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1. Introduction 

It is widely recognized that many pathways that control normal embryonic patterning are 

deregulated in human cancers. Mutations or aberrant expression of components of the Wnt, 

Hedgehog and Notch signaling pathways have been demonstrated to play pivotal roles in 

tumorigenesis. Homeobox genes constitute an evolutionarily conserved gene super-family 

that represents another important class of patterning regulators. These genes encode 

transcription factors that are essential for controlling cell differentiation and specification of 

the body plan during embryonic development. Although many homeobox genes have been 

reported to be aberrantly expressed in ovarian cancer, the functional significance of these 

genes in ovarian tumorigenesis has only emerged in recent years. This chapter discusses 

recent research studies that demonstrate that homeobox genes have diverse functions in the 

biology of ovarian cancer. These functions include specifying patterns of histologic 

differentiation of ovarian cancers, controlling growth and survival of tumor cells, and 

promoting tumor angiogenesis, cell-cell interactions and tumor cell invasiveness. This 

chapter discusses how studies of homeobox genes provide insights into our understanding 

of the cell-of-origin of ovarian cancers, the striking morphologic heterogeneity of these 

tumors, and the unique clinical behavior of ovarian cancer. 

2. Overview of homeobox genes 

Homeobox genes were first discovered in Drosophila by their mutations that caused 
homeotic transformation, a phenomenon in which body segments form in inappropriate 
locations (Gehring & Hiromi, 1986; McGinnis & Krumlauf, 1992). A classic example of a 
homeotic transformation in Drosophila is the formation of legs rather than antennae caused 
by ectopic expression of the Antennapedia gene (Schneuwly et al., 1987). Homeobox genes 
play essential roles in defining the unique identities of specific organs and body regions 
during embryonic development. Distinct sets of homeobox genes control skeletal patterning, 
limb formation, craniofacial morphogenesis, development of the central nervous system and 
other organ systems including the gastrointestinal tract and urogenital organs (Capecchi, 
1997; Beck, 2002; Panganiban & Rubenstein, 2002; Christensen et al., 2008). Homeobox genes 
also control cell renewal and tissue regeneration processes in adults such as hematopoiesis, 
angiogenesis, spermatogenesis and endometrial remodeling (Gorski & Walsh, 2000; 
Argiropoulos & Humphries, 2007; Vitiello et al., 2007; Maclean & Wilkinson, 2010). 
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Mutations in homeobox genes cause a spectrum of complex developmental disorders. For 
example, mutations in the HOXA13 gene cause hand-foot-genital syndrome, an autosomal 
dominant trait characterized by distal limb and genitourinary malformations (Mortlock & 
Innis, 1997). SIX1 mutations cause branchio-oto-renal syndrome, a disorder characterized by 
hearing loss and renal abnormalities (Ruf et al., 2004).  

2.1 Organization of mammalian homeobox genes 

There are approximately 200 homeobox genes in the human genome (Tupler et al., 2001) 

and these are categorized into several different families named after their homologs in the 

fly (Banerjee-Basu & Baxevanis, 2001). For example, members of the mammalian PAX, MSX 

and CDX gene families are related to the Drosophila genes paired, muscle segment and caudal, 

respectively. Whereas most homeobox genes are scattered throughout the genome, the 

members of the mammalian HOX and DLX gene families are organized in clusters. The 

HOX family is related to the Drosophila HOM-C cluster and comprises 39 genes. HOX genes 

are organized in four clusters located on different chromosomes and are aligned into 13 

paralogous groups (Figure 1). The six members of the DLX family are related to the 

Drosophila distal-less (dll) gene and are organized in bigene clusters located upstream of HOX 

clusters (Figure 1). These gene clusters are thought to have arisen from gene duplication 

during evolution (Sumiyama et al., 2003; Lemons & McGinnis, 2006). A striking feature of 

HOX genes is their temporal and spatial colinearity. This phenomenon describes the 

coupling of the timing and location of expression of HOX genes along the anterior-posterior 

body axis to their relative position in the gene clusters. HOX genes that are located at the 3’ 

end of the clusters tend to be expressed early in development and in anterior body regions, 

whereas those at the 5’ end of clusters are generally expressed later and in more posterior 

body regions (McGinnis & Krumlauf, 1992; Pearson et al., 2005) (Figure 1).  

 

 

Fig. 1. Organization of HOX and DLX gene clusters in Drosophila and mammals. 

2.2 Structural features and mechanisms  

Homeobox genes encode transcription factors, often called ‘homeoproteins’ that are 
characterized by a 61 amino acid DNA-binding domain termed the homeodomain. The 
homeodomain forms a helix-turn-helix structure that binds DNA elements containing a 
TAAT core motif (Gehring et al., 1994). Although the three-dimensional structure of the 
homeodomain is highly conserved among homeoproteins, diversity in the amino acid 
residues gives rise to different DNA-binding specificities (Gehring et al., 1994; Biggin & 
McGinnis, 1997). Binding affinity and selectivity of homeoproteins for target gene promoters 
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are also mediated by additional conserved motifs that are present in the different families. 
PAX proteins contain an additional DNA-binding domain called the paired box (Robson et 
al., 2006). HOX proteins contain a hexapeptide motif that mediates interactions with PBX co-
factors (Chang et al., 1995). MEIS proteins also act as co-factors for HOX proteins 
(Shanmugam et al., 1999). Furthermore, target specificity and functional diversity of 
homeoproteins are achieved via interactions with other transcription factors (Chariot et al., 
1999). Whereas homeoproteins have highly selective functions in vivo, they exhibit relatively 
promiscuous DNA-binding in vitro (Biggin & McGinnis, 1997). As a consequence, only few 
bona fide target genes have been identified. Several homeoproteins also have intriguing non-
transcriptional functions. The Drosophila homeoprotein Bicoid represses translation of caudal 
mRNA by directly binding to the 3’ untranslated region of caudal mRNA (Dubnau & Struhl, 
1996). HOXA9 has been reported to bind the translation initiation factor eIF4E and to 
stimulate eIF4E-dependent export of cyclin D1 mRNA (Topisirovic et al., 2005). HOXB7 
binds Ku proteins and stimulates DNA repair (Rubin et al., 2007).   

2.3 Misexpression of homeobox genes in tumors  

In the past 15 years, there has been increasing evidence that many homeobox genes are 

aberrantly expressed in a variety of malignancies. Much of the pioneering work has come 

from the hematopoietic field, where overexpression of various HOX genes has been found 

to promote leukemogenesis (Thorsteinsdottir et al., 1997; Kroon et al., 1998; Fischbach et al., 

2005). Expression patterns of homeobox genes in solid tumors can be divided into three 

broad categories (Abate-Shen, 2002; Samuel & Naora, 2005). Firstly, homeobox genes that 

are normally expressed in differentiated adult tissues are often down-regulated in tumors. 

Two examples are NKX3.1 and HOXA10 that control morphogenesis of the prostate and 

uterus respectively, and are expressed in these tissues during development and in the adult 

(Bhatia-Gaur et al., 1999; Benson et al., 1996). NKX3.1 is frequently deleted in prostate 

cancers (He et al., 1997), whereas HOXA10 is often silenced by methylation in high-grade 

endometrial cancers (Yoshida et al., 2006). Secondly, homeobox genes can be re-expressed in 

tumors derived from tissues in which these genes are normally expressed during embryonic 

development. PAX2, a regulator of urogenital patterning, is normally expressed in the 

developing kidney and is reactivated in renal cancers (Dressler et al., 1990; Gnarra & 

Dressler, 1995). A third, less common, category includes homeobox genes that are expressed 

in tumors derived from a lineage in which the particular gene is not expressed during 

development. An example is PAX5 that is expressed in medulloblastoma but not in neonatal 

cerebellum (Kozmik et al., 1995). Loss or gain of homeobox gene expression in tumors 

therefore often reflects an inappropriate recapitulation of embryonic pathways and, in many 

but not all cases, this misexpression can be indicative of the cell-of-origin of the tumor.  

3. Homeobox genes and the origin of ovarian cancers 

Whereas other types of tumors often exhibit ‘loss’ of the specialized features of the tissue 

from which they derive, many ovarian cancers exhibit specialized features of non-ovarian 

lineages. Epithelial ovarian cancers have been thought to originate from the simple 

monolayered epithelium that lines the ovarian surface (OSE) or from post-ovulatory 

inclusion cysts that arise from invaginations of the ovarian surface (Feeley & Wells, 2001). 

However, the major subtypes of ovarian cancer (serous, endometrioid, mucinous) exhibit 
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morphologic features that resemble those of the epithelia of the reproductive tract that 

derive from the Müllerian ducts (viz. fallopian tube, endometrium, endocervix, 

respectively). Mucinous ovarian cancers also exhibit intestinal-like features. The OSE origin 

has been supported by several mouse genetic models in which tumors were induced by 

introducing specific oncogenic alterations into the OSE (Orsulic et al., 2002; Connolly et al., 

2003; Wu et al., 2007). On the other hand, various histopathologic and genetic studies have 

supported origins in primary Müllerian derivatives such as the tubal fimbria (Lee et al., 

2007) and in secondary Müllerian structures such as endometriosis (Prowse et al., 2006). 

Detailed discussions of these studies are beyond the scope of this chapter and these are 

elegantly reviewed in several articles (Dubeau, 2008; Jarboe et al., 2008; Cho & Shih, 2009).   

3.1 HOX genes and the Müllerian phenotype  

One argument against the OSE as the origin of ovarian cancers has been the lack of evidence 
that demonstrates the capability of OSE cells to differentiate along multiple Müllerian 
lineages. Differentiation of the Müllerian ducts is controlled by several sets of homeobox 
genes. These include the tandemly arranged Hoxa9, Hoxa10, Hoxa11 and Hoxa13 genes that 
are related to the Drosophila abdominal patterning gene Abdominal-B (AbdB) (Benson et al., 
1996; Hsieh-Li et al., 1995; Zhao & Potter, 2001) (Figure 1). Targeted mutagenesis of AbdB 
HOX genes results in region-specific defects along the reproductive tract. For example, 
Hoxa10-deficient female mice exhibit homeotic transformation of the anterior segment of the 
uterus into oviductal-like structures (Benson et al., 1996). Replacement of the homeobox of 
the Hoxa11 gene with that of Hoxa13 in mice causes homeotic transformation of the uterus 
into cervical/vaginal-like structures (Zhao & Potter, 2001). The AbdB HOX genes are 
uniformly expressed along the axis of the Müllerian ducts early in embryonic development. 
As the ducts differentiate, Hoxa9, Hoxa10, Hoxa11 and Hoxa13 become expressed in the 
primordia of the fallopian tubes, uterus, lower uterine segment/cervix, and upper vagina, 
respectively (Taylor et al., 1997). This colinear HOX expression is maintained in the adult 
tract with sharply defined anterior boundaries of expression and tapered posterior 
expression. We have found that the AbdB HOX genes are not expressed in normal human 
OSE whereas their colinear expression patterns in Müllerian epithelia are recapitulated in 
the major subtypes of ovarian cancers according to the pattern of Müllerian-like 
differentiation of these tumors (Cheng et al., 2005). HOXA9 was found to be expressed in 
serous tumors and also in endometrioid and mucinous tumors. In contrast, HOXA10 was 
strongly expressed in endometrioid and mucinous but not serous tumors, whereas HOXA11 
was mostly restricted to mucinous tumors (Table 1). Clear-cell ovarian carcinomas have 
features that overlap with those of serous and endometrioid tumors, and were found to 
express HOXA9 and HOXA10. This recapitulation of the AbdB HOX gene program in 
ovarian cancers could be interpreted to reflect Müllerian origins. However, by ectopically 
expressing AbdB HOX genes in undifferentiated, transformed mouse OSE cells and 
propagating transfected cells in the peritoneum of female mice, we demonstrated that OSE-
derived cells acquire features of different Müllerian lineages. Mouse OSE cells that 
expressed Hoxa9 formed papillary tumors that resembled high-grade serous ovarian 
carcinoma, whereas expression of Hoxa10 and Hoxa11 induced formation of high-grade 
endometrioid-like and mucinous-like tumors, respectively (Cheng et al., 2005). We also 
found that the Hoxa7 gene, located 3’ of Hoxa9, is expressed in normal Müllerian epithelia 
and in differentiated ovarian tumors irrespective of their histologic subtype. Expression of 
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Hoxa7 in transformed mouse OSE cells promoted the abilities of Hoxa9, Hoxa10 and Hoxa11 
to induce tumor differentiation along their respective pathways (Cheng et al., 2005). 
The study of Cheng et al (2005) cannot be interpreted to conclusively demonstrate that the 
OSE is the cell-of-origin of ovarian cancers. However, the findings of this study suggest an 
intriguing model in which OSE-derived tumors acquire Müllerian phenotypes through 
homeotic transformation. The finding that colinearity of AbdB HOX expression (i.e. HOXA9, 
HOXA10, HOXA11) is recapitulated in ovarian cancers is striking, as it might explain the 
relative abundance of the ovarian cancer subtypes (i.e. serous> endometrioid> mucinous). 
The capability of OSE cells to acquire features of different lineages could stem from the 
intrinsically ‘uncommitted’ or embryonic-like phenotype of adult OSE cells (Auersperg et 
al., 2001; Naora, 2007). Unlike most other adult epithelia, the OSE lacks specialized features 
and expresses little or no E-cadherin (Maines-Bandiera & Auersperg, 1997). The OSE 
expresses both fibroblast markers and markers characteristic of simple epithelium 
(Auersperg et al., 1994), and also highly expresses stem cell maintenance genes (Bowen et 
al., 2009). This plasticity of the OSE is likely to be important for post-ovulatory repair 
(Auersperg et al., 2001). Both the OSE and Müllerian ducts derive from the coelomic 
epithelium, and the predominance of Müllerian phenotypes in ovarian cancers could reflect 
the close primordial relationship between the OSE and Müllerian ducts (Auersperg et al., 
2001). More recently, it has been reported that the OSE and tubal fimbria are anatomically 
contiguous and that these tissues are parts of a transitional epithelium (Auersperg, 2011). 
On the other hand, less common subtypes of ovarian cancers such as clear-cell and 
transitional-cell tumors have features resembling those of renal and urothelial tissues whose 
embryonic relationship to the OSE is more distant.  

3.2 PAX expression and differential diagnosis  

More recently, expression of other homeobox genes that control urogenital patterning has 
been studied in ovarian cancers. Pax2 is expressed in the developing kidneys, Wolffian ducts 
and Müllerian ducts (Dressler et al., 1990; Torres et al., 1995). Pax8 is also expressed in the 
developing kidney and Müllerian ducts (Plachov et al., 1990). Female Pax2 homozygous 
mutant mice lack the entire reproductive tract (Torres et al., 1995). Female Pax8 null mice do 
not develop a functional uterus whereas development of the oviduct, cervix and vagina is 
unaffected (Mittag et al., 2007). PAX2 and PAX8 are normally expressed in tubal, 
endometrial and endocervical epithelia (Tong et al., 2007; Tong et al., 2011). PAX2 has also 
been detected in secondary Müllerian structures such as endometriosis, endosalpingiosis 
and rete ovarii (Tong et al., 2007). PAX2 and PAX8 have been detected in 64 to 100% of non-
mucinous ovarian cancers, and in 74 to 90% of primary and metastatic renal cell carcinomas 
(Bowen et al., 2007; Tong et al., 2007; Nonaka et al., 2008; Chivukula et al., 2009; Zhai et al., 
2010; Laury et al., 2011; Tacha et al., 2011). The absence or rareness of PAX2 and PAX8 in 
many other types of cancers such as colorectal carcinomas and mesotheliomas has raised the 
possibility that these proteins could be useful markers for differential diagnosis (Tong et al., 
2007; Zhai et al., 2010; Laury et al., 2011; Tacha et al., 2011), but this depends on the 
appropriate setting. Ovarian metastasis from renal cell carcinoma and renal metastasis from 
ovarian carcinoma are rare. However, ovarian cancer commonly involves the uterus and 
omentum. PAX2 and PAX8 are frequently expressed in endometrial carcinomas (56 to 98%) 
(Sharma et al., 2010; Laury et al., 2011; Tacha et al., 2011), but have been detected at low 
frequency (<10%) in mucinous ovarian cancers that closely resemble colorectal carcinomas 
(Muratovska et al., 2003; Bowen et al., 2007; Nonaka et al., 2008). On the other hand, PAX8 
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has been reported to have comparable sensitivity to the Wilms tumor gene product WT1 in 
detecting serous ovarian cancer cells in fluid cytologic specimens and superior specificity to 
WT1 in distinguishing tumor cells from mesothelial cells (McKnight et al., 2010).  
One interpretation of the frequency of PAX2 and PAX8 expression in ovarian cancers is that 
it implicates Müllerian origins of these tumors (Tong et al., 2007; Tong et al., 2011). 
However, there are several observations that challenge this notion. Whereas most studies 
have not detected PAX2 or PAX8 in normal OSE, these proteins have been detected in 
inclusion cysts (Bowen et al., 2007; Chivukula et al., 2009; Zhai et al., 2010; Auersperg, 2011). 
PAX8 has also been detected in peritoneal serous carcinomas (Tong et al., 2011). These 
tumors originate from the peritoneal mesothelium, a coelomic epithelial derivative to which 
the OSE is very closely related. Furthermore, PAX2 and PAX8 have been detected in tumors 
derived from non-urogenital lineages such as Kaposi’s sarcoma (Buttiglieri et al., 2004) and 
thymic tumors (Laury et al., 2011). These cases might fall within the third category of 
anomalously expressed homeobox genes described above.  

3.3 CDX2 and the intestinal phenotype 
Another homeoprotein that has been extensively studied in differential diagnosis is CDX2. 
Cdx2 controls intestinal differentiation and is expressed in the gut during development and 
in the adult (James et al., 1994). In contrast to PAX2 and PAX8, CDX2 is more frequently 
detected in mucinous ovarian carcinomas (64 to 93%) than in non-mucinous subtypes (0 to 
7%) (Fraggetta et al., 2003; Werling et al., 2003; Groisman et al., 2004). CDX2 has been 
detected at lower frequency in mucinous ovarian cystadenomas and borderline tumors in 
keeping with the decreased prevalence of intestinal differentiation in these tumors (Werling 
et al., 2003). The most common secondary tumor to mimic an ovarian primary tumor is 
metastatic colorectal adenocarcinoma. Distinguishing primary mucinous ovarian carcinoma 
from metastatic colorectal adenocarcinoma is essential for clinical management but can be 
very difficult given their similar morphologic features. CDX2 alone is unsuitable for 
distinguishing primary from secondary mucinous ovarian tumors, as it is expressed in 90% 
of colorectal carcinomas metastatic to the ovary (Tornillo et al., 2004). However, several 
studies have reported promising predictive values when CDX2 is combined with other 
markers. These include cytokeratin 7 and mucin 5AC that are more frequently expressed in 
cancers of ovarian rather than lower gastrointestinal origin, and mucin 2 and 
carcinoembryonic antigen that are more frequently expressed in cancers of gastrointestinal 
rather than ovarian origin (Groisman et al., 2004; Park et al., 2007). 

3.4 Other diagnostic applications of homeoproteins  

The studies discussed above indicate that expression of several homeobox genes in ovarian 
cancers is associated with specific patterns of differentiation (Table 1), and raise the 
possibility that homeoproteins could serve as markers for differential diagnosis when used 
in appropriate settings and in combination with other tissue-specific markers. Misexpressed 
homeoproteins might also be useful for early detection. A significant limitation of assaying 
molecules that are shed by tumor cells is that their levels might not be detected in body 
fluids particularly when tumors are small. On the other hand, cancer patients often generate 
antibodies to molecules that are expressed in tumors and not in normal tissues and to self-
antigens that are overexpressed in tumors. These circulating antibodies can be regarded as 
‘signals’ that are amplified by the immune system and could serve as biomarkers for early 
cancer detection. One approach of identifying tumor antigens is to screen tumor cDNA 
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expression libraries with cancer patient sera and has been termed SEREX (serologic 
identification of antigens by recombinant expression cloning) (Sahin et al., 1995). We have 
identified the HOXA7 and HOXB7 homeoproteins as ovarian tumor antigens by using the 
SEREX approach (Naora et al., 2001a, 2001b). Serum antibodies to HOXA7 were detected in 
16 of 24 (67%) patients with differentiated ovarian carcinomas and in 0/30 (0%) healthy 
women (Naora et al., 2001a). Antibodies to HOXA7 were also detected in 13 of 19 (68%) 
women with cystadenomas, but in only one of 24 (4%) patients with poorly differentiated 
ovarian carcinoma (Naora et al., 2001a). This serologic reactivity reflected the prevalence of 
HOXA7 expression in cystadenomas and differentiated ovarian carcinomas as compared to 
poorly differentiated carcinomas (Naora et al., 2001a). Whereas HOXA7 is absent from 
normal OSE, HOXB7 was detected in normal OSE and at higher levels in ovarian 
carcinomas irrespective of the type or degree of differentiation (Naora et al., 2001b). Serum 
antibodies to HOXB7 were detected in only one of 29 (3%) healthy women and in 13 of 39 
(33%) ovarian cancer patients (Naora et al., 2001b). Although this frequency is not high, the 
application of Bayesian modeling to multiplexed assays of serum antibodies to multiple 
ovarian tumor antigens has found that assaying serum antibodies to HOXB7, p53 and the 
antigen NY-CO-8 is the most effective combination for discriminating between ovarian 
cancer patients and healthy women (Erkanli et al., 2006). Widschwendter et al. (2009) 
reported that methylation of the HOXA9 and HOXA11 genes in normal endometrium can 
discriminate between premenopausal women with ovarian cancer and age-matched healthy 
women. Although the biological significance of these findings is unclear, this study raises 
the intriguing possibility that the methylation status of specific HOX genes in the 
endometrium might be useful for predicting risk of ovarian cancer.  
 

 

(* mostly restricted to differentiated tumors) 

Table 1. Homeobox gene expression in histologic subtypes of ovarian cancer. 

4. Homeobox genes and the hallmarks of cancer  

Given their essential developmental functions, it is not surprising that many homeobox 

genes are misexpressed in different types of cancers. In some cases, this aberrant expression 

reflects changes in cell differentiation in tumors and could occur as a consequence of 

tumorigenesis. On the other hand, there is increasing evidence that anomalous expression of 

homeobox genes plays causal roles in tumorigenesis (Abate-Shen, 2002; Samuel & Naora, 

2005; Robson et al., 2006). Overexpression of several HOX genes in bone marrow cells leads 

to acute myeloid leukemia (Thorsteinsdottir et al., 1997; Kroon et al., 1998; Fischbach et al., 

2005). Conversely, loss or down-regulation of a homeobox gene that is normally expressed 

in adult tissues can predispose cells for transformation. Inactivation of Nkx3.1 in mice leads 

to the development of lesions that resemble prostate intraepithelial neoplasia (Kim et al., 
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2002a). Inactivation of Nkx3.1 cooperates with loss-of-function of Pten to induce carcinoma 

(Kim et al., 2002b). Cdx2 heterozygous mutant mice develop adenomatous intestinal polyps 

(Chawengsaksophak et al., 1997). Cdx2 inactivation enhances the sensitivity of mice to 

chemically induced colon carcinogenesis (Bonhomme et al., 2003). Re-expression of Nkx3.1 

and Cdx2 in prostate and colon cancer cells, respectively, inhibits cell proliferation (Kim et 

al., 2002a; Mallo et al., 1998). On the other hand, re-expression of Hoxa10 in endometrial 

cancer cells does not alter proliferation but inhibits invasive behavior (Yoshida et al., 2006). 

Up- or down- regulation of homeobox genes in tumors, depending on their context, can 

therefore significantly modulate different hallmark capabilities of cancer. 

4.1 Sustained proliferative signaling  

A well-established hallmark of cancer cells is their ability to sustain chronic proliferation 
(Hanahan and Weinberg, 2000). One important growth factor that promotes autocrine cell 
growth and that is frequently overexpressed in ovarian cancers is fibroblast growth factor-2 
(FGF-2) (Le Page et al., 2006). The FGF-2 gene is a transcriptional target of HOXB7 (Caré et 
al., 1996). Enforced expression of HOXB7 in OSE cells induces FGF-2 expression and cell 
proliferation (Naora et al., 2001b). The homeoprotein DLX4 is absent from most normal 
adult tissues and is expressed in >50% of ovarian cancers (Hara et al., 2007). We have found 
that overexpression of DLX4 in ovarian cancer cells induces FGF-2 expression, increases 
clonogenicity in vitro and promotes tumor growth in vivo (Hara et al., 2007), but it is not 
known whether DLX4 directly activates FGF-2 transcription. We recently found that DLX4 
also induces expression of c-Myc (Trinh et al., 2011). This induction occurs by two 

mechanisms. We identified that DLX4 prevents transforming growth factor-TGF--
mediated repression of c-myc transcription, and also induces c-myc promoter activity 

independently of TGF-/Smad signaling (Trinh et al., 2011). DLX5, another member of the 
DLX family, has also been found to directly activate c-myc transcription in lung cancer cells 
(Xu and Testa, 2009). It has been reported that DLX5 is overexpressed in ovarian cancers and 
that inhibiting DLX5 expression by RNA interference attenuates AKT signaling and inhibits 
growth of ovarian cancer cells (Tan et al., 2010). Furthermore, DLX5 cooperates with 
activated HRAS in transformation of human OSE cells. This growth-stimulatory effect of 
DLX5 has been attributed in part to its ability to activate transcription of the gene encoding 
insulin receptor substrate 2, an oncogenic signaling adaptor protein (Tan et al., 2010).  
The studies discussed above demonstrate that activation of specific sets of homeobox genes 
in ovarian cancers drives tumor cell proliferation by inducing transcription of genes that 
encode multiple, different components of signaling pathways. In several cases, a homeobox 
gene promotes proliferation by the same mechanism in cells of different lineages. HOXB7 
induces FGF-2 expression in OSE cells, breast cancers and melanomas, and stimulates 
growth of these cell types (Caré et al., 1996; 1998; Naora et al., 2001b). Overexpression of 
SIX1 stimulates proliferation of breast and ovarian cancer cells by inducing cyclin A1 
expression (Coletta et al., 2004; Behbakht et al., 2007). On the other hand, the effect of a 
homeobox gene can be cell type-specific. For example, overexpression of HOXA10 in 
myelomonocytic cells activates transcription of the gene encoding the cyclin-dependent 
kinase inhibitor p21WAF1/Cip1 and induces cell cycle arrest in G1 phase (Bromleigh & 
Freedman, 2000). In contrast, we have found that overexpression of HOXA10 in OSE-
derived cells has no effect on cell proliferation (Ko et al., 2010). Because homeoproteins of a 
given family share regions of extensive homology, it is not surprising that family members 
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have overlapping functions. For example, both DLX4 and DLX5 induce c-Myc expression 
(Xu and Testa 2009; Trinh et al., 2011). On the other hand, MSX1 induces expression of 
growth arrest genes such as GADD153 and inhibits proliferation of ovarian cancer cells 
(Park et al., 2001), whereas MSX2 promotes ovarian cancer growth (Zhai et al., 2011). As 
discussed earlier, diversity in amino acid residues in the homeodomain and other motifs of 
family members gives rise to different DNA-binding specificities and can result in different 
phenotypes. The function or mechanism of a homeoprotein cannot therefore be inferred 
from studies of its related family members. 

4.2 Evasion of growth-suppressors 

A second important hallmark of cancer cells is their ability to circumvent signals that 

inhibit cell growth (Hanahan & Weinberg, 2000). Whereas TGF- induces G1 arrest in 
most types of normal cells, many tumors are resistant to the anti-proliferative effect of 

TGF- (Siegel & Massagué, 2003). The gene responses that are central to the TGF- 
cytostatic program are activation of the cyclin-dependent kinase inhibitors p15Ink4B and 
p21WAF1/Cip1 and repression of c-myc and ID transcription factors. This cytostatic program 
is tightly regulated by a network of transcription factors that include Smad proteins, Sp1 
and c-myc (Feng et al., 2000; 2002; Gartel et al., 2001). Resistance to the anti-proliferative 

effect of TGF- has been attributed to TGF- receptor or Smad4 mutations in several types 
of tumors, particularly those of gastrointestinal origin (Markowitz et al., 1995; Hahn et al., 

1996). TGF- receptor mutations have been detected in 12 to 31% of ovarian cancers, but 

many TGF--resistant ovarian cancers have been found to express functional receptors 
and rarely have Smad4 mutations (Yamada et al., 1999; Wang et al., 2000; Francis-
Thickpenny et al., 2001). We have found that DLX4 blocks the anti-proliferative effect of 

TGF- by inactivating transcriptional control of the TGF- cytostatic program through 
three distinct but integrated mechanisms (Trinh et al., 2011). Firstly, DLX4 directly binds 
Smad4 and prevents Smad4 from forming transcriptional complexes with Smad2 and 
Smad3. Secondly, DLX4 binds the DNA-binding domain of Sp1 and impairs the DNA-
binding ability of Sp1. In addition, DLX4 induces expression of c-Myc, a repressor of 
p15Ink4B and p21WAF1/Cip1 transcription (Trinh et al., 2011). An important outcome of our 

finding that DLX4 disables key transcriptional control mechanisms of the TGF- cytostatic 

program is that it explains why tumors that lack TGF- receptor or Smad mutations 

become resistant to the anti-proliferative effect of TGF-. 

4.3 Resistance to cell death 

Cancer cells encounter many physiologic stresses that trigger cell death and have evolved 
adaptive strategies to circumvent cell death programs. One important selective advantage is 
evasion of anoikis. A significant proportion of ovarian cancer cells in ascites exist as 
multicellular aggregates (Burleson et al., 2004). We have found that overexpression of 
HOXA10 in OSE-derived cells promotes homophilic cell adhesion and enables these cells to 
escape anoikis (Ko et al., 2010). Another selective advantage is the ability to survive under 
conditions where levels of growth factors are limited. We have found that DLX4 enables 
ovarian cancer cells to escape apoptosis induced by withdrawal of exogenous growth 
factors. This effect was due at least in part to induction of FGF-2 expression by DLX4 in 
tumor cells (Hara et al., 2007). In addition, DLX4 (also known as BP1 and DLX7) has been 
reported to induce bcl-2 and GATA-1 expression and to promote survival of leukemic and 
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breast cancer cells (Shimamoto et al., 1997; Stevenson et al., 2007). PAX2 has also been 
reported to promote survival of ovarian cancer cells and various other cell types such as 
bladder cancer cells, Kaposi’s sarcoma and renal cell carcinoma cells (Gnarra & Dressler, 
1995; Muratovska et al., 2003; Buttiglieri et al., 2004), but the underlying mechanism of the 
anti-apoptotic effect of PAX2 is not known.  
Chemoresistance is a major challenge in the clinical management of ovarian cancer. BARX2 
is a homeobox gene that has been strongly implicated in modulating sensitivity of tumor 
cells to platinum. A study by Sellar et al. (2002) investigated isogenic ovarian cancer cell 
lines that were established from patients’ tumors before and after platinum therapy. It was 
found that BARX2 expression was down-regulated in tumor cell lines that were established 
upon tumor recurrence after platinum therapy and that transfection of BARX2 into 
platinum-resistant cells reversed platinum-resistance. There has been significant interest in 
studying platinum-resistance in stem cell-like cell populations in ovarian cancers, and the 
homeoprotein Nanog has been used as a stem cell marker in these studies (Zhang et al., 
2008). Furthermore, some homeobox genes confer resistance to cell death induced by other 
agents or signals. Expression of HOXB13 in ovarian cancer cells has been reported to confer 
resistance to tamoxifen-mediated apoptosis (Miao et al., 2007). On the other hand, SIX1 
overexpression renders ovarian cancer cells resistant to tumor necrosis factor-related 
apoptosis inducing ligand (TRAIL)-mediated apoptosis (Behbakht et al., 2007).  

4.4 DNA repair and genomic instability 

Most agents that are commonly used to treat ovarian cancer induce cell death by causing 

DNA damage. The DNA double-strand break (DSB) is the most dangerous type of DNA 

damage. DSBs are induced by ionizing radiation and topoisomerase II inhibitors such as 

etoposide (Helleday et al., 2008). The inability of a cell to properly respond to DSBs leads to 

genomic instability. Genomic instability has been described as an ‘enabling’ characteristic of 

cancer cells (Hanahan & Weinberg, 2011). The primary mechanisms that repair DSBs are 

homologous recombination (HR) and non-homologous end-joining (NHEJ). The latter is the 

dominant DSB repair pathway in mammalian cells and is error-prone (Lieber et al., 2003). 

Both deficiencies and increases in NHEJ activity contribute to DNA repair infidelity and 

genomic instability (Difilippantonio et al., 2000; Brady et al., 2003). Several homeoproteins 

have been implicated in DNA repair and genomic instability. HOXB7 has been reported to 

stimulate NHEJ-mediated DNA repair and to confer resistance to ionizing radiation (Rubin 

et al., 2007). This activity was associated with the ability of HOXB7 to bind Ku proteins. Ku 

proteins form a complex that binds to the ends of DSBs (Lieber et al., 2003). On the other 

hand, DLX4 has been reported to inhibit expression of BRCA1, a component of the HR-

mediated DNA repair pathway (Kluk et al., 2010). Overexpression of SIX1 has been found to 

lead to genomic instability by attenuating the G2-M DNA damage checkpoint (Coletta et al., 

2008). In these studies, the functions of HOXB7, DLX4 and SIX1 were studied in breast 

cancer cells. However, these homeoproteins are also overexpressed in ovarian cancers 

(Naora et al., 2001b, Hara et al., 2007; Behbakht et al., 2007), and might potentially contribute 

to DNA repair infidelity and genomic instability in ovarian cancer cells.  

4.5 Invasion and metastasis 

The ability of tumor cells to invade adjacent tissues and colonize distant sites is another 

well-established hallmark of cancer (Hanahan & Weinberg, 2000). The lethality of ovarian 
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cancer stems from its propensity for aggressive intraperitoneal dissemination, with 70% of 

patients presenting with advanced-stage disease. FGF-2 stimulates cell migration, and 

advanced-stage ovarian cancers express a gene signature associated with FGF-2 signaling 

(De Cecco et al., 2004). HOXB7 induces FGF-2 expression in OSE-derived cells (Naora et al., 

2001b) and inhibiting HOXB7 expression in ovarian cancer cells inhibits invasiveness 

(Yamashita et al., 2006). Invasiveness of ovarian cancer cells is also inhibited when HOXB13 

expression is suppressed (Yamashita et al., 2006). Overexpression of SIX1 increases 

metastasis of rhabdomyosarcoma by inducing expression of the cytoskeletal protein ezrin 

(Yu et al., 2004), but it is not known whether SIX1 promotes ovarian cancer dissemination 

by the same mechanism. Conversely, BARX2 inhibits invasiveness of ovarian cancer cells 

and loss of BARX2 in ovarian cancers is associated with adverse survival (Sellar et al., 2001). 

The tumor-suppressive property of BARX2 has been attributed in part to its ability to induce 

expression of the cell adhesion molecule cadherin-6 (Sellar et al., 2001).  

Functions of several other homeobox genes that have been implicated in ovarian tumor 

progression are more complex. In addition to its anti-proliferative effect, TGF- is well-

known to induce epithelial-to-mesenchymal transition (EMT) and metastasis (Siegel and 

Massagué, 2003). We have found that DLX4 not only blocks the anti-proliferative effect of 

TGF- by sequestering Smad4, but also partially inhibits TGF--induced EMT (Trinh et al., 

2011). The ability of DLX4 to inhibit TGF--induced EMT could explain the reported 

association of DLX4 with favorable prognosis in lung cancer patients and its metastasis-

suppressive activity (Tomida et al., 2007). On the other hand, we have found that DLX4 

expression in ovarian cancers is strongly associated with disease progression (Hara et al., 

2007). This association is likely to be due to the ability of DLX4 to stimulate other tumor-

promoting processes via its induction of c-Myc, FGF-2 and vascular endothelial growth 

factor (VEGF) (Hara et al., 2007; Trinh et al., 2011). Another example of a homeobox gene 

with paradoxical functions is HOXA4. Whereas HOXA4 is more highly expressed in 

invasive than in non-invasive ovarian cancers, HOXA4 inhibits ovarian cancer cell migration 

(Klausen et al., 2009). These authors have speculated that increased HOXA4 expression in 

invasive cancers might constitute a homeostatic response.  
In contrast to many other types of cancers, ovarian cancer rarely spreads by hematogenous 
routes. Ovarian cancer cells typically disseminate by intraperitoneal ‘seeding’ whereby 
exfoliated tumor cells are transported throughout the pelvic cavity by the peritoneal fluid 
and frequently implant onto the mesothelial linings of the cavity wall and omentum (Naora 
& Montell, 2005). Attachment of ovarian cancer cells to mesothelial surfaces is mediated in 
part by interactions between ECM proteins and integrins (Heyman et al., 2008). We have 
found that HOXA10 stimulates attachment of OSE-derived cells to omental mesothelial cells 

by inducing expression of v3 integrin (Ko et al., 2010). The ITGB3 gene that encodes 3 
integrin has also been reported to be a transcriptional target of HOXA10 in endometrial cells 
(Daftary et al., 2002). However, comparison of our studies of HOXA10 in ovarian and 
endometrial cancers reveals striking differences as well as similarities. We have found that 
gain of HOXA10 expression in endometrioid ovarian carcinomas is associated with 
endometrial-like differentiation (Cheng et al., 2005), whereas HOXA10 down-regulation in 
endometrial carcinomas correlates with loss of glandular differentiation (Yoshida et al., 
2006). Consistent with these observations, HOXA10 promoted homophilic cell adhesion in 
both endometrial cancer cells and OSE-derived cells (Yoshida et al., 2006; Ko et al., 2010). 
However, whereas HOXA10 expression in endometrial cancer cells inhibited invasiveness 
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and metastasis (Yoshida et al., 2006), HOXA10 activation in OSE-derived tumor cells lead to 
increased numbers of peritoneal implants by enabling tumor cells to escape anoikis and 
stimulating their attachment to mesothelial surfaces (Ko et al., 2010). These studies indicate 
that cellular behavior induced by a homeobox gene can differ depending on the cell type 
and context, and highlight fundamental differences between intraperitoneal seeding of 
ovarian cancer and ‘classic’ metastasis of endometrial and many other types of carcinomas. 

4.6 Angiogenesis 

Angiogenesis is a well-established hallmark of cancer that has been extensively studied in 
ovarian cancer. The angiogenic factors VEGF, FGF-2 and IL-8 are overexpressed in ovarian 
cancers and tumor microvessel density is a strong predictor of outcomes (Hollingsworth et 
al., 1995; Yoneda et al., 1998). VEGF is also the causative factor of ascites (Zhang et al., 2002). 
We have found that DLX4 expression in ovarian cancers is strongly associated with ascites 
and reduced overall survival in patients (Hara et al., 2007). Furthermore, we have 
demonstrated that overexpression of DLX4 in ovarian cancer cells promotes ascites and 
increases tumor microvessel density in mouse xenograft models. This activity of DLX4 was 
attributed to its induction of FGF-2 and VEGF expression (Hara et al., 2007). HOXB7 has also 
been found to induce FGF-2 and VEGF expression in breast cancer cells (Caré et al., 2001), 
and might stimulate angiogenesis in ovarian cancer by the same mechanism.   

4.7 Implications for therapy 

To date, functions of homeobox genes have not been described in replicative immortality or 
in emerging hallmarks and enabling characteristics of cancer such as deregulated cellular 
energetics, inflammation and evasion of immune destruction (Hanahan & Weinberg, 2011). 
Because homeoproteins control expression of numerous genes in different cell types and in 
response to different cellular signals, it is likely that misexpressed homeoproteins also 
modulate tumor pathogenesis by regulating one or more of these other hallmark 
capabilities. One central finding that has emerged from recent studies is that misexpression 
of an individual homeoprotein can promote multiple hallmark capabilities (Table 2).  
 

 

Table 2. Implicated functions of up- (↑) and down- (↓) regulated homeobox genes in ovarian 
cancer. 

This raises the possibility that homeoproteins could be attractive therapeutic targets. The 

most significant challenge to effectively inhibiting an overexpressed homeoprotein in 

tumors is specificity. As discussed earlier, different homeoproteins particularly within a 

family have highly conserved domains. One approach by which HOX protein activity can be 
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inhibited in cells is by using a cell-penetrating peptide that blocks interactions between HOX 

and PBX proteins. This peptide has been reported to inhibit growth of ovarian cancer cells 

(Morgan et al., 2010). However, it should be noted that many different HOX proteins are 

expressed in normal cells as well as in tumors and utilize PBX proteins as co-factors (Chang 

et al., 1995; Shanmugam et al., 1999). On the other hand, the studies to date indicate that 

distinct sets of homeoproteins control cell cycle progression and cell survival. 

Homeoproteins might therefore be useful as markers for predicting responsiveness to 

chemotherapeutic agents. 

5. Mechanisms of homeobox gene deregulation in tumors 

As discussed above, studies of NKX3.1 and CDX2 have demonstrated that misexpression of 

homeobox genes can induce pre-neoplastic lesions or predispose cells to transformation 

(Kim et al., 2002a; 2002b; Chawengsaksophak et al., 1997). Studying how homeobox genes 

are deregulated in tumors could therefore provide important insights into cancer risk. 

However, the mechanisms that cause aberrant expression of homeobox genes in solid 

tumors are poorly understood. Mutations in homeobox genes are associated with many 

developmental abnormalities (Mortlock and Innis, 1997; Ruf et al., 2004), but have rarely 

been detected in solid tumors. Deregulation of many HOX genes in leukemias and some 

PAX genes in sarcomas has been attributed to chromosomal translocations (Samuel & 

Naora, 2005; Argiropoulos & Humphries, 2007). A few homeobox genes localize to ‘hot-

spots’ that undergo loss of heterozygosity (LOH) or are amplified in tumors. The HOXB 

gene cluster and DLX4 map to the 17q21.3-q22 region, a ‘hot-spot’ that is amplified in ~10% 

of breast and ovarian cancers (Watanabe et al., 2001; Hyman et al., 2002; Hirasawa et al., 

2003). However, overexpression of HOXB7 and DLX4 occurs in >50% of breast and ovarian 

cancers (Naora et al., 2001b; Man et al., 2005; Wu et al., 2006; Hara et al., 2007), indicating 

that gene amplification is not the sole mechanism underlying the overexpression of these 

genes. On the other hand, NKX3.1 maps to 8p21, a region that is deleted in ~80% of prostate 

cancers (He et al., 1997). BARX2 is located at 11q24-q25, within a minimal region that is 

associated with frequent LOH and adverse survival in ovarian cancer (Gabra et al., 1996). It 

is interesting to note that BARX2 is the only homeobox gene with tumor-suppressive 

properties that has been identified to be lost in ovarian cancer. In contrast, other homeobox 

genes have been found to be overexpressed in ovarian cancers (Table 2). In this regard, the 

pattern of misexpression of homeobox genes in ovarian cancers is remarkably more similar 

to that in hematologic malignancies rather than in other solid tumors.  

5.1 Developmental signals 

Little is known about the signaling pathways that control expression of homeobox genes in 
tumors. However, studies from the developmental biology field can provide important 
insights. Cross-regulatory interactions have been reported between bone morphogenetic 
proteins (BMPs) and DLX genes during normal cell differentiation. For example, BMP-2 
activates Dlx3 transcription (Park & Morasso, 2002), whereas Smad6, an antagonist of BMP 
signaling, inhibits DLX3 transcriptional activity (Berghorn et al., 2006). We have observed 

that levels of DLX4 protein decrease in cells following TGF- stimulation (Trinh et al., 2011). 

This raises the possibility that DLX4 is a component of a regulatory loop that blocks TGF- 

signaling and is conversely regulated by TGF-. There is considerable evidence that 
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patterning of the reproductive tract is controlled by a regulatory network of distinct sets of 
Wnts and homeobox genes (Kobayashi & Behringer, 2003). MSX2 is a transcriptional target 

of -catenin/TCF and MSX2 expression is increased in endometrioid ovarian carcinomas 

with deregulated -catenin (Zhai et al., 2011). Expression of AbdB HOX genes in the 
endometrium is also tightly regulated by estrogen and progesterone (Ma et al., 1998). WT1 is 
a transcription factor that is used as a marker of serous ovarian cancer and reportedly 
represses HOXA10 expression (Andikyan & Taylor, 2009). WT1-mediated repression could 
explain why many serous ovarian cancers do not express HOXA10 (Cheng et al., 2005).  

5.2 Epigenetic mechanisms 

DNA methylation is the most commonly identified mechanism that silences expression of 

homeobox genes in solid tumors such as breast and lung cancers (Novak et al., 2006; Rauch 

et al., 2007). We have found that HOXA10 down-regulation in high-grade endometrial 

carcinomas is due to promoter methylation (Yoshida et al., 2006). DNA methyltransferases 

that methylate DNA are recruited by Polycomb repressive complexes (Mills, 2010). 

Polycomb and Trithorax group proteins form multi-protein complexes that contain histone 

methyltransferase activity and dynamically alter chromatin structure by modifying specific 

residues in histone tails. Polycomb group proteins keep HOX genes repressed, whereas 

Trithorax group proteins counteract Polycomb-mediated silencing and maintain HOX 

expression (Soshnikova & Duboule, 2009). Polycomb and Trithorax group proteins are 

aberrantly expressed in different types of cancers (Mills, 2010), but it is unclear whether 

altered expression of these proteins causes HOX activation in ovarian cancers. A striking 

aspect of HOX gene clusters is the presence of long noncoding RNAs and microRNAs in the 

intergenic regions. These non-coding RNAs control transcription of HOX genes through a 

variety of cis- and trans- acting mechanisms (Lemons & McGinnis, 2006; Yekta et al., 2008). 

One intriguing example is the long non-coding RNA HOTAIR. HOTAIR is located in the 

HOXC locus and interacts with and targets the Polycomb repressive complex 2 (PRC2) to 

the HOXD locus located on a different chromosome (Rinn et al., 2007). HOTAIR expression 

in primary breast tumors has been found to be a strong predictor of metastasis (Gupta et al., 

2010). Enforced expression of HOTAIR in cancer cells increased metastasis by inducing 

genome-wide re-targeting of PRC2 to an occupancy pattern that resemble that of embryonic 

fibroblasts (Gupta et al., 2010). Almost all homeobox genes that have been studied in 

ovarian cancer are overexpressed (Tables I,II), and their activation in tumors might arise 

from down-regulation of non-coding RNAs. Indeed, microRNA-185 has been reported to 

target Six1 and is expressed at decreased levels in ovarian cancers (Imam et al., 2010). 

6. Conclusions 

In conclusion, the functional significance of homeobox genes in ovarian cancer is rapidly 

emerging as an intriguing research area that provides new molecular insights into the 

histogenesis of the different subtypes of ovarian cancer and the progression of this disease. 

The studies to date raise the possibility that specific sets of homeoproteins might serve as 

diagnostic or predictive markers in the appropriate settings and in combination with other 

markers. However, more mechanistic studies are essential to further develop our 

understanding of the functions of homeobox genes in ovarian cancer biology and to 

translate this research into clinical applications. In particular, the target genes of 
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homeoproteins and the mechanisms that cause aberrant homeobox gene expression in 

tumors need to be identified. It is also important to determine whether a given homeobox 

gene controls a cellular process by the same mechanism in cells of different lineages, or has 

cell type-specific effects. Studies from the developmental biology field have provided 

powerful insights into the regulation, functions and mechanisms of homeobox genes in 

human cancers. Stronger integration between the developmental and cancer biology fields 

will be instrumental for furthering our understanding of the functional significance of 

homeobox genes in ovarian cancer.  
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