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Intensity for Cost-Effective PV  

Sizing and Intelligent Energy Buildings 

Eleni Kaplani and Socrates Kaplanis  
Technological Educational Institute of Patras 

Greece 

1. Introduction  

The solar radiation in the form of electromagnetic waves emitted by the sun, travels the 
extraterrestrial space without any essential interaction with matter, and reaches the earth’s 
atmosphere. Therein, the beam solar radiation undergoes physic-chemical processes and 
experiences scattering by (macro) molecules, dust, or other tiny particles in the air. This 
process creates the solar radiation component called diffuse radiation. Thus, the solar 
radiation on any surface on the earth consists of the beam solar radiation, the diffuse 
radiation and the one reflected by the surroundings.  

On the other hand, the length of the path of the solar beam till it reaches the horizontal 
surface differs both during the day and during the year. It is high during morning and 
sunset hours and shorter during noon hours. Also, due to the sun’s altitude which is low, i.e. 
closer to the horizontal in winter months for the North Hemisphere, the length of the path of 
the solar beam is longer and, therefore, the intensity of the solar radiation is essentially 
affected by the higher air mass it penetrates both on a daily and seasonally basis. Hence, 
solar radiation finally reaches the earth surface substantially decreased and dissipated 
compared to the extraterrestrial values. Table 1 and Figure 1 show the extraterrestrial solar 

 

Table 1. Average top-of-atmosphere insolation incident (kWh/m2) for major cities with 
latitude spanning from 30o to 60o. 
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radiation data for various latitudes. Calculations and analysis was performed on the daily 
average solar radiation on top-of-atmosphere data obtained from NASA’s online database 
(NASA Surface meteorology and Solar Energy, 2011). It is evident for the North Hemisphere 
that, as the latitude increases the top-of-atmosphere solar radiation decreases especially 
during the winter months, while during Summer the differences are very small. This is due 
to the position of the earth with respect to the sun.  

 

Fig. 1. Average top-of-atmosphere insolation incident (kWh/m2) for major cities with 
latitude spanning from 30o to 60o. 

Τhe  intensity of the solar radiation which reaches the earth outside its atmosphere in hour h 
in a day nj is the extraterrestrial radiation, represented by Ιext(h;nj), and can be accurately 
estimated by the following equation. 

          
360

; 1 0.033 cos cos cos cos sin
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 (1) 

where, Isc is the solar constant, about 1365 W/m2, and nj is the incremental number of the 
day, with a value range [1, 365], where 1 corresponds to the 1st of January and 365 to the 
31st of December. ωs is the sunset hour angle, φ is the latitude of the site and δ is the angle of 
declination of the sun. The daily extraterrestrial solar radiation is determined by eq.(2) 
(Duffie & Beckman, 1991). 
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where, ωs is expressed in degrees. If ωs is in radians, then the factor π/180 should be 
omitted. The angle ωs is determined by the following equation.   
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 降鎚 = cos貸怠岫−tan岫砿岻tan岫絞岻岻 (3) 

Thus, the extraterrestrial solar radiation can be accurately estimated. However, the local 
weather conditions characterized by the Atmospheric Pressure, Pa, the Ambient 
Temperature, Ta, the wind velocity, vw, the relative humidity, RH , and the cloudiness 
associated to the Clearness Index, KT, (Collares-Pereira & Rabl, 1979; Kaplanis et al., 2002), 
may change hour by hour stochastically. Thus, the solar radiation on the horizontal of the 
earth’s surface cannot be accurately pre-determined. All this implies that the solar radiation 
in a day at a place may not be the same for the same day the year after, as the weather 
conditions may not be the same for those two days, see for example Figure 2, where it is 
evident that for the same day in consecutive years the pattern differs, while the insolation in 
the top-of-atmosphere is always the same. 

Fig. 2. Average insolation incident on horizontal and on top-of-atmosphere per day for the 
years 1985-2004 in Athens, Greece. 

2. Solar radiation data analysis and the in-built stochastic nature 

A large amount of solar radiation data is stored and provided by national databases from 

local meteorological stations, such as HNMS’s (Hellenic National Meteorological Service, 

2011), and global databases such as NASA’s (NASA Surface meteorology and Solar Energy, 

2011), JRC’s PVGIS (Photovoltaic Geographical Information System, 2008), SoDa (Solar 

Radiation Data, 2011), etc. Thus previous years’ data for a site of interest may be retrieved 

and analysed in order to serve as an appropriate input to PV sizing or other applications.   

As previously discussed, the solar radiation data exhibit a dispersion, larger or smaller 

depending on the latitude and the microclimate of the site. Figures 3 and 4 show the 

fluctuations of the daily solar radiation on the horizontal as it appears around the 

representative day of each month for the years 1985-2004 for the city of Athens, Greece and 
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Fig. 3. Daily solar radiation (kwh/m2) around the representative day of each month for the 
20 year period (1985-2004), in the city of Athens, Greece. 

 

 

Fig. 4. Daily solar radiation (kwh/m2) around the representative day of each month for the 
20 year period (1985-2004), in the city of London, UK. 
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the city of London, UK, respectively. Calculations and analysis was performed on the daily 

global solar radiation data obtained from NASA’s online database (NASA Surface 

meteorology and Solar Energy, 2011). It is obvious that the profile of the solar radiation and 

the degree of the inherent solar radiation stochastic fluctuations in the two cities differ 

substantially. Figure 5 shows the average global solar radiation on horizontal per month for 

the same years and for major cities with latitude spanning from 30o to 60o.  

As the daily solar radiation exhibits different degree of fluctuations both during the day and 

throughout the year on different sites, it is important that the past years data available for 

the site of interest are thoroughly analysed before a solar radiation prediction methodology 

or PV sizing methodology is employed. 

 

 

Fig. 5. Average solar radiation around the representative day of each month for the 20 year 
period (1985-2004), for major cities with latitude from 30o to 60o. 

An in-depth analysis of past years data for the site of interest may be carried out to provide 

the probability density function (pdf) the data obey. Research studies have reported on the 

use of the Gaussian distribution or modified Gaussian (Jain et al. 1988), the Weibull 

distribution (Balouktsis et al., 2006), and the Extreme Value (Type I) distribution (Kaplani & 

Kaplanis, 2011). However, due to the inherent stochastic character of the solar radiation 

fluctuations, the differences in the location of the various sites, and the differences in the 

databases used, an argument upon the preference of one pdf over the other is avoided. 

Instead, the designer may analyse the data of the site of interest, extract the pdfs and assess 

the best fit provided by the various distributions. The proposed pdfs of the Normal, 

Weibull, and Extreme Value (Type I) distribution are given by eqs. (4) to (6), respectively. 
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血岫捲; 航, 購岻 = な購√に講 結貸岫掴貸禎岻鉄態蹄鉄  (4) 

血岫捲; 欠, 決岻 = 決欠貸長捲長貸怠結貸岾掴銚峇弐 , 捲 ≥ ど (5) 

血岫捲; 航, 購岻 = 購貸怠 ∙ 結岾掴貸禎蹄 峇 ∙ 結貸勅岾猫貼杯配 峇
 (6) 

An example of the fitting of the 3 distributions on the pdf of January’s data for Athens, 

Greece is provided in Figure 6. It is obvious that the Extreme Value distribution in this case 

provides a more accurate fit on the data. 

 

 

 

Fig. 6. Normal, Weibull, and Gaussian distributions fitted on the pdf of January’s data for 
Athens, Greece, drawn around the representative day for the period 1985-2004.  

Using the maximum Likelihood criterion for assessing the best fitted distribution, the 

Extreme Value distribution proved to best fit the data for all months (Kaplani & Kaplanis, 

2011). A more detailed statistical analysis may be performed, using the Kolmogorov-

Smirnov test in order to test the null hypothesis that the data come from a specified Normal 

distribution, or the Lilliefors test to test the null hypothesis that the data come from a 

Normal or an Extreme Value distribution, etc. It is recommended that a large sample of data 

is used for the fitting.  
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3. Hourly and daily solar radiation prediction 

Having performed an in-depth statistical analysis on the past years data, it may be said that 

future daily solar radiation data may be anticipated to fall within the specific distribution 

which best fitted the previous years’ monthly data. However, several solar radiation 

prediction models have been proposed in the literature some of which may be more globally 

applied. 

Kaplanis in (Kaplanis, 2006) has proposed the model provided by eq.(7) to estimate the 

daily solar radiation for any day nj. Parameters A, B, C are estimated by fitting an 

equation of this form on average monthly past years‘data. An example of the fitting 

produced by this equation on monthly average data for Athens and Stockholm are 

displayed in Figures 7, 8. Table 2 shows the estimated A, B, C parameters for different 

cities and the correlation coefficient r showing the goodness of fit of eq.(7) on the data. 

Parameters A and B follow a function with argument φ, as it is evident from the profile of 

the data in Table 2. 

 茎盤券珍匪 = 畦 + 稽 ∙ cos	岫に講券珍 ぬはの⁄ + 系岻 (7) 

 

 

 

 

 

Fig. 7. Fitting results of eq.(7) on monthly data for Athens (period 1985-2004)  
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Fig. 8. Fitting results of eq.(7) on monthly data for Stockholm (period 1985-2004)  

 

city A B C r 

Iraklio 5.39 3.26 3.18 0.999 

Athens 4.56 2.86 3.21 0.996 

Thessaloniki 3.92 2.71 3.19 0.976 

Paris 3.20 2.66 3.29 0.992 

London 2.77 2.35 -3.01 0.990 

Stockholm 2.79 2.87 -2.90 0.995 

Table 2. Estimated parameters A, B, C for the various cities 

Hourly based prediction models, based on similar functions, have also been proposed such 

as the model proposed by Kaplanis in eq.(8) (Kaplanis, 2006), where a(nj) and b(nj) are 

estimated through 2 boundary conditions and depend on the site and day nj. The model 

proposed by the authors in eq.(9) (Kaplanis & Kaplani, 2007) proved to give much better 

results compared to other known models.  

 荊盤ℎ; 券珍匪 = 欠岫券珍岻 + 決岫券珍岻 ∙ cos	岫に講ℎ にね⁄ 岻 (8) 

荊盤ℎ; 券珍匪 = 畦 + 稽 e貸筑盤津乳匪掴岫朕岻 ∙ cos岫に講ℎ にね⁄ 岻e貸禎盤津乳匪掴岫朕退怠態岻  (9)
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Figure 9, shows an example of the hourly predicted curve obtained by this model using eq. 

(9) for the 17th January and the city of Patras, Greece. The past years hourly data and 

average data for the same day are also displayed for comparison. The national database 

(Hellenic National Meteorological Service, 2011) was used for the hourly solar radiation data 

for Patras, Greece for the period 1995-2000. For the summer data, where smaller hourly 

fluctuations occur, the proposed model gives even better results, see Figure 10. 

 

Fig. 9. Hourly data for January 17, for the city of Patras, Greece, and the hourly prediction 
model. 

 

Fig. 10. Hourly data for July 17, for the city of Patras, Greece, and the hourly prediction 
model. 
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Several research studies have been published on various aspects in the modeling of solar 

radiation dealing with mean and stochastic values. For a global perspective the reader is 

advised to see also (Aguiar et al., 1988; Aguiar & Collares-Pereira, 1992; Festa et al., 1992; 

Gueymard, 1993; Gueymard, 2000; Jain et al., 1988). 

The hourly solar intensity provided by eq.(9), denoted by the authors as mean predicted 

value Im,pr, or mean expected Im,exp, is used in a more dynamic stochastic model which uses 

one morning measurement as an input and based on the statistical difference of this 

measurement from the mean predicted and the assumption of a Gaussian profile, predicts 

the hourly solar radiation values for the remaining hours of the day (Kaplanis & Kaplani, 

2007). This is a very challenging attempt considering that the model predicts a dynamic 

hourly profile depending on only one early morning measurement. The authors improved 

that model to take into account either 1, or 2, or 3 morning measurements, predicting the 

hourly solar radiation profile for the remaining hours of the day with increased accuracy 

(Kaplanis & Kaplani, 2010). In case that a rich database of past years data exist, it is 

proposed also the use of average hourly data instead of the mean expected. Thus, according 

to this model, the prediction of the solar radiation at hour h in a day nj is based on the 

following expression. 

 
( ; )( ; ) ( ; )

jpr j av j I h nI h n I h n R   
 

(10)
 

where R is a random number drawn from a Gaussian distribution (μ=0, σ=1) , however, it is 

confined within the interval [t1 ±1], where t1 is determined for the previous hour h1 by 

eq.(11). For the estimation of t1 it is assumed that the difference between the one morning 

measured value Imeas(h1;nj) value at hour h1 from the average  Iav(h1;nj) value at the same 

hour h1 from the past years’ data, follows a Gaussian probability density function. For the 

predicted value Ipr(h;nj) only positive values, values less than the extraterrestrial Iext(h;nj), 

and less than Iav(h;nj) + 3σI(h;nj) are accepted, which is necessary to cut off the Gaussian tail 

for high values above the average. 

 
1

meas 1 j av 1 j
1

I( ; )

I (h ;n )- I (h ;n ) 

jh n

t


  (11) 

For the hourly solar radiation prediction profile based on two morning measurements at 

hours h1 and h2, eq.(12) is proposed, which now uses two stochastic terms, one term as in 

eq.(10), which stands for the stochastic fluctuations at hour h3, and a second term to stand 

for the rate of change of the I(h;nj), within the time interval [h1, h2]. t2  is determined here 

similarly to t1 in eq.(11) but now for hour h2. 

  3 2 13 3 ( ; ) 2 ( ; ) 1 ( ; ) 1

1
( ; ) ( ; )

4j j jpr j av j I h n I h n I h nI h n I h n R t t R            (12) 

The hourly solar radiation prediction based on three morning measurements at hours h1, h2, 

h3 is given by eq.(13), where the use of an extra stochastic term is proposed, which provides 

the contribution of the second derivative of  [Imeas(h;nj)- Iav(h;nj)], with respect to h, to the 

I(h;nj) prediction. 
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 (13) 

The model continues to predict the solar radiation at next hour based on the predicted 

values for the previous hours. For more details on this hourly solar radiation predictive 

model see (Kaplanis & Kaplani, 2010). Figures 11, 12 show the predicted hourly profile by 

this dynamic model using a national database for the city of Patras, Greece and the period 

1995-2000 (Hellenic National Meteorological Service, 2011). By entering one, two or three 

morning measurements, the model predicts the hourly solar radiation profile for the 

remaining hours of the day. It is evident from the figures that the model based on the three 

morning measurements gives the best results and a prediction very close to the true 

measured data, even for these cases where the true data lie far away from the average years’ 

data. Due to the random factors that appear in the eqs.(10), (12), (13), the generated hourly 

predicted profile is never exactly the same but fluctuates stochastically within a small range 

of values. 

 

 
 

Fig. 11. Hourly predicted profiles based on one (Ipredicted-1), two (Ipredicted-2) and three 
(Ipredicted-3) morning measurements. Plotted against the average data profile (Iaverage), 
the mean expected (Im,exp) calculated by eq.(9), and the true measured data (Imeasured) on 
17th January 2000, in Patras, Greece. 

Other research studies have proposed methodologies for prediction of sets of hourly profiles 
based on Neural Networks (Kalogirou, 2000), Markov chains (Aguiar et al., 1988) and Fuzzy 
Logic (Iqdour & Zeroual, 2007). 
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Fig. 12. Hourly predicted profiles based on one (Ipredicted-1), two (Ipredicted-2) and three 
(Ipredicted-3) morning measurements. Plotted against the average data profile (Iaverage), 
the mean expected (Im,exp) calculated by eq.(9), and the true measured data (Imeasured) on 
16th March 1995, in Patras, Greece. 

4. PV sizing methodologies 

The previous sections have dealt with the analysis of the in-built stochastic nature of solar 

radiation data and the challenging issue of predicting daily and hourly solar radiation 

profiles with a high level of reliability. This would be most useful in problems dealing with 

the effective and reliable sizing of solar power systems, PV generators, and the predictive 

management of a complete system of solar energy sources in conjunction with the power 

demand by the loads, since the output of PV systems is highly affected by stochastic meteo- 

conditions.  

Apart from the requirement for maximizing the Yield Yf (kWhe/kWp) for a PV plant on an 
annual basis, there is also an increased concern about the reliability of the PV performance, 
i.e. to meet the loads with a pre-determined confidence level, at the minimum possible 
installed Peak power. The design of a PV plant should aim at installing a plant able enough 
to produce and deliver the right output at the minimum cost, with a small Pay-Back Period 
(PBP) and a high Performance Ratio (PR), (RETScreen, 2011). 

In any PV sizing task all potential power losses related to the PV system elements, i.e. the 
inverter, charger, battery storage system, cables, etc, and effects due to PV cell ageing, 
battery ageing, matching effects, shadowing, etc., need to be thoroughly investigated and 
analysed in order to reach the required Peak Power to be installed. Furthermore, a statistical 
analysis of the daily solar radiation and hourly solar radiation fluctuations is essential 
within the scope of the PV sizing, as the inherent statistical fluctuation lead to an 
uncertainty with respect to the installed Peak Power, a major consideration when a reliable 
Stand-Alone PV system (SAPV) is to be installed. The issue of reliability has driven sizing 
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methodologies to the introduction of the concept of energy autonomy period of a PV plant, 
expressed using the autonomy factor d. The autonomy factor d was introduced for critical 
and non-critical loads, given by eqs. (14) and (15) respectively, to provide energy autonomy 
when using non-critical loads, requiring power at least 95% of the time, and when using 
critical loads, requiring power at least 99% of the time (Messenger & Ventre, 2000). 

 穴頂追 = −な.ひ ∙ 鶏鯨茎陳沈津 + なぱ.ぬ (14) 

 穴津貸頂追 = −ど.ねぱ ∙ 鶏鯨茎陳沈津 + ね.のぱ (15) 

where PSH is the Peak Solar Hour, defined and estimated as in (Messenger & Ventre, 2000) 
for any day, and PSHmin is its minimum value. It is evident that the smaller the minimum 
PSH value, as derived from the past years solar radiation data for a region, the higher the 
value of d. The drawback of the conventional sizing approach is its high cost, as both the 
Peak power (Pm) to be installed, given by eq.(16), and the Capacity of the Battery Storage 
System (CL), given by eq.(17), increase linearly with the value of d for energy autonomy.   

 鶏陳 = 鳥∙町薙∙庁牒聴張尿∙眺尿 (16) 

 系挑 = 鳥∙町薙∙庁嫦蝶∙帖潮帖  (17) 

where QL is the daily load (Wh), F and F’ are correction factors due to transfer power losses, V 
is the transfer voltage and DOD the depth of discharge of the battery. The mean PSH is 
denoted by PSHm, and Rm is used for the conversion of the solar intensity from the horizontal 
to the PV array inclined plane, see (Duffie & Beckman, 1991; RETScreen, 2001). R depends on 
the day of the month, the latitude of the place and the microclimate of the region. 

This conventional PV sizing methodology gives reliable results providing energy autonomy 
to the system through the use of the autonomy factor d in the estimation of Pm and CL, 
considering the statistical properties of the solar radiation data as introduced through 
PSHmin. However, with the increase of d to accommodate fluctuations in the solar radiation 
data, the estimated Pm and CL to be installed increase substantially, leading to a requirement 
for a larger PV array and a larger battery storage system. 

A more cost-effective approach has been proposed in (Kaplanis & Kaplani, 2006), whereby a 

different approach to the estimation of the autonomy factor is used, leading to a reliable 

system with the need for lower installed Pm and CL. In this approach it is assumed that H(nj) 

values follow a Gaussian probability density function, and, thus, the expected H(nj) value 

will lie with a 95% confidence level, in the domain:  

 茎岫券珍岻 ∈ 峙茎陳岫券珍岻 ± に ∙ 購椿岫津乳岻峩 (18) 

where Hm(nj) is the mean daily solar radiation on the horizontal for the representative day of 
the month, for which the PV plant is to be sized, through a period of N years and σΗ(nj) is the 
standard deviation of H(nj). 

According to this model if the system is to be sized to guarantee a number of d days of 
system autonomy to accommodate any possible solar radiation fluctuation, the total 
uncertainty introduced in the determination of Pm through the estimation of PSH, whose 
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value (h/day) is numerically equal to the value of H(nj) measured in kWh/m2, would be 
given by the following expressions. 

 購椿匂態 = 購張盤津乳匪迭態 + 購張盤津乳匪鉄態 + ⋯ + 購張盤津乳匪匂態 蛤 穴 ∙ 購張盤津乳匪態  (19) 

 購椿匂 = √穴 ∙ 購張岫津乳岻 (20) 

The relative change in the Pm to accommodate an energy deficit for d days with a confidence 
level of 95%, may be given by eq.(21). Thus, a correction factor is introduced in the 
determination of Pm, provided by eq.(22). This correction factor is also included in the 
determination of CL, see eq.(23). 

 
弟牒尿牒尿 = 弟岫牒聴張岻牒聴張尿 = 蹄那匂張尿盤津乳匪 = 態∙√鳥∙蹄那岾韮乳峇張尿盤津乳匪  (21) 

 鶏陳,鳥 = 鶏陳 ∙ 峭な + 態∙√鳥∙蹄那岫韮乳岻張尿岫津乳岻 嶌 (22) 

 系挑,鳥 = 系挑 ∙ 峭な + 態∙√鳥∙蹄那岫韮乳岻張尿岫津乳岻 嶌 (23) 

The introduction of this correction factor has been evaluated in (Kaplanis & Kaplani, 2006) 
using the solar radiation data for January and the period 1995-2000 in Patras, Greece, and 
concluded in a significant reduction in Pm, and CL with a system reliability level of 95%.  

Recent research studies have proposed new developments of stochastic modeling 
(Balouktsis et al., 2006; Kaplani & Kaplanis, 2011; Markvart et al., 2006; Tan et al., 2010), the 
use of Hidden Markov Models (Hogaoglu, 2010), and Neural Networks (Kalogirou, 2001; 
Mellit et al., 2008), for the sizing of SAPV systems. Several of these approaches are iterative 
approaches based on the concept of energy balance and Loss of Load Probability. The 
objective being, a search for the minimum required installed Pm and CL that would cover the 
energy needs required by the loads for a number of days so that the system remains 
autonomous. Some configurations may use, in addition, a diesel generator for SAPV system 
support in autonomous functionality. A SAPV system configuration is displayed in  
Figure 13. 

 

Fig. 13. SAPV system configuration 
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According to the energy balance concept, eq.(24), the energy offered by the PV array will be 

used by the loads QL, an amount will be dissipated throughout the pathway from the PV 

array to the loads, i.e. being power losses in cables, in the charge controller, the DC/AC 

inverter, the battery system, etc., and, finally, the remaining energy will be stored in the 

batteries. 

 offer demand losses storedEnergy Energy Energy Energy    (24) 

Considering a daily description the energy balance equation may take the following form.  

    
24 24

1 1

; ;
hss

PV T j pv L j losses stored
h hsr h h

A I h n h q h n h power h Energy per day   
  

      (25) 

where APV is the size of the PV array, ΙΤ(h;nj) the hourly solar radiation intensity on the 

inclined plane of the PV array at hour h for a day nj, and ηPV the efficiency of the PV 

generator. By qL(h;nj) we refer to the hourly power demand by the loads. Thus, the energy 

stored during the day would be the energy remaining from the energy provided by the PV 

generator, from sunrise to sunset, after it is used up on the loads and an amount ‘burnt’ due 

to power transmission and operation losses. During the night, the load power demand is 

met by the battery storage system, while some power losses from the battery to the loads 

occur. The remaining energy in the batteries will be carried on to the following day. The 

battery storage capacity is finite, and, thus, any excess energy after the battery is fully 

charged will be burnt. Also, the depth of discharge of the batteries, for deep cycle batteries, 

is about 80%, and, therefore, during a dark period of days when the energy in the batteries 

has been used up, up to the point where the state of charge (SOC) of the batteries has been 

reduced to 1-DOD (20%), the batteries will not be able to supply the loads with any more 

energy and the system will fail.  

The energy provided by the PV generator during the day is given by eq. (26), and the 

remaining energy that will be used to charge the battery is given by eq.(27). The state of 

charge of the battery after the end of the day is provided in eq.(28). The SOC of the battery 

will result from the previous SOC with the addition of the remaining energy during the day. 

The SOC of the battery has an upper limit of 1. Any excess energy will be burnt. The SOC of 

the battery after the end of the night will be the SOC after the battery is discharged by the 

power required by the night loads, as given by eq.(29). F and F’ are correction factors due to 

all power losses from the PV generator to the loads, and from the batteries to the loads 

respectively. These factors should also accommodate any temperature effects or PV ageing 

and battery ageing effects that reduce the power output. 

 継牒蝶 = 鶏陳 ∙ 鶏鯨茎 ∙ 迎 (26) 

 経継 = 継牒蝶 − 繋 ∙ 芸挑鳥銚槻 (27) 

 鯨頚系 = 鯨頚系 + 経継 岫系挑 ∙ 撃岻⁄  (28) 

 鯨頚系 = 鯨頚系 − 芸挑津沈直朕痛 ∙ 繋嫗 岫系挑 ∙ 撃岻⁄  (29) 
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Thus, for an effective sizing of a PV system the following need to be thoroughly considered: 

 the optimum angle of inclination and the azimuth of the PV arrays, and the other 

geometrical factors concerning the PV arrays, such as possible lay-outs and array 

dimensions, especially when there are cases of shadowing by nearby buildings or 

objects. 

 the minimum power losses in cables, chargers, due to the margin in their operation and 

in the inverter(s), especially, when a group of inverters is used. The effect is crucial if 

the DC/AC inverter operating domain does not match the i-V characteristic of the PV 

array connected to it. In such cases, the efficiency of the inverter drops much below 

90%. 

 the sizing of the battery bank, introducing realistic corrections to the system’s total 

Capacity, CL (Ah), as otherwise the system might be either oversized or undersized. 

 the sizing of the PV generator which has to take into consideration the daily load 

profile, the solar energy fluctuations during the daytime and if possible the pragmatic 

solar irradiance on a PV generator in any day. The latter requirement has lead, as earlier 

mentioned, to the introduction of the concept of d days of energy independence of an 

SAPV installation.  

Finally, a dynamic simulation model which provides the daily and/or hourly profile of the 

energy expected to be delivered by the PV generator, the energy used by the loads and the 

state of charge of the battery, such as the one presented in (Kaplani & Kaplanis, 2011), may 

be found very useful not only for the optimum sizing of the PV generator and battery 

storage system, but also for the precise evaluation of the forecasted entire system 

performance and the possibility for application of more efficient controls. 

5. Predictive management of PV systems 

As several attempts have been recently initiated worldwide towards the development of 

intelligent buildings with the integration of renewable energy systems, the introduction of 

predictive PV system management in conjunction with effective load management is of 

great importance in photovoltaic applications. 

A predictive management PV system may be described to have the following modules: 

 An inbuilt intelligence for the management of the PV system. This is achieved when the 

PV system is equipped with the ability to predict the daily global solar radiation profile. 

Section 3 has presented a dynamic prediction model of the hourly solar radiation 

profile. This leads to the determination of the pragmatic power to be delivered in a day 

by the PV plant.  

 A data acquisition system, which is tailored to the model management parameters 

opted for, as for instance the global solar radiation intensity, indoor and outdoor 

temperature, relative humidity, wind velocity, etc., which is consisted of all the  

required sensors, such as pyranometer, thermocouples, anemometers, etc. 

 A micro-processor control unit, with an analysis and control module.  

The configuration of a predictive management PV & Loads system for an intelligent 

building is provided in Figure 14. It is consisted of the sensors network, the load network 
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and the control network. The sensors signal output are fed to the data logger, which in turn 

communicates with the Analysis and Control Module in the PC. Given the information 

acquired from the sensors the Analysis Module predicts the energy to be delivered during 

all hours of the day, communicates with the Control module, which manages the loads 

through priority handling. The Control Module through the Interface to the Loads may then 

serve the immediate loads and shift flexible low priority loads to the following days, in 

order to efficiently meet the energy demand. The Control Module could have an additional 

functionality for remote control, i.e. web-based or via mobile. 

A predictive management PV system will be seen to succeed in cases where conventional 

design methodologies or even more dynamic stochastic models may fail to meet the daily 

energy requirements. An effective PV sizing installation in conjunction with a predictive 

management PV system will serve as a long term cost-effective solution for energy saving 

and efficient energy use. 

 

 
 

Fig. 14. Configuration of predictive management system for an intelligent building with 
solar radiation prediction and load management functions. 

6. Conclusions 

Due to the stochastic nature of the weather conditions, the intensity of the global solar 

radiation for any hour in any day at any place on the ground cannot be absolutely 

determined, while this is possible for the extraterrestrial radiation. The stochastic nature of 

the solar radiation on the ground surface is the weak point in the cost-effective design of 

solar engineering plants, such as the PV systems, which is the main target of this Chapter. 

An investigation into the solar radiation fluctuations and their spectra is shown to bring 
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improvements and innovations in the sizing of solar plants leading to more competitive 

solutions. 

Prediction models for the estimation of the daily and hourly solar radiation profile have 
been presented and the results where compared with true measured values and values from 
available databases, revealing very promising methodologies. These are deemed very useful 
in the sizing of solar energy systems, such as PV generators, solar thermal systems for 
heating, cooling and other applications; since the amount of either heat or power produced 
by the solar radiation conversion through solar collectors and PV cell structures 
respectively, is significantly affected by the solar radiation fluctuations.  

Methodological approaches for the effective sizing of PV systems to adequately cover the 
loads to a predetermined reliability level, may use either expected values resulting from a 
thorough analysis of past years data, or mean expected global solar radiation values through 
the use of stochastic prediction models, which showed to bring more cost-effective PV sizing 
figures, or, finally, benefit from hourly solar radiation on-line prediction models within the 
scope of a predictive management system for an intelligent energy building. The latter, is a 
very promising direction for highly cost-effective solutions for the installation and 
performance of solar energy plants, where the energy offer and the energy demand are both 
customized and highly optimized. 
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