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1. Introduction 

1.1 Neural stem cells 

Neural stem cells are localized in two limited regions of the adult mammalian brain: the 
subgranular zone of the dentate gyrus (DG) of the hippocampus, a cell layer located 
between the granule cell layer and the hilus (Eriksson et al., 1998; Limke and Rao, 2002), and 
the subventricular zone (SVZ), located next to the ependyma of the lateral walls of the 
lateral ventricles (Doetsch and Scharff, 2001; Curtis et al., 2007). These regions are thought to 
provide a specific microenvironment, the stem cell niche, characterized by the presence of 
several agents involved in the maintenance of self-renewal and/or multipotency of neural 
stem cells (Alvarez-Buylla and Lim, 2004). 

Although neurogenesis has been intensively studied over the past decades, only recently it 
has been established that newly formed neurons in the adult mammalian brain are 
functional and integrate into the existing neuronal network (Carlen et al., 2002). The several 
stages of adult neurogenesis include proliferation of adult neural stem cells, fate 
determination, migration, integration and maturation of the newborn neurons. Using 
specific cell markers it is possible to independently investigate the different phases of 
development. Hippocampal neurogenesis plays an important role in normal hippocampal 
function, learning and memory (Gould et al., 1999a; Shors et al., 2001; Drapeau et al., 2007). 
Newborn cells emerging from the SVZ migrate through the rostral migratory stream and 
integrate into the neuronal network of the olfactory bulb, establish functional synaptic 
connections and develop electrophysiological properties of mature neurons (Carlen et al., 
2002; Petreanu and Alvarez-Buylla, 2002; Belluzzi et al., 2003). Furthermore, neurogenesis in 
the olfactory bulb is involved in important functions such as odor memory and 
discrimination (Gheusi et al., 2000; Rochefort et al., 2002; Shingo et al., 2003). Under 
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physiological conditions, neural stem cells are tightly controlled contributing for the 
maintenance of brain homeostasis (Morshead et al., 1994; Morshead et al., 1998), however 
they seem to be also involved in neuronal replacement in response to pathophysiological 
conditions, particularly in conditions associated with neuroinflammation. Although little is 
known about the molecular mechanisms involved in the regulation of neural stem cells, 
several factors, both intrinsic and extrinsic, have been described to modulate the neurogenic 
process, such as hormones, trophic factors, neurotransmitters, neuromodulators and glial 
cells (for review see Ming and Song, 2005). 

The existence of neurogenesis in areas beyond the SVZ and the DG of the adult mammalian 
brain have also been reported, namely in the neocortex (Gould et al., 1999b; Dayer et al., 
2005), striatum, amygdala (Bernier et al., 2002), hypothalamus (Gould et al., 2001; Xu et al., 
2005), mesencephalon (Zhao et al., 2003) and spinal cord (Yamamoto et al., 2001). However, 
these findings need further experimental support, thus more studies need to be conducted. 

1.2 Neuroinflammation 

The central nervous system (CNS) was considered an immunologically privileged site, not 

susceptible to immune activation, due to its protection by the blood-brain barrier, which 

selectively allows certain inflammatory agents to enter and/or exit (Lucas et al., 2006). 

Nowadays it is well established that immune surveillance takes place in the CNS due to the 

selective permeability of the blood-brain barrier to immune cells such as T cells, 

macrophages and dendritic cells (Hickey, 1999). Following injury or exposure to pathogens, 

an inflammatory response is driven by the activation of two types of immune cells: CNS 

resident cells, such as microglial cells and astrocytes, and CNS infiltrating cells, such as 

lymphocytes, monocytes and macrophages from the hematopoietic system (Stoll and Jander, 

1999; Streit et al., 1999). The activation of immune cells leads to the production and release of 

a plethora of regulatory substances, like cytokines, chemokines, neurotransmitters, reactive 

oxygen species and reactive nitrogen species (reviewed by Whitney et al., 2009). These 

inflammatory mediators are essential for the recruitment of immune cells, particularly 

microglial cells, but also for changing the permeability of the blood-brain barrier and 

recruitment of monocytes and lymphocytes from the hematopoietic system to the 

compromised area (Hickey, 1999; Lossinsky and Shivers, 2004; Taupin, 2008), which creates 

a positive feedback loop to the inflammatory response. 

Microglia, frequently referred to as the resident macrophages of the brain parenchyma, play 

a central role in the inflammatory response. Unlike astrocytes, oligodendrocytes and 

ependymal cells, microglial cells derive from the mesodermal germ layer. During adult life, 

the microglial cell pool is renewed by division of CNS resident cells. Moreover, microglia 

are distributed throughout the CNS with distinct densities (Lawson et al., 1990). In the 

healthy brain, microglia are present in a resting state assuming a typical and dynamic 

morphology, whose function has been clarified by different studies (Davalos et al., 2005; 

Nimmerjahn et al., 2005; Davalos et al., 2008). This resting state consists of a constant 

surveillance activity of the brain parenchyma, which enables microglial cells to screen 

different brain regions without disturbing the neuronal network (Hanisch and Kettenmann, 

2007). Therefore, microglial cells can rapidly react to subtle homeostatic variations by 

changing morphology and acquiring an array of functions that allow the targeted migration 
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into a site of injury and release of inflammatory mediators (Gehrmann, 1996; Kreutzberg, 

1996; Haynes et al., 2006). Reactive microglia have the ability to rapidly upregulate a large 

number of receptor types, like cytokine receptors, toll-like receptors or cell adhesion 

molecules, but also to release a plethora of inflammatory agents (for review see Block and 

Hong, 2005). In fact, chemokines released by reactive microglial cells attract more microglia 

that, following activation, contribute to further propagate the neuroinflammatory event 

(Whitney et al., 2009). 

Astrocytes constitute the majority of glial cells in the CNS, and play an important structural 

function, providing support for neurons, playing also regulatory functions, including 

maintenance of extracellular ion balance, signaling to neurons, repair and scarring process 

of the CNS (Svendsen, 2002). During inflammation, astrocytes also become activated and 

release inflammatory factors, growth factors and excitatory amino acids, such as glutamate, 

which are involved in the regulation of the inflammatory response (Song et al., 2002). 

1.3 Neuroinflammation and neurogenesis 

Neuroinflammation is a complex event with different outcomes in the neurogenic process, 

which can therefore enhance or suppress neurogenesis. The secreted products during 

inflammation have been shown to act as pro- or anti-neurogenic agents, contributing to 

beneficial or detrimental outcomes of neuroinflammation on the different steps of 

neurogenesis. Moreover, these effects seem to be particularly dependent on how and for 

how long microglial cells are activated. Inflammation and microglia activation were initially 

thought to inhibit adult neurogenesis (Ekdahl et al., 2003; Monje et al., 2003), while recent 

evidence indicates that microglia under certain circumstances can support neurogenic 

events (reviewed by Hanisch and Kettenmann, 2007). It has been suggested that mediators 

released by reactive microglia, such as cytokines and nitric oxide (NO), can inhibit adult 

neurogenesis in inflammatory conditions (Vallieres et al., 2002; Monje et al., 2003; Liu et al., 

2006). On the other hand, neurogenesis seems to be induced by microglial cells activated by 

IL-4 or low level of IFN-gamma, which has been associated with increased neuroprotection 

(Wong et al., 2004; Song et al., 2005; Baron et al., 2008). Moreover, some inflammatory 

mediators like NO seem to have opposite roles in regulating neurogenesis in inflammatory 

conditions (Carreira et al., 2010). Apparently, microglial cells and the factors they release 

play a dual role in neurogenesis acting as antiproliferative or proliferative agents. Indeed, 

self-renewal, proliferation, migration, differentiation, integration and, more importantly, 

survival of newborn neurons is modulated by the local microenvironment characterizing the 

neuroinflammatory response. Neural stem cells become “activated” following brain injury 

and migrate into the lesioned areas, which suggests that mediators present in the 

inflammatory microenvironment can guide the migration of newborn cells (Arvidsson et al., 

2002; Nakatomi et al., 2002). 

The role of neuroinflammation in regulating neurogenesis and neuroprotection is not clear 

yet, and is the subject of numerous studies (for comprehensive review see Whitney et al., 

2009; and Gonzalez-Perez et al., 2010). There is, however, evidence for some of the most 

important mediators of the inflammatory response in their role in the regulation of 

neurogenesis and neuroprotection (Table 1). 
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Inflammatory 
factor 

Neurogenesis Neuroprotection References 

IFN-gamma Pro-neurogenic Decreased 
(Ben-Hur et al., 2003; Wong et al., 

2004; Butovsky et al., 2006; 
Johansson et al., 2008) 

Interleukin-6 

Anti-neurogenic Decreased 

(Ekdahl et al., 2003; Liu et al., 2005; 
Nakanishi et al., 2007; Koo and 

Duman, 2008; Bauer, 2009; Islam et 
al., 2009) 

Interleukin-18 

Nitric oxide 

Anti-neurogenic 
(nNOS) 

Pro-astrogliogenic 
(iNOS) 

Decreased 

(Contestabile et al., 2003; Moreno-
Lopez et al., 2004; Matarredona et 

al., 2005; Ciani et al., 2006; Covacu et 
al., 2006; Fritzen et al., 2007; Luo et 

al., 2007; Carreira et al., 2010) 

TNF-alpha 

Anti-neurogenic 
(TNF-R1) 

Pro-neurogenic 
(TNF-R2) 

Decreased or 
Increased 

(Ben-Hur et al., 2003; Wong et al., 
2004; Cacci et al., 2005; Heldmann et 
al., 2005; Liu et al., 2005; Iosif et al., 

2006; Bernardino et al., 2008) 

Table 1. Effect of some inflammatory factors on neurogenesis and their neuroprotective role.  

We are only beginning to understand how inflammatory factors and microglial cells 

influence neurogenesis in an inflammatory scenario, and the mechanisms, function and 

modulation of neurogenesis during inflammation require further investigation. This field of 

work is of particular interest for a better understanding of the mechanisms underlying the 

effects of neuroinflammation on neurogenesis, and further studies need to be conducted to 

increase the potential therapeutic value of regulating neuroinflammation in cellular 

regeneration in the diseased brain. 

1.4 Brain repair and stem cell based therapies 

Repair of damaged tissues is essential for the survival of living organisms. Each tissue or 

organ has an intrinsic, albeit limited ability for the replacement of dead cells, and correct 

integration of the newborn cells that, ideally, should restore the original structure. Cell 

replacement and correct integration of the newborn cells in the CNS is not so efficient as in 

other tissues such as skin or bone, which present a higher cell turnover. The CNS, on the 

other hand, has weak capabilities for both endogenous cell replacement and pattern repair. 

Some approaches have been used to attempt to develop therapeutic strategies for brain 

repair, namely transplantation of neural stem cells, stimulation of endogenous neurogenesis, 

neuroprotective strategies and anti-inflammatory approaches.  

Transplantation of neural stem cells is one of the promising methods in study to be used in 

the reconstruction of neuronal circuits. However, the cells to be transplanted should be 

phenotypically plastic and able to proliferate ex vivo in response to external stimulus (Wang 

et al., 1998; Sheen et al., 1999). Intracerebral transplantation of SVZ-derived neural stem cells 
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has been successfully used in experimental models of Parkinson’s disease (Zigova et al., 

1998; Richardson et al., 2005), Huntington’s disease (Vazey et al., 2006), and in Multiple 

Sclerosis (Cayre et al., 2006). Cell replacement could also be achieved by inducing 

endogenous neural stem cells to differentiate into neurons in the adult CNS, which consists 

in a less invasive strategy when compared to cell transplantation.  

Indeed, in situ stimulation of endogenous adult neural stem cells and modulation of injury-
induced neurogenesis is a therapeutic strategy, developed to upregulate endogenous 
neurogenesis, for instance through the control of the inflammatory response in a safe and 
efficient way. This approach seems to be a more advantageous strategy for multifocal 
diseases such as Alzheimer’s disease, when compared to grafting strategies. Therefore, 
increased neurogenesis has been achieved by different strategies, such as administration of 
mitotic agents or trophic factors (Craig et al., 1996; Kuhn et al., 1997; Zigova et al., 1998), 
treatment with neuroleptics like olanzepine (Green et al., 2006), administration of NO 
donors or 5-phosphodiesterase inhibitors (Zhang et al., 2003; Imitola et al., 2004; Sun et al., 
2004; Sun et al., 2006). 

Other strategies designed to improve brain repair are being investigated, such as 

neuroprotective approaches consisting in the administration of radical scavengers, apoptosis 

inhibitors, neurotrophic agents, metal ions chelators and gene therapy, which seem to be 

useful to limit injury-induced lesion, but also for the enhancement of the survival of 

newborn cells (Polazzi and Monti, 2010). The use of anti-inflammatory drugs as a strategy to 

promote neurogenesis has also been explored and, although the chronic use of nonsteroidal 

anti-inflammatory drugs is detrimental for the gastrointestinal tract, it has also been 

associated with a decreased risk for neurodegenerative diseases (McGeer and McGeer, 1995; 

Lim et al., 2000; Chen et al., 2003). In fact, control of the inflammatory response seems to be 

an important strategy to increase proliferation of neural stem cells and/or differentiation of 

newborn neurons. 

Strategies to promote regeneration of lesioned areas or cell replacement therapies will have 
to take into account the effects of inflammation on the formation and survival of newly 
generated neurons, either from the brain’s own pool of neural stem cells, or from 
transplanted neural stem cells. Thus, the understanding of the mechanisms underlying the 
effect of neuroinflammation in proliferation, fate determination, migration and 
differentiation of neural stem cells is the first step in the development of specific strategies 
that could target the deleterious effect of inflammation in neurogenesis. Since the 
neuroinflammatory event is mostly characterized by the activation of resident microglial 
cells, the use of in vitro models that allow the study of the effects of microglia activation in 
the modulation of neural stem cells proliferation, fate determination, migration and 
differentiation into neurons is of high importance for the development of therapeutic 
strategies. 

2. In vitro models to assess the crosstalk of neurogenesis and 
neuroinflammation 

In vitro culture systems are critical tools for the study of various aspects related to the 
mechanisms that regulate biological functions. The removal of cells from their native 
microenvironment allows the study in a more focused way without the restrictions or 
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control of other cell types. When using in vitro systems it is essential to recognize that some 
of the isolated cells must be studied within a short period of time following isolation, or 
instead, the experimental model must reproduce the microenvironment of the CNS from 
where cells were isolated. These limitations can, however, be useful to investigate the factors 
that regulate the phenotype of isolated cells. Different in vitro models using neural stem cells 
and microglial cells may be used, to better understand how inflammation affects the 
formation of new neurons from neural stem cells. 

2.1 Neural stem cell cultures 

Reynolds and collaborators performed the first adult neural stem cell culture in the 90’s 
(Reynolds et al., 1992; Reynolds and Weiss, 1992), as free floating cell clusters, commonly 
referred to as neurospheres. These adult neural stem cells found in vivo were dissociated in 
vitro and kept their main properties: self-renewal capacity and multipotency, when in 
presence of mitogens such as basic fibroblast growth factor (bFGF) and epidermal growth 
factor (EGF).  This cell culture system is extensively used by researchers in neural stem cell 
biology, and models based on adherent adult neural stem cells cultured in a monolayer on 
matrix are also widely used (Pollard et al., 2006). 

The neural stem cell cultures can be obtained from different regions from the neuroaxis of 
the adult mammalian CNS, from the olfactory bulb to the spinal cord, and kept in uncoated 
dishes under serum-free conditions plus mitogens and other essential supplements 
(Golmohammadi et al., 2008). These adult neural stem cells can be identified based on the 
expression of specific protein markers such as the transcription factor Sox2, nestin, musashi-
1 and the EGF receptor, among others (Kaneko et al., 2000; Ming and Song, 2005). After 
removal of mitogens these cells can give rise to three different cell types, namely neurons, 
astrocytes and oligodendrocytes (Levison and Goldman, 1997; Luskin et al., 1997; Palmer et 
al., 2001; Sanai et al., 2004). Thus, in cultures we can find cells expressing the referred 
markers but also cells expressing other specific markers, such as glial fibrillary acidic protein 
(GFAP), polysialylated-neural cell adhesion molecule (PSA-NCAM) and beta-IIII tubulin 
(Suslov et al., 2002; Ming and Song, 2011).  

It is believed that the neurosphere culture may closer resemble the in vivo architecture than 
adherent cultures since it is believed that the stem cell niche is created by clustered cells. On 
the other hand, the sphere size can be a limitation of this culture in comparison to adherent 
neural stem cell cultures since the cells that are in the sphere core can have lower access to 
the nutrients and oxygen, thus undergoing cell death (Ostenfeld et al., 2002; Bez et al., 2003). 

Adult neural stem cell culturing systems have been a relevant tool in the study of biological 
processes within the mammalian nervous system such as neurogenesis and their distinct 
phases. Cultures are good platforms for expansion of adult neural stem cells, being easily 
manipulated without loss of function. Additionally, they can be used as experimental 
models for the study of differentiation and intrinsic specification, and also for screening of 
drugs with the potential to enhance neurogenesis. However, further investigation should be 
performed for characterization of stem cells in these models, since a specific marker for 
neural stem cells is still lacking.  

On the other hand, adult stem cell cultures have some limitations, as described next. Cells 
are sensitive to the culturing protocols, namely the overall number of passages, mitogen 
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concentration and also to the methodology adopted to dissociate spheres – mechanically or 
by enzymatic digestion (Caldwell, 2001; Caldwell et al., 2001; Morshead et al., 2002; Irvin et 
al., 2003). The overall size of spheres has been linked to the heterogeneity of sphere 
composition, since it increases with sphere size, the artificiality of the cell cultures, since 
cells propagate without instructions of their niche, and the fact that all dividing cells 
propagate resulting in a mixture of different cell types, are all limitations of the neurosphere 
culture (Reynolds and Weiss, 1996; Suslov et al., 2002; Parmar et al., 2003). Moreover, the 
non-limited expansion of cultures could be a disadvantage once the proliferative capacity 
could be lost by fast dividing cells over multipotent cells or by loss of stem cell capacity over 
the number of passages. This situation may occur at the expense of differentiation. 
Moreover, long-term culturing emphasizes the tendency for neural stem cells to adopt an 
astrocytic phenotype, with reduced capacity to generate oligodendrocytes and neurons 
(Chang et al., 2004; Vukicevic et al., 2010). Despite these limitations, free floating neural stem 
cell culturing systems have several advantages and are by far the most used tool concerning 
the study of neural stem cell biology. The use of neural stem cell cultures allows the easy 
access to different stages of adult neurogenesis, including proliferation of neural stem cells 
or progenitors, differentiation and fate determination of progenitor cells, migration of 
newborn cells and cell survival. By choosing the right tools and correct techniques, these 
different stages can be independently studied in vitro.  

Adult neurogenesis was initially reported in vivo using autoradiography to track tritiated 
([3H])-thymidine. [3H]-thymidine is incorporated in the DNA of dividing cells, thus proving 
evidence for the existence of newborn cells in the hippocampus (Altman and Das, 1965) and 
later, in the olfactory bulb (Altman, 1969). Proliferation of neural stem cells, the first stage of 
neurogenesis, can be also detected in vitro. Different methods have been developed since, such 
as the evaluation of 5-bromo-2’deoxyuridine (BrdU) incorporation, a thymidine analogue that 
can be incorporated by S-phase cells during DNA synthesis, to detect cell proliferation instead 
of [3H]-thymidine (Gratzner, 1982; Nowakowski et al., 1989). BrdU has been the golden 
standard in the detection of cell proliferation for the last 20 years both in vivo and in vitro. 
Detection of BrdU can be easily performed with antibodies, either by immunocytochemistry, 
microplate assay or by flow cytometry. However, BrdU detection requires aggressive 
treatment for DNA denaturation, in order to allow exposure of the incorporated BrdU to 
antibodies. Such harsh treatment can be a major drawback in the technique, as head or acid 
treatment can destroy several epitopes, thus precluding multiplex labeling with other 
antibodies, and DNA denaturation causes the loss of binding sites for cell cycle dyes.  

The use of 5-ethynyl-2’-deoxyuridine (EdU) has recently been proposed as an alternative to 
BrdU, since EdU detection does not require DNA denaturation, thus improving DNA 
structural preservation (Salic and Mitchison, 2008). EdU is also a thymidine analog that is 
incorporated into DNA by dividing cells during active DNA synthesis, and can be used in vitro 
as well as in vivo (Rostovtsev et al., 2002). EdU detection is based on click chemistry, via the 
copper-mediated covalent coupling of the ethynyl group of EdU to a fluorescent dye-
conjugated azide (Rostovtsev et al., 2002). Detection can be performed by microscopy, high-
throughput analysis equipment or flow cytometry. Particularly, flow cytometry is extremely 
useful for fast cell cycle analysis together with detection of EdU incorporation, while at same 
time it is possible to co-label the proliferative cells with other cell-type specific markers. The 
use of cell cycle markers (described next) complement detection of proliferation by 3H-
thymidine, BrdU or EdU, allowing for a more accurate  timing of the birth of newborn cells 
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(Eisch and Mandyam, 2007). Other thymidine analogues that can be detected with antibodies 
are also available, such as iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU). 

Proteins related to the cell cycle have different expression patterns in the neurogenic regions 
accordingly to the phases of the cell cycle: retinoblastoma protein (Rb), a nuclear protein 
involved in the control of cell cycle progression, has a functional domain that binds to 
transcription factors and is expressed mostly in late G1 phase (Yoshikawa, 2000). Proliferating 
cell nuclear antigen (PCNA), a catalytic nuclear protein associated with DNA polymerase δ, is 
detected throughout all four phases of the cell cycle, however it is most abundant at late G1 
and early S and scarce during G2 and M (Kawabe et al., 2002). Ki-67, a nonhistone nuclear 
protein, is present during G1, S, G2 and M phase (Gerdes et al., 1984). Cyclin-dependent kinase 
1 (CDK1) or Cdc2 (the p34cdc2) is one of the mitosis-promoting factors and has an important 
role in the initiation of mitosis (Draetta et al., 1988; Okano et al., 1993). 

Multi-labeling cells with specific cell markers and proliferation makers could easily identify 
newly generated neurons and glial cells, such as astrocytes and oligodendrocytes, which 
allows the distinction between these cell types. Proteins such as RNA-binding protein Hu 
and musashi-1 are exclusively expressed in mitotic active neural precursor cells, and they 
are absent in fully differentiated neuronal cells (Sakakibara et al., 1996; Akamatsu et al., 
1999). The expression pattern of these markers can be detected by immunolabeling or 
quantitative real-time PCR (qRT-PCR). Mature neurons can be identified by assessing the 
presence of markers such as beta-III-tubulin, which contributes to microtubule stability in 
neuronal cell bodies and axons (Lee et al., 1990; Memberg and Hall, 1995), or by evaluating 
the presence of neuronal nuclear antigen (NeuN) (Mullen et al., 1992). Also the transcription 
factor NeuroD can be used since it is expressed throughout maturation until new neurons 
develop dendrites (Seki, 2002). Other markers that are commonly used can also be found in 
non-neuronal cells, namely PSA-NCAM (Seki and Arai, 1993; Kiss and Rougon, 1997); 
nestin, which is expressed in newly generated cells that still have the capacity to divide and 
differentiate into neurons or astrocytes (Reynolds and Weiss, 1992; Daniel et al., 2008); Sox2, 
a transcription factor essential to maintain self-renewal of stem cells (Pevny and Placzek, 
2005); and doublecortin (DCX) which has a transient expression in proliferating progenitor 
cells and newly generated neuroblasts or glial cells (Brown et al., 2003; Kempermann et al., 
2003; Rao and Shetty, 2004). Oligodendrocytes are easily identified by imunolabeling against 
2’, 3’–cyclic nucleotide 3’-phosphodiesterase (CNPase), APC or O4 (Vernadakis et al., 1984; 
Wu et al., 2008; Girolamo et al., 2010), while astrocytes can be identified by immunolabeling 
against GFAP, a specific protein for astrocytes (Bock et al., 1977). 

Concerning the migration of newly formed cells, it has been extensively studied in vivo 
(Kempermann et al., 2003; Rao and Shetty, 2004), but also in vitro, by measuring DCX 
immunoreactivity (Francis et al., 1999; Cohen et al., 2008). DCX is a microtubule-associated 
protein having an important role in neuronal migration, by stabilizing microtubules and 
causing bundling (Sapir et al., 2000). While immunolabeling is currently used, other assays 
have been developed in order to evaluate migration and simultaneously the mechanisms 
controlling cell migration, cell protrusion and cell polarization, such as the scratch-wound 
migration assay (Etienne-Manneville, 2006). Additionally, Durbec and collaborators 
compared three different assays to evaluate migration of neural stem cells in vitro: matrigel, 
a three-dimensional substrate mimicking the in vivo extracellular matrix, detection of soluble 
factors influencing radial migration and the chemotaxis chamber assay, where the 
researcher can evaluate whether the cells prefer or not a chemical factor (Durbec et al., 2008). 
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When mature, not all neurons in culture are functional or survive. It is important to check 
their viability, namely identify functional synapses by morphological, electrophysiological 
and immunological characterization (Hartley et al., 1999). Several methods have been used, 
including immunocytochemical assays, Western blotting and qRT-PCR which allow 
identification and quantification of proteins, neurotransmitters, neurotrophic factors, among 
others, involved in neuronal or glial neurotransmitter systems (Hartley et al., 1999; Elmariah 
et al., 2005; Goodfellow et al., 2011). Using patch-clamp techniques in vitro the 
electrophysiological characterization of neural stem cell cultures can be performed by 
evaluating the formation of action potentials and activity patterns (Li et al., 2008; Cheyne et 
al., 2011). Also single-cell calcium currents may be evaluated to discriminate neuronal 
profile and viability in response to different stimuli, as reported by Bernardino and 
collaborators (Bernardino et al., 2008). 

2.2 Microglial cell cultures 

Microglial cells may be obtained for culturing by several methods. One of the most used 

models for the study of microglial cell function consists in the isolation and expansion of 

microglia from the neonatal brain. However, there are several limitations and criticisms to 

this approach since it consists in the isolation of microglial cells from the neonatal brain, not 

the adult brain. One of the main problems associated with the use of microglial cells in vitro 

is related to the characterization of microglia phenotype. Since there are no truly, unique 

and specific microglial cell markers, microglia phenotype is defined through a combined 

analysis of morphology and presence or absence of certain antigens. Several works lack a 

proper evaluation of microglia phenotype that would allow to distinguish microglia from 

macrophages. In most studies, the presence of microglial cell markers is excluded from cells 

that are positive for astrocytic or neuronal markers, but do not distinguish between 

microglia or macrophages. One of the most used immunocytochemical marker of microglial 

cells that is the ionized calcium binding adapter molecule 1 (Iba1) (Ito et al., 1998). Other 

markers that have been identified include the beta-integrin marker CD11b (Ling and Wong, 

1993; Gonzalez-Scarano and Baltuch, 1999), the glucose transporter 5 (GLUT5) (Sasaki et al., 

2004), CD163 (Roberts et al., 2004; Borda et al., 2008), CCR2 (Albright et al., 1999; Zhang et al., 

2007), CD34 (Asheuer et al., 2004; Ladeby et al., 2005) and C-type lectin CD209b (Park et al., 

2009). Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) have been also used as 

markers of microglial cells as they appear to be involved in determining the phenotype and 

function of microglia (Li et al., 2009). A combination of several of these markers would allow 

for a better characterization of microglia phenotype, rather than the use of a single marker, 

which is the current standard. The use of multiplex detection systems would be the best 

approach for a full molecular characterization of microglia (Albright and Gonzalez-Scarano, 

2004; Duke et al., 2004; Gebicke-Haerter, 2005; Glanzer et al., 2007; Moran et al., 2007). 

The most popular protocol to isolate microglial cells is the shaking method described by 

Guilian and Baker (Giulian and Baker, 1986) and Frei and colleagues (Frei et al., 1986). In this 

method, microglial cells are separated from confluent primary mixed glial cultures, isolated 

from the rodent neonatal cortex, by agitation in an orbital shaker. Although this method 

allows the preparation of highly pure microglial cultures, the yield of this protocol is low. 

Saura and colleagues described a method to isolate microglial cells from primary mixed glial 

cultures of rodent brain by a mild trypsinization protocol, which allows the preparation of 
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high purity microglial cultures, with a higher yield when compared to the shaking method 

(Saura et al., 2003). Similarly to the shaking method, several works describe the isolation of 

microglia from adult rodents, and the large majority of these studies take advantage from 

the astrocyte-microglia interaction for the success of cell cultures (Rosenstiel et al., 2001; 

Ponomarev et al., 2005). These studies showed that microglial cells, when grown on a 

monolayer of astrocytes, develop a highly branched morphology which seems to be 

associated with the downregulation of the nuclear factor kappa B (NF-kappaB) (Rosenstiel et 

al., 2001). It has been shown that microglial cells isolated from the neonatal or adult brain 

are sensitive to the treatment with granulocyte macrophage colony-stimulating factor (GM-

CSF), which induced a differentiation into a phenotype more similar to those of dendritic 

cells (Suzumura et al., 1990; Aloisi, 2001). On the other hand, the isolation of adult microglial 

cells and subsequent culture with low concentrations of macrophage colony-stimulating 

factor (M-CSF) leads to increased proliferation and survival of cells that persists for several 

weeks (Suzumura et al., 1990; Ponomarev et al., 2005). M-CSF seems to be a key factor for the 

maintenance and survival of microglial cells in vitro, and has been used in several works 

(Wegiel et al., 1998; Ponomarev et al., 2005; Carreira et al., 2010). Other methods are also 

described for the isolation of microglial cells, which include isolation from CNS tissue by 

Percoll gradient (Dick et al., 1995; Ford et al., 1995), isolation from primary cultures by 

nutritional deprivation (Hao et al., 1991) or by collecting floating cells in mixed glial cultures 

(Ganter et al., 1992), but the yield is generally very low. 

The use of in vitro models allows for the understanding of many aspects of the dynamics 

associated with the biological functions of microglial cells in a quick and simple manner. 

However, one cannot overlook that the relevance of the observations obtained can only be 

extrapolated following in vivo studies. Several groups work with microglial cell lines, such 

as BV-2, HAPI or N9, however the use of microglial cell lines should be carefully 

considered since immortalization could significantly affect cell biology when compared to 

the use of primary microglial cultures (Corradin et al., 1993; Lockhart et al., 1998; Horvath 

et al., 2008). 

Concerning primary cultures of microglial cells it is always important to assess the purity of 

the cultures, this parameter being intrinsically linked to the method of isolation adopted. 

The isolation method described by Saura and collaborators is, therefore, one of the methods 

that seems to offer the best value yield/purity (Saura et al., 2003). We favor the isolation of 

microglial cells by shaking from mixed glial cultures treated with low levels of M-CSF as an 

alternative to the method of Saura (Saura et al., 2003), with a high purity of the microglia 

obtained (>90%) and, unlike previous methods, with a high yield (Carreira et al., 2010).  

When microglial cells become activated in response to immunologic stimuli or brain injury, 

activation is characterized by changes in microglia morphology (Streit et al., 1988; 

Kreutzberg, 1996; Streit et al., 1999; Liu and Hong, 2003), from resting ramified into activated 

amoeboid microglia (Kreutzberg, 1996). There is also a complex cellular response after 

activation of microglial cells, which is characterized by upregulation of surface molecules, 

such as complement receptors and major histocompatibility complex molecules (Oehmichen 

and Gencic, 1975; Graeber et al., 1988). In addition, activated microglia release a large variety 

of soluble factors, with a pro- or anti- inflammatory nature and potentially cytotoxic (for 

review see Block and Hong, 2005). It is therefore important, when establishing primary 
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cultures of microglia, to assess whether microglial cells in vitro are also responsive to 

inflammatory stimuli similarly to what occurs in vivo. Microglial cells can be challenged 

with different stimuli in vitro, and by far the most widely used stimulus in primary cultures 

of microglia isolated from rodents is the bacterial endotoxin lipopolysaccharide (LPS) (Qin et 

al., 2005a; Qin et al., 2005b; Pei et al., 2007). LPS mimics the infection by Gram-negative 

bacteria, which induces an increase in the synthesis of inflammatory mediators, namely 

cytokines, such as IL-1, IL-6 and tumor necrosis factor-alpha (TNF-alpha), chemokines, such 

as stromal derived factor-1 alpha (SDF-1alpha), free radicals and nitric oxide (Block and 

Hong, 2005). Other stimuli may consist in the use of ATP, interleukins, IFN-gamma or LPS 

plus IFN-gamma (Wollmer et al., 2001; Saura et al., 2003). 

To characterize the activation of microglial cells after an inflammatory stimulus, we suggest 

to define at least three parameters to evaluate the activation of microglial cells following 

exposure to an inflammatory stimulus, including: change to an amoeboid morphology 

(Suzumura et al., 1991; Wollmer et al., 2001), the expression of NF-kappaB (Heyen et al., 2000; 

Wollmer et al., 2001), expression of the inducible nitric oxide synthase (iNOS) and 

subsequent evaluation of the production of NO (Boje and Arora, 1992; Chao et al., 1992b),  or 

the release of TNF-alpha (Sawada et al., 1989; Chao et al., 1992a). The various mechanisms by 

which microglial cells are activated and the identity of the inflammatory factors released by 

microglia have been studied and characterized, but there still is a great controversy whether 

these factors are neuroprotective or neurotoxic when released. The hypothesis that seems to 

be more acceptable is that, depending on the aggressiveness of the inflammatory response, 

the activation of microglial cells may shift from a beneficial to a harmful outcome for 

neurogenesis.  

2.3 Combination of neural stem cells and microglial cell cultures 

The study of the link between brain inflammation and neurogenesis, in particular the role 

of microglia in the modulation of the various steps of the neurogenic process, is of 

particular relevance. In order to operate at a therapeutic level there is an urgent need to 

understand the crosstalk between microglia and neural stem cells and the implications of 

the inflammatory response for the neurogenic outcome. Several studies in vivo have been 

developed in recent years, but the potential of in vitro studies becomes indisputable when 

the aim is to study the effect of a particular inflammatory factor or a very specific 

parameter related to the inflammatory response and its effect on neurogenesis. Whether 

the function of microglial cells is pro- or anti-neurogenic and whether it is possible to 

control microglial activation in order to reach a beneficial effect are important questions 

that need to be answered. Thus, the development of basic models for the in vitro study of 

these issues is an asset to the studies in this area. The use of combined primary neuronal 

and microglial cell cultures has been a very useful tool in studying the effect of the 

inflammatory response on neurons from different brain regions. In fact, there are 

numerous published studies where different approaches have been adopted for the study 

of the crosstalk between microglial cells and neurons in vitro (Boje and Arora, 1992; 

Lambertsen et al., 2009). Here we describe the use of three different in vitro models, which 

address different aspects of the effects of inflammatory factors released by microglial cells 

in the neurogenic process. 
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2.3.1 Co-cultures of neural stem cells with microglia 

The inflammatory response has been identified as responsible for the down-regulation of 
neurogenesis. This hypothesis has been supported by several studies in vivo (Ekdahl et al., 
2003; Monje et al., 2003), but also by in vitro studies where the survival of new neurons is 
compromised when these are co-cultured with microglial cells activated by LPS (Monje et al., 
2003; Cacci et al., 2005; Liu et al., 2005; Cacci et al., 2008). Co-cultures of neural stem cells with 
microglia, without physical contact between the two cell types, is an experimental model that 
allows the researcher to assess the role of soluble neuroinflammatory factors using co-cultures 
of microglial cells seeded in membrane inserts placed on top of multiwell plates containing 
neural stem cells. The use of techniques of immunodepletion, but also the use of genetically 
modified animals, allowed to correlate this anti-neurogenic inflammatory response to different 
interleukins produced during the activation of microglial cells, including IL-6 and IL-1beta 
(Vallieres et al., 2002; Monje et al., 2003; Nakanishi et al., 2007; Goshen et al., 2008; Koo and 
Duman, 2008; Spulber et al., 2008). Other factors involved in the inflammatory response appear 
to contribute to the inhibition of neurogenesis. For example, the increased production of TNF-
alpha by microglial cells appears to reduce the survival and differentiation of neural stem cells 
(Vezzani et al., 2002; Monje et al., 2003; Liu et al., 2005; Iosif et al., 2006). 

Although some studies have described IFN-gamma as having a deleterious effect on 

neurogenesis, it has been demonstrated that microglia stimulated with low levels of IFN-

gamma can support the neurogenic process, promoting neuronal differentiation in vitro 

(Butovsky et al., 2006). In other studies it was observed that IFN-gamma is involved in the 

modulation of proliferation and differentiation of neural stem cells into neurons (Wong et 

al., 2004; Song et al., 2005; Baron et al., 2008). Recent in vitro studies based on the 

establishment of co-cultures of microglia and neural stem cells, without physical contact 

between cells, reported that microglia might have a more complex role in neurogenesis 

contrarily to initial thoughts. Microglia seems to play a dual role in adult neurogenesis, 

being detrimental or beneficial and support the different steps in neurogenesis, such as stem 

cell proliferation, differentiation, migration and survival  (reviewed in Ekdahl et al., 2009). 

This dual effect becomes associated to different soluble factors produced by activated 

microglial cells, such as TNF-alpha or nitric oxide. 

The establishment of experimental models such as co-cultures of microglia and neural stem 
cells allows to mimic the chemical microenvironment that surrounds the SVZ and/or the 
DG during inflammatory conditions when microglial cells are recruited and activated. On 
the other hand, the fact that both cell types share the same culture environment is important 
to determine the effect of factors produced by microglial cells on neural stem cells. The fact 
that this is a system without physical contact between the two cell types also allows 
determining more quickly, and using more economic approaches, the modulation of the 
multistep neurogenic process mediated by the inflammatory response. Thus, experimental 
approaches to determine cell proliferation and cell cycle, such as flow cytometry, cell 
migration, could be performed without the need for prior characterization to distinguish 
neural stem cells from microglial cells as in mixed cultures. Moreover, signaling pathways 
present in both cell types can be studied this way, as is the case of TLR4 that directly 
modulates self-renewal and the decision-cell-fate in neural stem cells (Rolls et al., 2007) and 
in microglial cells is involved in its activation, particularly in the regulation of gene 
expression of iNOS (Graeber and Streit, 2010). 
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However, there are also some disadvantages associated with the use of this experimental 

methodology. Firstly, the fact that it does not allow an easy processing of microglia cells, 

which are placed in membrane inserts, after experimental treatment. In fact, simple 

experimental procedures such as protein, RNA or DNA extraction from microglial cells 

becomes difficult to perform. On the other hand, it is not possible to perform 

immunostaining techniques for subsequent microscopic analysis of microglial cells plated in 

inserts. In addition, this model does not answer a question that seems to be increasingly 

important which is the influence of cell-to-cell contact in the modulation of neurogenesis by 

the inflammatory response (Song et al., 2002; Aarum et al., 2003; Alvarez-Buylla and Lim, 

2004). Despite these disadvantages, the use of co-cultures of neural stem cells with 

microglia, without physical contact between the two cell types, is a good approach for some 

studies.  

2.3.2 Neural stem cell cultures exposed to microglia-conditioned medium 

The production of cytokines and other molecules by activated microglial cells with 

implications in cellular processes has been demonstrated in many studies based on in vitro 

models (Banati et al., 1993; Minghetti and Levi, 1998; Gebicke-Haerter et al., 2001; Hanisch, 

2002; Hausler et al., 2002). However, there is still much to be learned about how cellular 

pathways in neural stem cells are regulated by these soluble factors from microglial origin. 

It is therefore important to assess how these diffusible factors influence phenomena as 

diverse as proliferation, differentiation, migration or cell survival. 

Culturing neural stem cells with microglia conditioned medium, obtained from a separate 

microglia culture, allows the isolation of the unidirectional communication between 

activated microglia and neural stem cells, with further investigation of soluble inflammatory 

factors. According to studies using this experimental model, the conditioned medium of 

microglial cells acutely challenged with LPS reduced the survival of neural stem cells, 

preventing their differentiation into neurons (Monje et al., 2003; Cacci et al., 2008). One of the 

inflammatory agents reported to be responsible for this antineurogenic effect is the cytokine 

IL-6, as evidenced by the works of Monje and collaborators or Nakanishi and colleagues that 

by using a specific antibody against IL-6 rescued neurogenesis (Monje et al., 2003; Nakanishi 

et al., 2007). On the other hand, several in vitro studies described a pro-neurogenic effect of 

microglial cells and their conditioned medium, in which neural stem cells grow (Aarum et 

al., 2003; Morgan et al., 2004; Walton et al., 2006; Nakanishi et al., 2007).  

Despite the advantages of this experimental model, namely the fact that it allows a study 

of the unidirectional effect of microglia on neural stem cells, there are also some 

disadvantages. This model does not allow inferring any conclusion about the influence of 

cell-to-cell contact between microglia and neural stem cells, an event that has been 

described to occur between glial cells and neural stem cells (Song et al., 2002; Aarum et al., 

2003; Alvarez-Buylla and Lim, 2004). On the other hand, this model completely neglects 

the fact that some of the factors released by microglial cells have physical characteristics 

that do not allow their study in a conditioned medium transferred from a cell culture to 

another. Particularly nitric oxide, a gaseous molecule with a short half-life, cannot be 

studied because it is highly reactive in aqueous solution at 37 °C and physiological pH 
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(pH = 7.4). Thus, although stable end products of NO can be detected in conditioned 

medium from activated microglial cell cultures, the effect of NO in the neural stem cells 

cannot be analyzed. These are negative aspects that must be taken into account when a 

researcher decides to select this experimental model. Despite these aspects, the use of 

conditioned medium of microglia in cultures of neural stem cells is a good model to 

further study the influence of inflammation on neurogenesis. This model is useful to 

complement other in vitro approaches, including co-cultures of microglia and neural stem 

cells, with or without physical contact. 

2.3.3 Mixed cultures of neural stem cells with microglia 

The progression of the neurogenic process until the differentiation of neural stem cells 

into neurons appears to be regulated by the inflammatory microenvironment but also by 

cell-to-cell interactions involved (Arvidsson et al., 2002; Nakatomi et al., 2002; Ben-Hur et 

al., 2003; Thored et al., 2006; Thored et al., 2009). Therefore, the optimization of an in vitro 

system that allows the study of physical interactions between microglia and neural stem 

cells is of great interest to understand how both cell types crosstalk in inflammatory 

conditions. 

Mixed cultures are co-cultures of neural stem cells with microglia with physical contact 

between the two cell types. In this culture model, the role of physical contacts between 

microglia and neural stem cells can be studied. The mixed culture system is, probably, the in 

vitro approach that more closely mimics what happens in vivo, where microglial cells 

physically contact with the neural stem cells from neurogenic areas. Adopting this 

experimental model, the researcher can study the influence of the inflammatory response on 

the several steps of the neurogenic process, but also cell-cell interactions, which is an 

advantage compared to the in vitro models already described. An example of a mixed 

culture of neural stem cells cultured together with forebrain microglia is shown in Fig. 1. 

Enhanced green fluorescent protein (EGFP)-positive SVZ cells were isolated from the SVZ of 

postnatal day 1-3 actin-EGFP C57Bl6 mice, thus being readily distinguishable from 

microglia isolated from wild-type mice (Fig. 1A).  

The mixed culture model allows simultaneous evaluation of microglia and neural stem 

cells. Thus, following stimulation of microglial cells, the researcher can evaluate the 

activation of these cells as well as several biological processes of neural stem cells, such as 

proliferation, differentiation and/or survival. Moreover, multi-labeling experiments of 

proliferation markers, such as BrdU or EdU (Fig. 1B), with microglia-specific (Iba-1 or 

CD11b), neuron-specific (NeuN or Tuj-1) or glia-specific (GFAP) proteins by confocal 

microscopy or flow cytometry are a good way to determine the phenotype of proliferating 

cells (Nixon and Crews, 2004). In addition, it is also possible to evaluate the effect of 

diffusible factors that are produced following activation of microglial cells. Separation of 

the two cell populations for posterior analysis (e.g. of protein or nucleic acids) is possible 

using a cell sorter. The researcher can confirm whether the effects observed in mixed 

cultures are caused by physical interactions or by diffusible factors released by microglial 

cells by combining such experiments with a comparative study using co-cultured cells 

without physical contact. 
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Fig. 1. Mixed cultures of primary microglial cells and subventricular zone (SVZ)-derived 
neural stem cells. SVZ cells (isolated from transgenic mice expressing green fluorescence 
protein (GFP) under the actin promoter (shown in white) are readily distinguishable from 
CD11b-positive microglia (red) (A). Microglia (red) cultured with GFP-positive SVZ cells 
(white) show immunoreactivity for inducible nitric oxide synthase (iNOS, green), following 
treatment with lipopolysaccharide (LPS; 100 ng/ml) plus interferon-gamma (IFN-gamma; 
0.5 ng/ml), for 24 h. Nuclei are labeled with Hoechst 33342 (blue). Scale bar: 20 μm. B) 
Stimulation with LPS plus IFN-gamma decreases the proliferation of GFP-positive SVZ-
derived neural stem cells (green), in mixed cultures of SVZ and microglia obtained from 
wild type mice (iNOS+/+), which are CD11b-positive (red). Cell proliferation was assessed 
by 5-ethynyl-2’-deoxyuridine (EdU) incorporation (white). The antiproliferative effect of 
LPS plus IFN-gamma on EdU incorporation is abolished in mixed cultures in which the 
microglia was obtained from iNOS-knockout mice (iNOS-/-). Scale bar: 20 μm.  
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3. Summary and future directions 

Microglial cells may cause different effects on the neurogenic process, promoting or 

inhibiting it. Experimental evidence has been presented indicating that microglia, 

depending on their activation status and phenotype, could favor or hinder adult 

neurogenesis, in physiological or pathophysiological conditions. In fact, microglia can have 

a dual role in different steps of the neurogenic process, namely in the formation, maturation 

and integration of newly formed neurons. Therefore the need to explore in more detail how 

microglia regulate adult neurogenesis in physiological and pathophysiological conditions is 

of particular importance (Graeber and Streit, 2010).  

Genetic mouse models in which the researcher can selectively ablate genes have already 

been described as useful strategies to study the involvement of particular effectors of the 

neuroinflammatory response on neural stem cells. Experimental models may have as an 

objective the determination of how modulation of microglial cell activation can be used as a 

therapeutic target to regulate neurogenesis in the adult brain (Ekdahl et al., 2009; Whitney et 

al., 2009; Polazzi and Monti, 2010). These models are suitable to evaluate the neurogenic 

potential of anti-inflammatory drugs or identify pro-neurogenic targets. Thus, these 

experimental approaches will allow the design of therapeutic strategies to enhance the 

formation, proper migration, differentiation, integration and survival of new neuronal cells 

in the injured nervous system. Moreover, all culture models are suitable for pharmacological 

or genetic manipulation, including obtaining the cells used in the cultures from wild-type or 

genetically modified animals, and can be adapted for high-throughput analysis and drug 

screening. The use of anti-inflammatory drugs with a selective mechanism of action at the 

level of microglial cells, or the use of anti-inflammatory drugs which may release molecules 

that may enhance the neurogenesis are strategies under investigation (Keeble and Moore, 

2002; Napoli and Ignarro, 2003; Ajmone-Cat et al., 2008; Koc and Kucukguzel, 2009). In order 

to develop more specific therapeutic interventions in the future, it is necessary to identify 

the mechanisms and factors that regulate the switch between the enhancing or detrimental 

effect of the inflammatory response on neurogenic events. The in vitro strategies discussed 

here are important as a first step in identifying and characterizing these events (Table 2).  

 

Experimental 
model 

Parameters evaluated 

Diffusible/soluble 
factors 

Cell-to-cell 
interaction 

Cellular 
characterization 

Protein, RNA 
and DNA 

content 

Co-culture Very Good - Very Good Very Good 

Conditioned 
medium 

Good - Very Good Very Good 

Mixed culture Very Good Very Good 
Good 

 (requires multiplex 
analysis) 

Good 
 (requires cell 

sorting) 

Table 2. Evaluation of experimental in vitro models using neural stem cells and microglial 
cells as research tools to evaluate the effect of neuroinflammation in the neurogenesis. 
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