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1. Introduction 

Cell-transplantation therapy for Parkinson’s disease is close to becoming a reality thanks to 

the recent development of methods for the differentiation of dopaminergic neurons and/or 

dopaminergic progenitor cells from embryonic stem cells (ESCs) and induced pluripotent 

stem cells (iPSCs) under in vitro conditions (Kawasaki et al., 2000, Perrier et al., 2004). There 

have been several reports concerning pre-clinical trial research for cell-transplantation 

therapy for Parkinson’s disease with dopaminergic progenitor cells derived from either 

ESCs or iPSCs using rodent and non-human primate disease models before clinical trial 

(Björklund et al., 2002; Takagi et al., 2005; Wernig et al., 2008). Many researchers have 

contributed to improve the technology to create more efficient differentiation methods of 

donor cells for clinical applications (Chambers et al., 2009; Morizane et al., 2011). However, 

we still need to overcome many problems before such technology can be used in clinical 

settings. Even if we succeed in obtaining an optimized donor cell population for cell-

transplantation, the rate of success of the transplantation may depend not only on the 

quality of donor cells but also on the host brain environment. One important issue is how to 

integrate dopaminergic neurons or dopaminergic progenitor cells into target regions after 

transplantation. However, we do not know what kind of donor cells will be efficiently 

integrated into the neural networks of the host brain. Also, we do not know whether fully 

differentiated neurons will really survive in the host brain. In addition, we need to know 

what state of the host brain environment will allow the participation of donor cells in the 

neural networks of the host brain. In order to solve such problems, planarians provide 

unique opportunities because they show robust regenerative ability based on their 

pluripotent stem cell system. 

Planarians can regenerate lost tissues, including the nervous system, via their pluripotent 

stem cells (neoblasts) that are distributed throughout their body. In contrast, it is difficult 

for higher vertebrates to achieve the regeneration of the nervous system, in spite of their 
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possession of neural stem cells. The success of tissue regeneration requires not only the 

presence of proliferating stem cells as a source but also the presence of the regulatory 

system for stem cells. Knowledge gained about the planarian stem cell system can provide 

hints about how to conduct cell-transplantation therapy for regenerative medicine in the 

future. 

In this chapter, we focus on two different regenerative phenomena utilizing the stem cell 

system in planarians. The first one is brain regeneration after decapitation. The second is 

brain neurogenesis after selective neuronal degeneration (without decapitation). Both of 

them are achieved by regulation of the pluripotent stem cells distributed throughout the 

body. We address the following questions: (1) what type(s) of cells recognize the loss of the 

organs or cells? (2) What signal(s) initiate the regeneration or neurogenesis? (3) What 

signal(s) are necessary for recruitment of stem cells to defined type(s) of cells and the 

replacement in the proper positions. 

2. Pluripotent stem cells of planarians 

The flatworm Dugesia japonica is a common species of freshwater planarian in Japan, and 

has been extensively used as an experimental animal for regeneration and neuroscience 

studies. When planarians are artificially amputated, they can regenerate their whole body 

from even very small fragments (is the smallest competent fragment reported was 1/279th 

of the body; Morgan, 1898). This strong regenerative ability is supported by pluripotent 

stem cells called neoblasts. The neoblasts are the only mitotic cell population, and are 

distributed in the mesenchymal space throughout the body except for the region around 

the brain and the pharynx of D. japonica (Shibata et al., 1999; 2010) (Fig. 1). The neoblasts 

can differentiate in all types of cells and self-renew under both homeostatic and injured 

conditions. X-ray-irradiation induces selective elimination of proliferating stem cells in 

planarians, resulting in the loss of regenerative ability (Shibata et al., 1999; Hayashi et al., 

2006). Therefore, X-ray irradiation is a powerful experimental tool for analyzing the stem 

cell system. We identified a vasa-like gene (Djvlg) as the first reported gene specifically 

expressed in neoblasts (Shibata et al., 1999). Recently, many reliable molecular markers for 

neoblasts, such as piwi homologue genes, have been identified (Fig. 1) (Salvetti et al., 2000, 

2005, Orii et al., 2005; Reddien et al., 2005; Eisenfoffer et al., 2007; Shibata et al., 2010). 

Since pluripotent stem cells are the only proliferating and mitotic cell population, 

experimental methods using 5-bromo-2’-deoxyuridine (BrdU) (Newmark & Sánchez 

Alvarado, 1999), and immunostaining using anti-phosphohistone H3 (pH3) antibody 

(Hendzel et al., 1997; Newmark & Sánchez Alvarado, 1999) are also useful tools for 

staining neoblasts.Recently, the pluripotency of these cells was demonstrated by single 

Icell-transplantation experiments (Wagner et al., 2011). In addition, we found that 

pluripotent stem cells can be categorized into several cell populations by 

electromicroscopy analysis, suggesting that pluripotent stem cells are not a homogenous 

population, but may have heterogeneity like stem cell systems in higher animals (Higuchi 

et al., 2007). In addition, we recently developed single-cell PCR technology that is able to 

analyze the gene expression profile in individual cells at the single cell level (Hayashi et 

al., 2010). This method is a powerful tool for determining gene characteristics of not only 

pluripotent stem cells but also of tissues such as the nervous system. 
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Fig. 1. Distribution of pluripotent stem cells of planarian D. japonica. Immunostaining using 
anti-DJPIWIA antibody (a marker of pluripotent stem cells) (Shibata et al., 2010) in a 
transverse section. Planarian stem cells are distributed in the mesenchymal space 
throughout the body. 

3. Fundamental brain structure and function 

Planarians have a simple body shape with cephalization, a dorso-ventral axis and bilateral 
symmetry, and are thought to be primitive animals, that acquired a central nervous system 
(CNS) at an early stage of evolution. The planarian CNS composed of a bilobed brain and a 
pair of ventral nerve cords (VNCs) (Agata et al., 1998; Tazaki et al., 1999). The brain is 
located in the anterior region of the body, and forms an inverted U-shaped structure (Fig. 
2A). A pair of VNCs are located more ventral by relative to the brain, extending along the 
anterior-posterior (A-P) axis. The VNCs are a structure independent of the brain, although 
they are directly connected to it (Okamoto et al., 2005). The brain can be divided into several 
functional domains (Cebrià et al., 2002a; Nakazawa et al., 2003). The nine pairs of lateral 
branches of the brain project to the head margin, and function as the sensory system 
(Okamoto et al., 2005). A pair of eyes is located on the dorsal side of the brain, and the optic 
nerves forms the optic chiasm, and project to the dorso-medial position of the brain, which 
functions as the photosensory center (Sakai et al., 2000). The two main lobes of the brain 
consist of a mass of interneurons that function in the integration of multiple stimuli. 

When planarians are exposed to some stimuli such as light-, chemo-, thermo- and mechano-
stimulations, they can integrate different stimuli in the brain and decide on a response to 
these multiple stimuli. Planarians show light avoidance behavior known as negative 
phototaxis. We established a quantitative analytical method for this behavior that involves 
measuring the distance, direction, and speed of movement (Inoue et al., 2004). By using this 
method and RNA interference (RNAi), we showed that several molecules such as a 
planarian synaptosome-associated protein of 25 kDa (Djsnap-25) and a planarian glutamic 
acid decarboxylase (DjGAD) play important roles in photorecognition (Takano et al., 2007; 
Nishimura et al., 2008a). These results indicate that planarian behavior is regulated the 
molecular level via brain functions that are similar to mammalian brain functions. 

3.1 Functional domain structure 

We found that functional domains in the brain were defined by three orthodenticle and 
orthopedia homeobox genes (DjotxA, DjotxB and Djotp) that are exclusively expressed in 
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specific regions of the brain (Umesono et al., 1997; 1999). DjotxA is expressed in the optic 
nerves and medial region of the brain, which form a photosensory domain. DjotxB is 
expressed in the main lobes of the brain, which form a signal processing domain containing 
a variety of interneurons. Djotp is expressed in the lateral branches, which form 
chemosensory domains. The lateral side of the head region, where Otx/otp expression is not 
detected, contains mechanosensory neurons. In addition, A-P patterning of the brain was 
shown to be regulated by the expression of wnt-family genes (DjwntA and DjfzA) 
(Kobayashi et al., 2007). Whereas DjotxA, DjotxB and Djotp genes were shown to be 
expressed medio-laterally, DjwntA and DjfzA genes were expressed antero-posteriorly in the 
brain. Wnt family genes and Otx/otp family genes play important roles in domain formation 
in planarians, as in mammals. 

DNA microarray analysis comparing the head region versus the body region of planarians 
identified many genes that are specifically expressed in the head region (Nakazawa et al., 
2003; Mineta et al., 2003). Expression analysis based on whole-mount in situ hybridization 
revealed that many neural genes that are conserved in the vertebrate brain are also 
expressed in several distinct domains of the planarian CNS (Cebrià et al., 2002a; Mineta et 
al., 2003). These results indicate that the planarian CNS is functionally regionalized by 
discrete expression of neural-specific genes. 

3.2 Variations of neurotransmitters 

Recently, we revealed that planarians have various neural populations defined by 

neurotransmitters, such as dopamine (DA), serotonin (5-HT), -aminobutyric acid (GABA), 
octopamine (OA; a counterpart of noradrenaline of vertebrates) and acetylcholine (ACh) 
(Nishimura et al., 2007a, 2007b, 2008a, 2008b, 2008c, 2010; Takeda et al., 2008) (Fig. 2). 
Immunostaining with specific antibodies against these neurons enables us to visualize their 
cell morphology and localizations at the single-cell level (Fig. 2). These neurons are 
distributed in restricted regions in the planarian CNS. In addition, each neuron exclusively 
uses one neurotransmitter, and forms distinct neural networks in the planarian CNS. 

These neurons have also distinct functions, such as locomotion activity and 
photorecognition. Combined RNAi and pharmacological approaches revealed that 
dopaminergic neurons positively regulate muscule-mediated behavior. Upregulation of the 
DA level induced by methamphetamine (DA releaser) caused hyperkinetic conditions such 
as screw-like hyperkinesia and C-like hyperkinesia, and treatment with DA receptor 
antagonists (sulpride and reserpine) and reduction of the DA level by RNAi suppressed 
these hyperkinetic conditions (Nishimura et al., 2007a). Moreover, although an increase of 
the ACh level by physostigmine (acetylcholinesterase inhibitor) treatment induced sudden 
muscular contraction, treatment with ACh receptor antagonists (tubocrarine and atropine) 
or reduction of the ACh level by RNAi extended these behavioral changes (Nishimura et al., 
2010). Our histological analysis indicated that cholinergic neurons elongated at neighboring 
positions of the body-wall musculature (DjMHC-B-positive cells), but dopaminergic 
neurons did not elongate to the body-wall musculature. These results suggest that although 
both dopaminergic and cholinergic neurons regulate motor functions, cholinergic neurons 
act as motor neurons whilst dopaminergic neurons act as interneurons in planarians. These 
results also indicate that similar gene sets function in both the planarian CNS and the 
vertebrate CNS. 
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Fig. 2. The neural networks of neurotransmitter-synthesizing neurons. Distribution of pan-
neural networks (DjSYT-positive neurons) of the whole body (A) and head (B). Distribution 
of dopaminergic neurons (DjTH-positive neurons) (C), serotonergic neurons (DjTPH-
positive neurons) (D), octopaminergic neurons (DjTBH-positive neurons) (E), GABAergic 
neurons (DjGAD-positive neurons) (F), and cholinergic neurons (DjChAT-positive neurons) 
(G) in intact planarian head. White broken line indicates the outline of the brain (B-G). 

4. Whole brain regeneration after head amputation 

One of most interesting regeneration phenomena in planarians is that they can regenerate a 
functional brain from any portion of the body within 7-10 days after amputation, utilizing 
the pluripotent stem cell system. Although non-brain fragments just after decapitation show 
very little response external stimulation, they can restore normal behaviors such as feeding 
and negative phototaxis within one week. How can planarians regenerate their CNS not 
only morphologically but also functionally in one week? This regenerative process can be 
divided into at least five steps as defined by sequential gene expression alterations, which 
are similar to those in mammalian brain development (Agata & Umesono et al., 2008). That 
is, (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) 
neural network formation, and (5) functional recovery (Fig. 3). 

4.1 The stem cell system for brain regeneration 

The first step of head regeneration after decapitation involves wound healing and 
subsequently the formation of the blastema, which is defined by a mass of morphologically 
undifferentiated cells at the edge of the amputated site. Dorso-ventral attachment induces 
initiation of the expression of noggin-like gene A (DjnlgA) at the edge of the amputated site 
after wound healing, and this expression leads to blastema formation in the first step of  
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planarian regeneration (Ogawa et al., 2002). Mitotic cells are never observed in the blastema, 

in spite of the increasing mass of the blastema during regeneration (Wenemoser & Reddien, 

2010; Tasaki et al, 2001a, 2001b). Recently, it was shown that the blastema cells are supplied 

from the postblastema region via mitosis from G2 phase-pluripotent stem cells, and that c-

Jun-N-terminal kinase (JNK) is involved in this G2/M transition, and that extracellular 

signal-related kinase (ERK) is required for exit from the proliferative undifferentiated state 

during blastema formation (Tasaki et al., 2011a, 2011b). It is thought that BMP/noggin 

signal might be involved in activation of the ERK signal in cooperation with the JNK signal 

to form the blastema after wound closure. 

 

Fig. 3. Brain regeneration process after decapitation. This process can be divided into at least 

five steps according to sequential gene expression alterations. Abbreviations used; mapk, 

mitogen-activated protein kinase; FGF, fibroblast growth factor; DCC, deleted in colorectal 

cancer; UNC-5, uncoordinated-5; robo, roundabout. 

After the formation of blastemas, the ERK signal is suppressed in the posterior blastema, but 

enhanced in the anterior blastema. Recently, we found that the hedgehog (Hh) signal has an 

important role in causing the difference between the anterior and posterior blastemas. In 

planarians, Hh is produced in the nervous system and Hh-containing vesicles might be 

transported from anterior to posterior along microtubules inside of the neurites (Yazawa et 

al., 2009). After amputation of the planarian body, Hh may be secreted from the posterior 

end of the amputated neurites, and then the Hh signal activates the Wnt signal in the 

posterior blastema to suppress the ERK signal and activate posterior-specific genes. In 

contrast, in the anterior blastema, the ERK signal forms a positive feedback loop to activate 

brain rudiment formation. A fibroblast growth factor receptor (FGFR)-like molecule, nou-

www.intechopen.com



Regeneration of Brain and Dopaminergic Neurons  
Utilizing Pluripotent Stem Cells: Lessons from Planarians 

 

147 

darake (ndk; meaning “brains everywhere” in Japanese), may have an important role in 

defining the region forming the positive feedback loop of the ERK signal in the anterior 

blastema (Cebrià et al., 2002b). The ndk gene was identified in D. japonica as a gene expressed 

in the brain rudiment at an early stage of brain regeneration. Interestingly, silencing of the 

ndk gene by RNAi induces the ectopic brain formation in all regions of the body. Thus, ndk is 

essential for defining the region where the brain rudiment is formed. 

After formation of the brain rudiment, the Wnt and bone morphogenic protein (BMP) 

signaling pathways may regulate pattern formation of the brain along the A-P (Kobayashi et 

al., 2007; Gurley et al., 2008; Petersen & Reddien, 2008) and D-V (Molina et al., 2011; Gavino 

& Reddien, 2011) polarity, respectively. In conclusion, stem cells may be regulated by 

various signals in spatial- and temporal manners to form a functional brain. 

4.2 Axon guidance and neural network formation during brain regeneration 

New brain neurons have to project toward appropriate target sites to reconstruct their neural 

networks during regeneration. Recently, several axon guidance molecules, including netrin, 

uncoordinated-5 (UNC-5), deleted in colorectal cancer (DCC), slit, and roundabout (robo) were 

identified as key molecules regulating axon guidance during eye and brain regeneration in 

planarians (Cebrià & Newmark 2005, 2007; Cebrià et al., 2007; Yamamoto & Agata, 2011). It is 

known that netrin is a secreted protein that regulates the direction of axon growth by chemo-

attractive and repulsive responses mediated by two types of receptor, UNC-5 and DCC (Hong 

et al., 1999). Slit is also a secreted protein, and acts as a chemo-repulsive factor for commisure 

axons by binding to robo in various animals (Brose et al., 1999). RNAi-mediated functional 

analysis revealed that the silencing of these guidance molecules caused abnormal neural 

network formation in the CNS and optic nerves during regeneration. 

4.3 Functional recovery after completion of whole brain regeneration 

In order to analyze the brain function during brain regeneration, we focused on negative 

phototaxis behavior. We found that there is a time gap between morphological and 

functional recovery. Although the optic nerves were reconstructed within 4 days after 

decapitation, negative phototaxis behavior began to recover from 5 days after decapitation 

(Inoue et al., 2004). Interestingly, two genes, 1020HH and eye53 genes, were activated just 

after completion of the morphological recovery (Cebrià et al., 2002c). Silencing of either 

1020HH or eye53 caused a defect of the complete recovery of negative phototaxis. These 

findings suggest that these genes might be involved in the functional recovery, and 

morphological regeneration and functional regeneration can be distinguished according to 

their respective gene expression alterations (Inoue et al., 2004). 

5. Neurogenesis after selective neuronal lesioning 

Recently, we established an experimental model system for selective neuronal elimination to 

analyze the neurogenesis after selective neuronal lesioning without amputation. For this, we 

employed 6-hydroxydopamine (6-OHDA)-induced lesioning. 6-OHDA is a cytotoxic 

substance that induces dopaminergic neuronal cell death, and is widely used for killing 

dopaminergic neurons and creating parkinsonian animal models (Ungerstedt & Arbuthnott, 
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1970; Schwarting & Huston, 1996; Nass et al., 2002; Parish et al., 2007). In rodents, the nigro-

striatal dopaminergic system is acutely and selectively degenerated by 6-OHDA-

microinjection into the substantia nigra, and never recovers the missing neurons 

(Ungerstedt & Arbuthnott, 1970; Schwarting & Huston, 1996). We succeeded in selective 

degeneration of dopaminergic neurons in planarians, like that in higher animals. 

Interestingly, we found that planarians can regenerate only the dopaminergic neurons 

within 14 days after 6-OHDA-incuded selective dopaminergic neural degeneration (Fig. 4A). 

Although it has been reported that dopaminergic neurons are also regenerated during the 

head regeneration process after decapitation (Nishimura et al., 2007a; Takeda et al., 2009), 

our findings with 6-OHDA are the first showing that planarians are able to regenerate 

dopaminergic neurons after the selective degeneration of only dopaminergic neurons in the 

brains of non-amputated animals (Nishimura et al., 2011). According to our observations, 

dopaminergic neurons were completely degenerated and this degeneration was 

accompanied by reductions of DA content and locomotion activity within 24 hours after 

 

Fig. 4. Process of dopaminergic neurogenesis in the brain after 6-OHDA-induced-lesioning. 
Immunostaining of brain dopaminergic neurons in intact planarian and 1 day, 7 days, and 
14 days after 6-OHDA-administration (A). BrdU-signal can be detected in newly generated 
dopaminergic neurons 10 days after 6-OHDA-administration (B). Newly generated 
dopaminergic neurons are produced from stem cells via cell division (C). 
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6-OHDA-administration. Then, newly generated dopaminergic neurons began to be 

detected in the brain 4 days after the 6-OHDA-induced lesion. Thereafter, the numbers and 

axons of dopaminergic neurons gradually recovered over a period of several days. Finally, 

dopaminergic neurons were completely recovered within 14 days after the 6-OHDA-

induced lesion. We confirmed that in this process (1) X-ray-irradiated planarians never 

regenerate dopaminergic neurons after the 6-OHDA-induced lesion, (2) newly generated 

dopaminergic neurons are derived from pluripotent stem cells, as demonstrated by long-

term trace experiments using BrdU. The dopaminergic neurogenesis after selective 

degeneration can be divided into three steps: (i) selective dopaminergic neurodegeneration 

(~24 hr after 6-OHDA-induced lesion), (ii) a transition period (24~72 hr), (iii) dopaminergic 

neurogenesis and dopaminergic neural network regeneration (96 hr~). 

5.1 Recruitment of new dopaminergic neurons from pluripotent stem cells 

Long-term chase experiments after BrdU-labeling clearly demonstrated that newly 
generated dopaminergic neurons are derived from proliferative stem cells. However, a 
BrdU-pulse chase analysis revealed that BrdU-incorporating cells were detected only in the 
trunk region but not around the brain region at all. In addition, immunohistochemical 
analysis using anti-proliferating cell nuclear antigen (PCNA) antibody revealed that PCNA-
positive cells were never observed around the brain region (Orii et al., 2005). These results 
support the notion that essentially no proliferating stem cells that enter S-phase exist around 
the brain region. Thus, BrdU-positive cells detected in the brain by long term-chase 
experiments may migrate from the trunk region after proliferation (Newmark & Sánchez 
Alvarado 1999) (Fig. 4B). Therefore, we carefully investigated when proliferating stem cells 
are committed to differentiate into dopaminergic neurons during regeneration. Finally, we 
found that G2 phase stem cells are committed around the brain area to differentiate into 
dopaminergic neurons after lesioning. The most critical result was obtained by triple 
staining experiments immunostaining with anti-DjPIWIA antibody and anti-pH3 antibody 
and in situ hybridization using a planarian tyrosine hydroxylase homologue (DjTH) riboprobe. 
We detected DjTH mRNA/DjPIWIA protein/pH3-triple positive cells around the brain (Fig. 
4C), suggesting that G2 phase stem cells may be accumulated in the head region and that 
these cells may participate in both regeneration and homeostatic events of the brain. It has 
already been suggested that the pluripotent stem cells may be committed at G2 phase into 
appropriate cell types (Hayashi et al., 2010), consistent with dividing stem cells immediately 
starting to differentiate to dopaminergic neurons. Based on these observations, we speculate 
that after proliferating in the trunk region, stem cells may migrate into the head region at G2 
phase and then some of them might become committed to producing dopaminergic neurons 
(Nishimura et al., 2011). 

5.2 System for recognition of the ablation of dopaminergic neurons 

In planarians, it is known that older differentiated cells are constantly eliminated by 
apoptosis, and are then replaced by new cells by proliferation of stem cells under 
physiological conditions in planarians (Inoue et al., 2007; Pellettieri & Sánchez Alvarado, 
2007). In our observation, a few BrdU-positive dopaminergic neurons were detected in 
vehicle-control-injected planarians, indicating that dopaminergic neurons could be replaced 
by stem cell proliferation in physiological conditions via homeostasis. Importantly, 6-
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OHDA-induced lesioning accelerated the number and rate of the brain dopaminergic 
neurogenesis compared to that under physiological conditions in planarians. These results 
suggest that the number of dopaminergic neurons might be monitored by their surrounding 
environment. In the case of newts, a lower vertebrate, neurogenic potential for the repair of 
lost dopaminergic neurons is maintained even in adults (Parish et al., 2007), and this 
potential may work under conditions of injury-responsive cell-replacement that are induced 
by dopaminergic signals mediated by the DA receptor, but not under homeostatic 
conditions (Berg et al., 2010, 2011). In contrast, rodents have neural stem cells in restrict 
regions. It is known that the activity (proliferation and migration) of endogenous neural 
stem cells is enhanced in response to acute brain lesions caused by insults such as stroke and 
neurotoxin-exposure in the adult state (Arvidsson et al., 2002, Höglinger et al., 2004), 
suggesting that neural stem cells present in the adult brain can be responsive to alterations 
of the surrounding environment. In the future, it will be possible to identify the cellular and 
molecular systems that contribute to the recognition of dopaminergic ablation and the 
recruitment of new dopaminergic neurons, and it will become possible to use RNAi-
mediated gene-knockdown and pharmacological drugs to further clarify the regulatory 
system of dopaminergic neurogenesis/regeneration. 

6. Characterization of stem cell participation in brain regeneration 

In both types of regeneration processes (i.e., dopaminergic neurogenesis during brain 

regeneration and after selective degeneration of dopaminergic neurons), we have never 

observed the neural stem cell-like cells in planarians. Although commitment occurs at G2 

phase, one committed stem cell produces only two differentiated cells. Committed stem cells 

can never enter into S phase after mitosis. Thus, we speculate that planarians have not yet 

invented a neural stem cell system. Histological analysis during regeneration supported the 

notion that pluripotent stem cells may directly give rise to fully differentiated neurons. First, 

we never observed proliferating cells in the brain rudiment during brain regeneration or in 

the intact brain. Second, the expression of the planarian musashi family genes supports the 

above hypothesis. Musashi, an RNA binding protein, is expressed in neural stem cells 

and/or progenitor cells in various animals (Okano et al., 2002). We isolated three musashi-

like genes (DjmlgA, DjmlgB and DjmlgC) from planarians (Higuchi et al., 2008). Although 

they were expressed in the planarian CNS, their expression was not eliminated by X-ray 

irradiation, indicating that these genes were expressed after cells entered the differentiated 

state, not in the proliferative stem cells. Based on these observations, we hypothesized that 

the neural stem cell system probably evolved at a later stage of evolution independently in 

higher animals such as insects and vertebrates (Agata et al. 2006). 

In the case of brain regeneration after decapitation, the brain rudiment is formed inside of 

the anterior blastema. The cells participating into blastema formation have already existed 

the proliferative state (Tasaki et al., 2011a, 2011b). A part of these cells then start to form the 

brain rudiment. Thus, commitment of dopaminergic neurons may occur after pattern 

formation of the brain. And then the neurons forming the primary brain might start to 

recruit G2 phase stem cells into brain neurons during enlargement of the brain and 

homeostasis (Takeda et al., 2009). In the case of dopaminergic neurogenesis after 6-OHDA-

induced lesioning, G2 phase stem cells located around the brain may be recruited into 

dopaminergic neurons. The remaining neurons in the brain after 6-OHDA-induced 
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lesioning may have an important role for sensing loss of dopaminergic neurons and 

recruiting G2 phase stem cells into dopaminergic neurons. Planarians thus have two 

different ways to regenerate dopaminergic neurons, although pluripotent stem cells become 

the source of regeneration in both cases. The latter case may provide a unique system for 

considering how to recruit dopaminergic neuron-committed cells into the lesioned regions 

(Nishimura et al., 2011). One of the important findings is that commitment occurs at the G2 

phase of stem cells. We should consider to what extent committed cells can be incorporated 

into the lesioned regions, and whether the location of commitment is an important factor for 

future incorporation of committed stem cells into appropriate positions. As our future work, 

we will make an attempt to answer several important questions. “How do the remaining 

cells recognize the loss of dopaminergic neurons?” “How are surrounding stem cells 

recruited into dopaminergic neurons?” “What kind of signaling pathway(s) are activated in 

the G2 phase stem cells to differentiate dopaminergic neurons” “How do the committed 

cells find the pathways to the lesion points?” Answers to the above questions may provide 

hints about how to realize cell-transplantation therapy in the future. 

7. Conclusion 

It is difficult to analyze whether dopaminergic neurogenesis/neuroregeneration occurs in 

the adult mammalian midbrain (Zhao et al., 2003; Frielingsdorf et al., 2004), although it has 

been demonstrated that neurogenesis occurs in the restricted regions of the adult 

mammalian brain (Doetsch et al., 1997; Eriksson et al., 1998). However, it is still 

controversial whether dopaminergic neurogenesis/neuroregeneration potential is “lost” or 

“quiescent” in the adult mammalian midbrain. In any case, the potential for dopaminergic 

neurogenesis/neuroregeneration is not sufficient to recover the missing dopaminergic 

neurons in mammals. Our findings in planarians provide unique opportunities to consider 

how pluripotent stem cells respond to their surrounding environment, and how new 

dopaminergic neurons are recruited after the degeneration of dopaminergic neurons. 

Cell-transplantation therapy is one possible way to compensate the missing dopaminergic 
neurons in Parkinson’s disease patients. One of the important issues for cell-transplantation 
therapy is what state of dopaminergic neural precursor cells can be accepted into the host 
brain environment. For clinical application, non-regulated proliferative ability of donor cells 
may cause abnormal conditions such as tumor formation after grafting, and therefore, 
proliferative cells, including undifferentiated cells, should be eliminated as donor cells 
(Fukuda et al., 2006). Another approach would be to block proliferative ability artificially 
before grafting. Recently, it was demonstrated that N-[N-(3,5-difluorophenacetyl)-L-alanyl]-
S-phenylglycine t-butyl ester (DAPT)-mediated Notch inhibition delays G1/S-phase 
transition of human ESC-derived neural stem cells, and promotes the onset of neuronal 
differentiation. However, the outcome of striatal transplantation of DAPT-treated neural 
stem cells was not different from that of non-DAPT-treated neural stem cells at a late period 
after grafting (Borghese et al., 2010). Consequently, inhibition of the G1/S-phase transition 
of donor cells to block proliferation may not enhance the efficiency of transplantation. Our 
findings from planarian studies suggest that G2-phase stem cells may be in a suitable cell 
state for harmonization with the host brain environment. Planarians are suitable model 
animals for analyzing the system that recognizes the ablation of dopaminergic signals and 
the system for recruitment of new dopaminergic neurons. Thus, our findings give useful 
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suggestions about which state and type(s) of cells would be suitable for cell-replacement 
therapy with integration into the host brain environment using ESCs and/or iPSC-derived 
neural precursor cells to treat diseases such as Parkinson’s disease. 
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