red liquid did not 

affect the detection of a CWA simulant in a clear glass container. The limits of detection for a 

hazardous liquid in a series of colored liquids were estimated in 6-9 % using standard 

conditions and no data manipulation. This suggests that trace level detection can be 

achieved with enhanced experimental setups and statistical analysis of the data 

(chemometrics). 

In the third application of optical fibers in spectroscopy, remote Raman systems have 

been designed, assembled and tested by coupling a Raman spectrometer with a 

reflective telescope using fiber optics. The CW RRS system employed 351.1, 363.8, 488.0, 

514.5 and 532 nm continuous wave lasers as excitation sources. This prototype system 
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was used in the detection of the chemical warfare agent simulants DMMP, 2-CEES and 

2-BAET, and to detect the hazardous industrial solvents and reagents (TICs) benzene, 

toluene, chlorobenzene, carbon disulfide, carbon tetrachloride and cyclohexane. The 

operational range of the CW standoff system was tested up to 6.6 m in the laboratory 

with no background illumination. In addition, quantification studies of DMMP in water 

were carried out at a standoff distance of 6.6 m using the CW remote Raman detection 

system. Low limits of detection (LOD) values of 3% w/v were consistently obtained. 

The pulsed mode RRS system was based on a 532 nm, frequency doubled Nd:YAG laser 

in lieu the CW excitation lasers of allowed standoff detection experiments of DMMP at 

35 m target-collector distances, from single shot to 1000 shots and also allowed 

detection of cyclohexane at 141 m standoff distance even in single shot mode. The 

Remote Raman Spectroscopy systems designed in this work should be useful for 

defense and security applications, for screening hazardous liquids in government 

installations, airports and seaports and in public installations to improve defense 

against terrorist attacks. 
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