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1. Introduction 

Huntington’s disease (HD) is one of many deteriorative brain diseases, a class of disease in 

which neurons progressively die. In its final stages, HD robs patients of the dignity of their 

humanity; denying control of basic movements necessary for communication, facial 

expression and personal accomplishment. A means to test for the mutation has been 

available since 1993, when the Huntington’s Disease Collaborative Research Group exposed 

the huntingtin gene and characterized the nature of the mutation process. Despite this, 

children of patients often avoid determining their genotype because such a diagnosis is 

currently merely bleak without hope of remedy, and because of legitimate fears of 

employment discrimination or difficulties maintaining health insurance given the legal 

definition of “pre-existing condition.” In the absence of promising treatments or prospects 

for cures the devastating loss of muscular control during the final stages of disease 

progression is ominous. It is therefore not uncommon for HD patients to become aware of 

their own disease rather late into its progression when motor symptoms begin to emerge. As 

these movement symptoms arise they may be effectively masked by compensatory 

behavioral strategies. In time, however, these compensatory tactics fail to keep up with the 

advancing choreic movements which eventually dominate and negate purposeful motor 

control.  

The regions of the brain that are most susceptible to neuron death in HD, in a manner that 
correlates with motoric symptom severity, are the cerebral cortex, and the caudate and 
putamen nuclei of the basal ganglia (Young et al., 1986; Halliday et al., 1998). At first glance, 
it may seem that halting or preventing progressive neuron death within these affected areas 
would provide an adequate therapeutic strategy for HD. While efforts to do this are indeed 
under way (see Mattson & Furukawa, 1996 or Mattson, 2000 for review; Leyva et al., 2010; 
Niatsetskaya et al., 2010), this approach has, in and of itself, proven insufficient. At best, 
efforts to block apoptosis-generating mechanisms in HD patients have delayed symptom 
onset at early stages, yet have failed to ward off motor symptom onset (Vitamin E-related 
Antioxidant D-α-tocopherol – Peyser et al., 1995; Creatine – Verbessem et al., 2003; Coenzyme 
Q10 – Huntington Study Group, 2001). Although higher dose studies are currently ongoing 
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with these compounds, it remains unclear whether enticing benefits observed in vitro (e.g. 
Wang et al., 2005; Hoffstrom et al., 2010), or with animal models (Ferrante et al., 2000; 
Dedeoglu et al. 2002; van Raamsdonk, 2005a) will manifest in human clinical trials (see 
Delanty & Dichter, 2000, or Wang et al., 2010 for broader reviews of treatment efforts). The 
physiological perspective represents a plausible theoretical viewpoint that may explain the 
rather disappointing clinical results of cell preservation efforts. Preventing neuronal death 
may perpetuate neurons, but are these preserved neurons in HD patients capable of 
carrying out their prescribed roles sufficiently, given their diseased state at the time of 
treatment? Efforts to merely prevent neuronal death by increasing ATP synthesis, 
antioxidants, or other anti-apoptosis remedies are unlikely to provide sufficient benefit to 
patients if neurons are already malfunctioning. Furthermore, if malfunctioning neurons that 
are maintained by treatments nevertheless fail to engage their appropriate roles, then their 
survival may be disruptive. It would seem that the key to rectifying HD will require not 
only maintaining neuron survival, but also their proper physiology. Beyond total cell 
counts, protected neurons must be able to respond appropriately to afferent signals, 
sensitivity modulations, and engage in or disengage from longer-term plastic changes in a 
normal manner. This chapter will focus on the functional disruptions of neural transmission 
and related cognitive processing at very early disease stages. Therefore, presymptomatic HD 
(pre-HD) will be defined as HD-related malfunctions arising prior to the emergence of 
diagnosable motor abnormalities described by Paulson (2008). 

2. Primary or compensatory mechanisms? 

Neurons, either as individual cells or as part of an integrated nervous system, continually 
attempt to compensate for disruptive influences and maintain a dynamic equilibrium. When 
signals become weak, receptor sensitivity is boosted to compensate. When energy utilization 
is high, extra synapses are created to maintain signals at reduced cost. These compensatory 
responses are known as plasticity and they are at work not only in response to damaging or 
disruptive influences but also to support learning and memory formations or the process of 
forgetting when information becomes less applicable (Lee et al., 2004; Fusi et al., 2007). 
Several famous neuroscientists offered early descriptions of the mechanisms underlying 
plasticity. Among these, the one who received the most recognition in this arena was 
Donald Hebb, who was a student of Karl Lashley and subsequently collaborated with 
Wilder Penfield (Brown & Milner, 2003). Hebb’s main contribution was his theoretical 
description of a modifiable synapse that supports extended increases in synaptic strength 
when specific conditions are met; a process known as long term potentiation or LTP (Hinton, 
2003; Milner, 2003). Recently, it has become popular to refer to a myriad of neuronal 
modification processes as “Hebbian” when they lead to either synaptic LTP or its opposite, 
long term depression or LTD (Massey & Bashir, 2007; McBain & Kauer, 2009).  

It is evident that the activity of neurons during pre-HD stages is distorted. In addition, 

various affected brain systems attempt to compensate for the mutation-related malfunctions, 

particularly during these earlier stages. These simultaneous processes present a substantial 

challenge to neuroscientists attempting to unravel the neurophysiological mysteries of HD. 

To make things yet more challenging, compensations in one system may compromise 

another system. If researchers could localize and reverse primary malfunctions, it may be 

possible to control the spread of these potentially maladaptive compensatory adjustments.  
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Fig. 1. Basal Ganglia Circuitry. The input regions (caudate, putamen, subthalamic nucleus) 

are generally conceptualized as receiving converging excitatory input from the cortex. 

Within these regions, modulatory DA input arising from the substantia nigra tailors the 

responses of the majority efferent MSNs. The subthalamic nucleus contributes excitatory 

input to the globus pallidus while the centromedian and intralaminar nuclei of the thalamus 

send excitatory input to the caudate and putamen. The caudate and putamen contribute 

sequential inhibitory signals through the globus pallidus and the substantia nigra reticulata, 

converging inhibitory signals on the thalamus. These converging inhibitory signals 

modulate thalamic relay neurons which return excitatory signals into the frontal cortex 

based on amassed inhibition or disinhibition. The thalamocortical targets are mostly the 

supplementary motor and premotor areas for movement, but other cortico-basal ganglia-

cortical loops interact with other regions of prefrontal cortex involved in behavior planning. 

Slightly modified version of basal ganglia image reprinted with permission Courtesy of the 

Dana Foundation, Copyright 2007, all rights reserved. 

To fully understand pre-HD, it is necessary to provide background about the cerebral 

circuitry where malfunctions begin to appear. HD is primarily a disorder of the basal 

ganglia, so we’ll begin by describing the primary associated nuclei and connections of this 

system. The key associated neurotransmitters are glutamate (GLU), gamma aminobutyric 

acid (GABA), acetylcholine (ACh), adenosine (ADN), nitric oxide (NO), dopamine (DA), 

serotonin (5-HT), endocannabinoids, and various cotransmitter neuropeptides. As 

diagrammed in Figure 1, the basal ganglia are generally conceptualized first by orienting to 

the primary input regions, the caudate and putamen nuclei (these are indistinct in 

experimental animals and referred to as a combined “striatum”). The whole of the cortical 

mantle, along with centromedian and intralaminar thalamic nuclei, send excitatory GLU 

projections to these structures where they converge on both the GABAergic medium spiny 
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neurons (MSNs) and local interneurons containing GABA, ACh, or NO, along with various 

neuropeptides. Following local integration, the MSNs project to the globus pallidus or the 

substantia nigra reticulata, which both harbor GABAergic neurons that feed forward to the 

thalamus where they modulate thalamic relay neurons that feed back to the cortex. DA 

originates from the substantia nigra compacta, releasing the highest levels of this 

neurotransmitter into the caudate and putamen where it modulates local MSN activity, 

along with 5-HT originating from the dorsal raphe nucleus. Thalamic relay neurons that 

close the “motor loop” feed back to the supplementary and premotor cortices, while those 

that close the “cognitive loop” feed back to the prefrontal cortex (see Middleton & Strick, 

2000, for explanation of loops). 

Given the high convergence of axon terminals, and associated astrocytes (see Pascual et al., 

2005), releasing so many different neurotransmitters (GLU, GABA, NO, DA, 5-HT, ADN) 

onto MSNs, the complexity of their modulation seems to present a wide window for error in 

ordinary conditions. Additionally, if these modulatory inputs begin to send inappropriate 

signals (as will be discussed below) it is surprising that this system continues to process 

movement signals for as long as it does before motor symptoms begin. Striatal MSNs 

represent the majority (approximately 90%) of neurons in the striatum responsible for 

relaying processed information to subsequent basal ganglia stations. Since striatal MSNs are 

most notably vulnerable in HD, it will be important to place these neurons into proper 

context.  

Figure 2 depicts a model striatal MSN with a subset of notable afferent influences. These 

neurons are influenced by nitric oxide arising from GABA interneurons that synapse on 

dendritic spine necks (Kubota & Kawaguchi, 2000), by ACh arising from cholinergic 

interneurons that are generally understood to be the “tonically active” striatal neurons 

(Wilson et al., 1990), and by adenosine (ADN) arising from both local neurons and 

astrocytes in a nonsynaptic but activity-dependent manner (Delaney & Geiger, 1998; Pascual 

et al., 2005; Pajski & Venton, 2010). Also, recent findings have elevated endocannabinoids to 

a prominent position in striatal synaptic processing, as these compounds tend to be released 

by MSNs in response to GLU and DA stimulation and provide feedback to CB1 receptors 

located on GLU-releasing axon terminals (Matyas et al., 2006; Uchigashima et al., 2007; 

Lovinger, 2010). 

The history of basal ganglia exploration was profoundly influenced for many years by the 

pioneering work of Charles Gerfen, who was the first to expose distinctions between two 

prominent circuitry pathways emanating from the rat striatum: the striatonigral and the 

striatopallidal pathways (Gerfen & Young, 1988; Gerfen, 1992a). Thus, striatal MSNs were 

understood to send efferent axons from the striatum either to the substantia nigra pars 

reticulata (includes internal pallidum in humans) or the external globus pallidus, but not 

both. Within this seminal work, Gerfen and others delineated several important distinctions 

between these two GABAergic efferent pathways, such as differential neuropeptide 

expression, DA receptor expression (Gerfen, 1992b), and more recently, differential 

muscarinic receptor expression (Acquas & DiChiara, 2002). These data have been 

foundational to many speculations regarding the function of the basal ganglia and its role in 

selecting behavioral actions.  
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Fig. 2. Synaptic Interactions on a Medium Spiny Neuron. A. The dendritic spines on MSN 

surfaces are postsynaptic specializations that expand the input surface area and often act as 

synaptic compartments. Excitatory GLU (red) inputs, arising from corticostriatal or 

thalamostriatal afferents, tend to converge on the distal regions of these spines. Modulatory 

inputs of nigrostriatal DA or raphe-striatal 5-HT (blue) are either found juxtaposed near 

GLU inputs or on the main dendritic branch, where they can best modulate the excitation. 

GABA interneurons tend to synapse closer to the soma and the main dendritic branch, 

providing a shunting capacity that can truncate excitation. In response to input disruptions, 

remaining terminals often shift their positions to adjust their efficacy in driving MSN activity. 

B. Several modulatory inputs surround a dendritic spine simultaneously. The timing of 

transmitter arrival, as well as the specific combinations that arrive, are critical to both the initial 

response and the longer-term consequences of transmission. The many dendritic spines 

increase available surface area for all the synaptic structures. Astrocytes surrounding synapses 

circumscribe GLU and GABA terminals, containing synaptic overflow, while DA and 

acetylcholine (ACh) can diffuse over wider distances. Important intracellular response 

elements include the dopamine and cyclic AMP-regulated phosphoprotein weighing 32 kDa 

(DARPP-32) which typically inhibits protein phosphatase 1 (PP1), calcium levels, and the 

cyclic AMP produced by adenylate cyclase which regulates protein kinase A. The depicted 

receptors include: dopaminergic D1 (D1R) and D2 (D2R); glutamatergic n-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), and metabotropic 

(mGLUr); cholinergic nicotinic (nAChr) and muscarinic (mAChr); GABA (GABAaR, the 

GABAbR are also present but not shown); cannabinoid (CB1R, are also expressed on MSN 

terminals); and adenosine (ADNr, also expressed on MSN terminals).  

However, despite recent experiments using the new cyclic recombinase expression (CRE) 

technology (Matamales et al., 2009; Valjent et al., 2009; Bateup et al., 2010) that have 

demonstrated a clear separation of these striatal efferent pathways in mice, substantial 

populations of MSNs in rats (30%) and primates (80%) project to both the nigral/internal 

pallidum and the external globus pallidus simultaneously (Kawaguchi, et al., 1990; Wu et 

al., 2000; Levesque & Parent, 2005; Fino & Venance, 2010). Therefore, while differences in 

receptor expression may yet yield distinct striatal neuron subpopulation responses in rats, 

primates, and humans, the importance of strictly distinct efferent pathways emanating from 

the striatum is less clear.  
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When the functions of the basal ganglia are evaluated in humans, it is likely that our 

anatomical connections are more like primates than rats or mice. Therefore, while it is 

tempting to speculate that the different pathways, often referred to as direct (striatonigral) 

and indirect (striatopallidal) pathways may be distinctly impacted within rodent HD models, 

it would seem less likely that such distinctions remain in the human condition. 

Nevertheless, the sensitivities of MSNs to modulation and plasticity within the striatum 

(caudate and putamen for humans) are likely to bear considerable resemblance to responses 

and mechanisms exposed in rodents.  

3. Presymptomatic neurotransmitter release 

Collective explorations of neurotransmitter release using in vivo microdialysis or 
voltammetry-related techniques can provide useful insights into neuronal malfunctions 
predating motor symptom expression in HD. Investigations into whether neurons are 
stimulated sufficiently to release, whether neurotransmitter availability/storage in vesicles 
provides sufficient quantities upon release, and whether neurotransmitters are removed 
appropriately to terminate the postsynaptic response, have all indicated that different 
neurotransmitter systems can exhibit unique malfunctions. Because of the common 
associations between the excitatory neurotransmitter GLU, excitotoxicity, and apoptosis in 
the HD brain, the glutamatergic striatal afferents were the first system to be investigated for 
early stage HD-associated problems using available rodent models (Greenamyre, 1986). A 
full account of all rodent HD models is beyond the scope of this chapter, but a brief 
description is pertinent to make a key point. The transgenic rodent (rat or mouse) has 
become a popular model of HD, and perhaps the most popular to date would be the R6/2 
mouse that harbors exon 1 of the human mutated huntingtin gene with approximately 150 
CAG repeats, exhibiting symptoms by 8 weeks (Carter et al., 1999). This is to be 
distinguished from the knock-in 150 mice (KI-150) that harbor full-length mutant but murine-
based huntingtin genes inserted into the genome in a manner that replaces the endogenous 
gene but maintains endogenous expression control. These KI-150 mice take up to 80 weeks 
to exhibit symptoms despite harboring a similar number of CAG repeats (Heng et al., 2007). 
The key point here would be that when expression control presumably minimizes protein 
creation, symptom severity is dampened providing greater windows for exploring 
presymptomatic stages. 

As previously indicated (Figure 2), striatal MSNs are heavily innervated by glutamatergic 
afferents arising from the cortex (corticostriatal) and the thalamus (thalamostriatal). The 
convergence of this input represents the primary excitatory drive for all striatal neurons, 
with the majority of glutamatergic synapses targeting the tips of dendritic spines. Striatal 
neurons recorded in slice preparations (Berretta, 2008; Stern et al., 1998; Wilson & 
Kawaguchi, 1996) and stationary awake animals (Sandstrom & Rebec, 2003; Wilson, 1993, 
2004) are mostly silent. In turn, bursts of activity arise in intact animals during bouts of 
movement, and are believed to be generated by correlated surges among glutamatergic 
afferents (Wilson, 2004). Evidence indicates that striatal MSNs are stimulated by increased 
amounts of GLU beginning at presymptomatic stages, both because synaptic transport 
mechanisms begin to fail (Estrada-Sanchez et al., 2009; Brustovetsky et al., 2004; Behrens et 
al., 2002; Lievens et al., 2001), and as a result of altered control of glutamate release (authors’ 
observations; Estrada-Sanchez et al., 2009; Nicniocaill et al., 2001). In fact, findings of 
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increased resistance to excitotoxicity in the presymptomatic R6/2 mouse suggest early 
compensations occur to diminish GLU sensitivity somewhat (Qian et al., 2011; Estrada-
Sanchez et al., 2010; Hansson et al., 1999). Furthermore, treatments that decrease glutamate 
transporter expression enhance glutamate-related neurotoxicity (Estrada-Sanchez et al., 
2010). Conversely, boosting the expression of astrocyte-based GLT-1 glutamate transporter 
using an antibiotic drug called ceftriaxone, which increases glutamate reuptake in R6/2 
mice, not only diminished motor-symptom expression, such as paw clasping and ballistic 
twitching, but also seemed to improve cognitive processing, as indicated in plus-maze 
activity (Sari et al., 2010; Miller et al., 2008a). These deficits in GLU control seem to extend 
into the frontal cortex as well (Hassel et al., 2008; Behrens et al., 2002) which would be 
expected to distort information processing more profoundly in both motor and cognitive 
domains by affecting both primary and downstream targets.  

Microdialysis is a technique commonly used to measure extracellular release of 
neurotransmitters and is a versatile technique in that it can measure several different 
neurotransmitter substances at once. The basic technique requires pumping a solution that 
closely approximates cerebrospinal fluid across a small semi-permeable membrane-enclosed 
probe tip that is placed inside the brain region of interest. Via diffusion, neurotransmitter 
substances released will enter the semi-permeable membrane tip, pass into an output line, 
and accumulate in collection vials. The contents of these vials are then analyzed for 
neurotransmitter content using high performance liquid chromatography (HPLC) and the 
levels of neurotransmitter measured represent snapshots of release activity that took place 
during the experiment. Collections can be taken at intervals throughout the experiment to 
indicate the changes that take place over time.  

Our laboratory has investigated release activity in, perhaps, the most valid model of 
pre-HD, the KI-150 mouse. As described previously, this knock-in model provides a wide 
window of presymptomatic development. They also lack even subtle motor symptoms until 
at least 14 weeks of age. With this model, we found disrupted GLU release control at the 
earliest age ever observed, prior to the onset of cognitive deficits. We performed a within-
subject set of experiments that began following weaning with multi-stage training of an 
operant task during the next 3 weeks, from 6-9 weeks of age. Training culminated in a task 
that required animals to alternate bar-pressing between two levers in an operant box (Med 
Associates, St. Albans, VT) in a left-right-left-right-left sequence. The reward was a sucrose 
pellet for each successful sequence accomplished. Once trained, 9-10 week old animals were 
then challenged to adopt the reverse sequence (right-left-right-left-right); a challenge 
intended to test behavioral flexibility after habitual behavior had been established.  

In vivo microdialysis was performed during this challenge, and during a task-free period 
that followed, in order to measure neurotransmitter changes elicited within the mouse 
striatum. After two recovery days, these same animals were then subject to a second 
microdialysis experiment, during which high-level (80mM, normally 2.9mM) potassium- 
containing artificial cerebrospinal fluid was pumped across the membrane. This technique is 
a popular method, used to generate local excitation of neurons and terminals within the 
region of interest (Nicniocaill et al., 2001; Tossman et al., 1986). Potassium typically flows 
through neuronal membranes easily, and when it is provided extracellularly this 
depolarizes the local neurons and afferent axons. Although no statistically significant 
genotype distinction was found in operant-stimulated GLU levels, potassium-stimulated 
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GLU was significantly increased among the homozygote mice, by comparison to the 
remaining genotypes (see Figure 3).  

 

Fig. 3. Glutamate Microdialysis with Knock-In Mice. Two sequential microdialysis sessions 
were performed with freely-moving KI-150 mice. In the first session, measurements of GLU 
were taken during operant behavior, while these measures were taken in the second session 
during elevated potassium stimulation. GLU levels measured in the first session were not 
significant, while a significant difference was found between homozygote mice and both 
their heterozygote and wild-type littermates in response to striatal potassium stimulation. 
The homozygote animals averaged 160% increases in glutamate during potassium 
stimulation (from 2.9-mM to 80-mM) while no increases in GLU responses to behavioral 
stimulation were observed. These groups showed no genotype distinctions in the number of 
reinforcers earned when required to reverse their bar-pressing pattern. No genotype-related 
movement deficits were exhibited by these animals as measured by open field activity or 
grip strength measures, indicating they were presymptomatic. At this early age (10-11 
weeks) these knock-in animals showed no signs of motoric pathology in the hallmark 
longitudinal study that used far more extensive batteries of tests to thoroughly assess deficit 
onset (Heng et al., 2007). 

The data depicted in Figure 3 also relates to a common theme with neurochemical 
measurements in the context of deteriorative disease: deficits in release control often require 
stimulation to reveal an existing abnormality. This relates to the compensatory mechanisms 
previously described. In our experiments for example, it would seem that engaging in 
operant bar-pressing behavior for food reward was not sufficient to expose an underlying 
problem with glutamate control, while the 80 millimolar elevated potassium concentrations 
in the extracellular fluid apparently was. Within the striatum, it seems the large majority of 
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synaptic GLU removal, post-release, is accomplished by transporters expressed by 
astrocytes (Lee & Pow, 2010). Energy is required for astrocytes to accomplish GLU transport 
(Azarias et al., 2011), and a corresponding decline in the astrocytic expression of GLU 
transporters seems to reach a point where the striatum can no longer keep up with the 
behavior-related surges of GLU necessary to generate striatal bursting activity (Wilson, 
2004). It seems this occurs despite observations that astrocytes initially proliferate in HD, 
perhaps as a compensatory strategy (Faideau et al., 2010). It is also relevant to pre-HD that 
developmental changes seem to take place between youth and later adulthood regarding 
astrocytic participation in GLU clearance. Apparently astrocytes adopt a greater role in this 
clearance at later ages, when HD symptoms are more profound (Thomas et al., 2011a).  

Another neurotransmitter that appears to become disrupted in early HD is dopamine (DA). 
The deficit in DA release is not as profound in HD as it is in Parkinson’s disease (PD), which 
is known to result primarily from the deterioration of DA-producing neurons. Whenever a 
neurotransmitter system is dampened, it produces functional loss, either within the same 
system (movement-related), or within an alternate system that also depends on that 
neurotransmitter (cognitive or strategic). Evidence from animal models indicates that the 
capacity to release DA is substantially reduced in the context of both huntingtin mutations 
(Ortiz et al., 2010, 2011; Tang et al., 2007; Johnson et al., 2006, 2007; Yohrling et al., 2003), and 
the mitochondria-compromising neurotoxin, 3-nitroproprionic acid (3-NP), also used to 
model HD (Kraft et al., 2009). These 3-NP findings suggest that compromised DA may arise 
in part from a cellular energy deficit. Yohrling and colleagues (2003) also looked at loss of 
tyrosine hydroxylase, the rate limiting enzyme in DA production, in the substantia nigra of 
postmortem HD brains and found over 30% loss, which would functionally compromise DA 
availability. Therefore, ironically, despite the implications of DA overactivity that may arise 
from the clinical effectiveness of dampening this neurotransmitter with currently FDA-
approved drugs such as tetrabenazine (Guay, 2010; de Tommaso et al., 2011), animal 
research indicates DA function is, in fact reduced, even prior to motor symptom expression 
(Ortiz et al., 2010, 2011; Johnson et al., 2006; Bibb et al., 2000).  

When DA is compromised its modulatory effect is diminished, resulting in abnormal 
synaptic plasticity in the striatum and also in the frontal cortex, which is known to receive 
less dopaminergic innervation than the striatum (Cummings et al., 2006). This altered 
modulatory influence may contribute to the cognitive, strategic, or behavioral-flexibility-
type symptoms that arise early in HD (Walker et al., 2008; Montoya et al., 2006; Paulsen & 
Conybeare, 2005; van Raamsdonk et al., 2005b; Nieoullon, 2002). From this presumption 
follow expected speculations as to whether stimulating the DA system may provide certain 
functional benefits. This approach has been attempted with R6/2 mice using 
methamphetamine in combination with levodopa treatment, which would be expected to 
promote both dopamine availability and release. However, while short-term improvement 
of some motor symptoms were found, animals treated with this regimen eventually 
exhibited increased problems on the rotarod, indicating loss of movement coordination as 
well as a shortened life-spans (Hickey et al., 2002).  

It is important to recognize a distinct but equally important concept that has emerged from 
DA exploration: DA transmission aggravates oxidative processes that promote neuronal 
death in the context of the huntingtin mutation (Deyts et al., 2009; Charvin et al., 2005). 
Thus, interfering with DA transmission may be a rational choice for treatment, since it 
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would serve to slow deteriorative processes, despite the repercussions for plasticity. In fact, 
direct research with two neuroleptics: haloperidol (Charvin et al., 2008) and tetrabenazine 
(Wang et al., 2010), demonstrated a neuroprotective effect on huntington mutation-bearing 
striatal neurons in isolation. Conversely, stimulation with DA receptor agonists tends to 
promote neuronal death (Tang et al., 2007). Furthermore, Paoletti and colleagues (2008) 
compared striatal cells from mouse models, harboring either 7 or 111 CAG repeats in their 
huntingtin genes, for vulnerability to DA and NMDA glutamate receptor stimulation. They 
found that the cells with 111 CAG repeats in huntingtin were killed more readily by 
stimulation with D1 DA receptor agonists, and cell vulnerability was enhanced when this 
stimulation was combined with NMDA receptor stimulation.  

Thus, the presymptomatic rise in extracellular glutamate would be expected to enhance the 

destructive potential of DA. The Paoletti (2008) study also found that this combination of 

stimuli leads to intracellular molecular events that activate apoptotic or programmed cell 

death genes in a manner similar to what occurs in the brains of HD patients. If indeed this is 

the case in HD patients, treatment strategies may pose a Faustian bargain: “Would you be 

willing to compromise your cognitive function in order to delay the loss of movement control?” Such 

a dichotomous choice is not necessarily inevitable, but a DA-blocking treatment should not 

be offered without exploring the consequences. Ideally, a treatment will emerge that 

balances both the sensitivities to, and the need for, DA transmission.  

Even in the absence of DA-compromising medication, the earliest cognitive decline 

exhibited by HD patients is in set shifting, where subjects must abandon attention to one 

strategy for another, also referred to as behavioral flexibility (Lawrence et al., 1996; Ho et al., 

2003). In fact, direct correlations have been found between pre-HD patients’ success with 

tasks requiring this sort of strategic flexibility and DA activity or control, as measured by 

positron emission tomography (PET) receptor or transporter binding assessment (Bäckman 

et al., 1997; Lawrence et al., 1998b). These correlations of pre-HD DA activity and cognitive 

flexibility are evaluated with tasks such as the Tower of Hanoi and Wisconsin Card Sort.  

PET scan-related binding studies using radiolabeled raclopride (a D2 receptor antagonist) 
also reveal DA receptor malfunctions in pre-HD in both the striatum and the cortex that 
correlate with cognitive deficits (Pavese et al., 2003, 2010; van Oostrom et al., 2009). 
Unfortunately, it is practically impossible to distinguish binding to presynaptic versus 
postsynaptic DA D2 receptors in these regions using PET technology. However, reductions 
in presynaptic D2 receptors may well suggest either decreased dopaminergic terminals or 
decreased autoreceptor expression, both of which would distort DA release. The 
aforementioned study that found a correlation between performance on the Tower of Hanoi 
task and DA function assessed binding to DA transporters that are largely expressed on DA 
terminals (Bäckman et al., 1997), suggesting at least some of the reductions in D2 binding 
may result from terminal loss. Thus, it appears clear that suppressing DA in HD is 
simultaneously neuroprotective, and yet, more disruptive to cognitive processing; 
representing a dilemma that will need to be resolved in future treatment efforts. 

4. Presymptomatic neuronal activity and plasticity dysfunction 

In the context of pre-HD, when abnormal synaptic GLU levels linger for prolonged periods 
and a diminished DA modulation exists, MSNs must adapt to maintain normal function. To 
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picture the various converging synaptic influences surrounding MSNs, refer back to Figure 2. 
In the context of the dramatic modulatory influences present at the MSN synapse, a new 
appreciation of spike-timing dependent plasticity has been developed that describes different 
ramifications when signals arrive before or after action potentials in the striatum. The known 
response patterns were recently reviewed by Fino and Venance (2010), who describe an 
impressive precision in the sensitivities to input timing exhibited by striatal neurons.  

Apparently, striatal neurons exhibit differences in long-term reactions to input (as dramatic 
as LTP versus LTD) that depend upon whether modulatory inputs arrive before or after 
action potentials. Impressively, these responses can be realized with subthreshold 
membrane currents. Of course, GABA release at the terminal regions of MSNs 
(internal/external globus pallidus, substantia nigra reticulata) necessitates action potential 
generation. In vitro findings indicate that membrane currents occurring before thresholds 
are reached can influence the direction of subsequent responses. Given that experiments 
performed with freely-moving animals typically assess action potentials without 
appreciating sub-threshold activity, a great deal of information may be processed by striatal 
neurons that is likely to be missed in those experiments that typically rely on extracellular 
recording (Kiyatkin & Rebec, 1996). This subthreshold activity that can contribute timed 
depolarizations is nevertheless important for establishing extended response tendencies.  

As mentioned, striatal neurons tend to exhibit low spontaneous action potential generation 
in healthy awake animals in the absence of spontaneous behavior (Sandstrom & Rebec, 
2003). Therefore, the large majority of modulatory influences are likely to occur at 
subthreshold membrane potentials. This expands the potential for disruptive malfunctions 
resulting from the huntingtin mutation as even minor disruptions to transmitter release will 
distort pre-threshold synaptic currents. 

Given the initial increases in GLU that may surge to higher endogenous levels, it makes 
sense that there seems to be a presymptomatic sensitivity to NMDA and quinolinic acid (a 
potent NMDA receptor agonist) among MSNs from YAC128 mice, a popular model with 
extended pre-HD periods (Graham et al., 2009). Later, at symptomatic stages, these same 
mice show resistance to quinolinic acid-induced excitotoxicity. This later-stage resistance to 
GLU excitotoxicity has also been observed in other HD mouse models (Starling et al., 2005; 
Zeron et al., 2002; Levine et al., 1999). Although this may represent a gradual decrease in 
sensitivity to GLU stimulation, recordings of striatal neuronal activity demonstrate 
hyperactivity in symptomatic transgenic R6/2 mice (Rebec et al., 2006) indicating 
corticostriatal malfunction. In fact, this study treated R6/2 mice with high amounts of 
systemic ascorbate which seemed to ameliorate the observed deficiency of endogenous 
striatal ascorbate, and subsequently reduced striatal hyperactivity. This effect suggests that 
the ascorbate contributes substantially to GLU uptake transport, and can help diminish 
detrimental excitatory drive when present.  

Changes in responses to NMDA stimulation and AMPA stimulation among cortical neurons 
also takes place in the R6/2 model, and these are more easily seen when neurons are 
observed in isolation (André et al., 2006). This may be a general type of response that occurs 
when control of GLU levels or activity is compromised, whereby neurons decrease 
sensitivity to accommodate the increased basal GLU levels. Interestingly, striatal neuron 
hyperactivity is not a common feature of all HD mouse models, as the R6/2 mouse shows 
this but the knock-in 140 (KI-140) mouse does not (Miller et al., 2008b). Also, striatal 
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hyperactivity is not observed in the transgenic rat model (51-CAG; Miller et al., 2010). 
However, the capacity to generate coordinated afferent bursts into the striatum, as 
measured by coordination of firing patterns between pairs of striatal neurons, was disrupted 
in all these models (Miller et al., 2011). It is likely that this disrupted cortical input originates 
from aberrant activity within the cortex (Dorner et al., 2009), which was also evidenced in 
terms of a lack of synchrony between pairs of neurons in the prefrontal cortex of both R6/2 
and KI-140 mice (Walker et al., 2008).  

It is important to note that these demonstrations of changes in cortical and striatal activity 
were shown in symptomatic animals. The contributions of cortical disruptions to the time 
course of behavioral deficit expression make sense when considering the presymptomatic 
loss of GLU regulation. Cummings and colleagues (2009) found that cortical activity 
became disrupted with larger and more frequent excitatory postsynaptic potentials in 
several animal models including the R6/2, YAC128, and KI-140 lines, largely in the 
presymptomatic stages. In addition, more frequent inhibitory postsynaptic potentials 
within the striatum could easily disrupt the coordination of cortical input to the striatum. 
Laforet and colleagues (2001) evaluated the pathological cortical and striatal alterations 
that precede HD symptoms in both humans and animal models and concluded the 
contributions of cortical malfunction must be critical.  

Human data indicate that cortical metabolic dysfunction occurs among HD patients before 
brain-scan indications of pathology manifest in the striatum (Rosas et al., 2005; Paulsen et 
al., 2004; Sax et al., 1996). Combined with evidence that knock-in mouse models with lower 
CAG repeat numbers lack both cortical neuronal changes and later behavioral changes 
(Wheeler et al., 2000), while longer repeat containing knock-in models exhibit moderate 
cortical involvement and moderate behavioral changes (Lin et al., 2001), these data strongly 
implicate early cortical malfunctions preceding striatal malfunctions and perhaps 
contributing to their development. Research with restricted expression models, where 
mutated huntingtin is expressed only in striatal MSNs, show striatal NMDA sensitivities, 
but these animals do not seem to develop behavioral deficits in the normal progression. This 
suggests cortical expression of huntingtin mutations are also necessary for pathology (Gu et 
al., 2007; although see Thomas et al., 2011b).  

A related complication that has commanded recent attention is the increased stimulation of 
extrasynaptic NMDA receptors (expressed outside the postsynaptic zone), arising in 
pre-HD. Stimulation of these extrasynaptic NMDA receptors seems to elevate apoptotic 
cascades, while synaptic NMDA stimulation serves to prevent this and maintain neuronal 
health (Milnerwood et al., 2010; Okamoto et al., 2009; Li et al., 2004). Apparently, the 
majority of extrasynaptic NMDA receptors in the striatum contain the NR2B subunit that 
seems to confer a disruptive influence on both MSN survival (Okamoto et al., 2009) and 
neuronal responses and plasticity, including a tendency to decrease CREB signaling 
(Milnerwood et al., 2010; Leveille et al., 2008; Hardingham et al., 2002). With the lack of 
synergy between cortical inputs, increasing chaotic nature of cortical impulses, and the 
diminished control of the GLU released via transporter malfunctions, it is not surprising 
that GLU spill-over into extrasynaptic domains increases as HD pathology advances.  

MSNs normally exhibit hyperpolarized membrane potentials and decreased input 
resistances, both of which reduce their tendency to produce action potentials in response to 
sporadic and temporally uncoordinated input. This leads to their relative silence in healthy 
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animals in the absence of movement. Findings from electrophysiological explorations of 
both presymptomatic and symptomatic R6/2 mouse striatal slices show both increased 
input resistance when stimulated directly and decreased paired-pulse facilitation when 
stimulated indirectly and repetitively via the cortex (Klapstein et al., 2001). It seems that 
decreased inwardly rectifying potassium channel expression may account for a 
corresponding depolarization of the resting membrane potential that occurs in MSNs of 
these mice, but neither of these are observed during the presymptomatic stage (Ariano et al., 
2005). These combined data therefore also suggest that cortical neuronal malfunctions may 
precede striatal changes.  

The most direct demonstration of presymptomatic cortical contributions during the 
development of HD in an animal model (R6/2 and R6/1 mice; Cepeda, 2003) indicated a 
progressive decrease in spontaneous currents in striatal neurons, along with increased 
generation of large synaptic current events that occur prior to symptom expression. This 
decreased spontaneous current generation is counter-intuitive, given the data described 
above that indicated reuptake transport control over GLU release is lost in pre-HD mouse 
models (as early as 10-11 weeks, among KI-150 mice; Figure 3). Nonetheless, a consequence 
of increased input resistance among MSNs in HD would be increased excitability, and a 
decreased rheobase (current intensity necessary to reach action potential) expressed in 
MSNs of pre-HD mice (Klapstein et al., 2001). 

Interestingly, a recent series of elegant experiments were performed with pre-HD 51-CAG 
rats in which in vivo electrophysiological measures (taken while animals were under 
pentobarbital anesthesia) correlated with operant-task deficits in time appreciation (Höhn et 
al., 2011). The major electrophysiological finding in that study was an increased theta-burst 
generated LTD among homozygote rats, as demonstrated by before-and-after input-output 
curves, despite the lack of any changes in paired-pulse facilitation. It remains unclear why 
increased plasticity within the striatum would be responsible for the observed correlated 
behavioral deficit among homozygote rats in time appreciation. This presymptomatic deficit 
was exposed by challenging rats to recognize differences in the duration of signals and to 
respond differentially to short and long signals. The ability to discern differences in the 
length of these signals could be made more challenging by shortening the long signal, and 
homozygote rats exhibited more difficulty when this was done than wild type rats.  

This sort of compromised appreciation of elapsed time also seems to present among pre-HD 
patients (Rowe et al., 2010; Paulsen et al., 2008; Beste et al., 2007). In fact, in an extensive 
review, Matell and Meck (2004) support the hypothesis that a primary role of the basal ganglia 
depends on the timing of coincident cortical inputs, and subsequent integration that occurs on 
MSNs, to generate conscious appreciation of time. Their modeling of expected oscillations in 
striatal neurons, should the cortical input become increasingly varied, seems to predict what 
was found to occur in actual oscillations recorded in an HD mouse model by Cepeda and 
colleagues (2003). The lack of synergy in cortical activity, chaotic nature of cortical impulses, 
diminished GLU control, and disruptions in plasticity, based on extrasynaptic NMDA 
stimulation, could easily underlie this sort of behavioral disruption.  

Generalizations of DA effects on neurons in both the striatum and cortex are more useful in 
appreciating the changes likely to become relevant during pre-HD. DA has been shown to 
elicit an increased signal-to-noise ratio when applied in the context of recording from single 
striatal neurons at the time of stimulation by GLU iontophoresis in freely-moving rats 
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(Kiyatkin & Rebec, 1996). It is interesting that convergent stimulation of striatal neurons, 
arising during motor activity, was enhanced by DA iontophoresis, while spontaneous 
activity unrelated to movement was usually suppressed (Pierce & Rebec, 1995). From this 
perspective, DA seemed to promote behavior-related striatal activity and diminish the 
spontaneous activity generally not seen in intact rats that sit quietly, while otherwise awake 
(Sandstrom & Rebec, 2003). Increases in MSN input resistance, along with increased 
sensitivities of NMDA receptors and malfunctioning cortical input may lead to increased 
spontaneous striatal activity in freely-moving symptomatic R6/2 mice (Rebec et al., 2006), as 
well as reduced coordination of striatal activity (Miller et al., 2011).  

One rather mysterious finding presented clearly and convincingly in a review by Fino and 
Venance (2010), is that LTP can be induced by pairings of corticostriatal input activity to 
MSN impulses in the order of post-pre, while LTD tends to result from pairings of the same 
activities in the order of pre-post (see also Fino et al., 2005). Even more intriguing would be 
the implications of sub-threshold EPSPs on later firing tendencies seeming to follow the 
same rules (Fino & Venance, 2010). It is challenging to justify these findings with what 
might be expected if striatal learning is accomplished by promoting the sensitivity of 
neurons commonly activated by corticostriatal input in the typical manner. It would seem 
that in circumstances involving spontaneous activity that is present prior to coordinated 
efforts of corticostriatal terminals converging on MSNs, the order of action potentials would 
emphasize post-pre relations, while the reverse (pre-post) would be the natural order of 
activity across these terminals, subsequently causing striatal action potentials. If the natural 
order leads to depression of MSN sensitivity (pre-post), while neurons abnormally active 
before coordinated inputs from corticostriatal terminals become more sensitive (post-pre), 
this would decrease the sensitivity of synapses that function properly and increase the 
sensitivity of those that do not. DA, which is not likely to be present in quantities as high as 
those found in vivo in the slices of these experiments, seems to do the opposite, promoting 
activity arising from coordinated corticostriatal input (behavior related), and diminishing 
unrelated activity (Pierce et al., 1995). If the capacity to release DA declines during pre-HD, 
it is therefore easy to imagine that both disrupted plasticity and increased noise in striatal 
transmission could corrupt contributions of the basal ganglia in behavior processing. 

Investigations of DA receptors indicate a selective initial, presymptomatic vulnerability of 
either D2 receptor expression or D2 expressing striatal neurons in human HD patients, 
followed by progressive loss of D1 receptors at the intermediate and late stages of the 
disease (Glass et al., 2000). This pattern does not seem to occur in animal models, which 
seem to diminish both D1 and D2 dopamine receptors more readily (Cha et al., 1998). As has 
been suggested, DA also participates in inducing pathological responses among striatal 
neurons which are manifested in electrophysiological explorations of neurons in several 
mouse models of HD (André et al., 2011). Experiments with HD mouse models have 
revealed that during pre-HD, specific neurons that can be distinguished as expressing either 
D1 or D2 receptors exhibit abnormal NMDA-related plasticity more exclusively among the 
D1 expressing neurons, and that this seems to be normalized by reducing DA presence. As 
these same mice seem to exhibit deficiencies in DA signaling (Bibb et al., 2000), and the 
recent experiments demonstrating plasticity disruptions were performed in slices where 
maintenance of endogenous-like levels of extracellular dopamine is dubious, it may be 
premature to promote DA suppression as a therapeutic strategy, even though it is currently 
the only FDA-approved treatment for HD. 
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5. Presymptomatic cognitive dysfunction 

The area where problems begin to appear in pre-HD is not in engaging in a chosen behavior, 
but rather in making the original decision about the best behavior to select. This is especially 
evident when an individual is faced with an array of seemingly relevant information. Given 
that there are often multiple strategies to effective problem-solving, choosing the best 
strategy depends on processing varied input, referencing past experience, and creative 
thinking. Patients, themselves, often do not recognize their own cognitive limitations; since 
most daily tasks do not involve being challenged to constantly switch strategies in order to 
keep up with changing scenarios. In fact, an interesting recent study, involving both pre-HD 
patients and their regular companions, explored the general perception of apathy, 
disinhibition, and executive dysfunction, using a modified version of the Frontal System 
Behavior Scale (FrSBe, Grace & Malloy, 2001). This study demonstrated that even the more 
severe diagnosis-predicting perceptions of problems were not as readily recognized by 
patients as they were by their companions (Duff et al., 2010). The lack of awareness that 
surrounds these early cognitive symptoms can complicate their exploration, evaluation, and 
intervention development. 

As HD develops, there is a progressive decline in internal time assessment, attention, 
executive function, and short-term memory (Rowe et al., 2010; Beste et al., 2007; Bourne et 
al., 2006; Paulsen & Conybeare, 2005; Ho et al., 2003). These early cognitive declines arise in 
pre-HD expressed by patients (Rowe et al., 2010; Ho et al., 2003; Lemiere et al., 2002; 
Snowden et al., 2001; Kirkwood et al., 2000) and animal models (Höhn et al., 2011; Trueman 
et al., 2007, 2008; van Raamsdonk et al., 2005b). The diminished appreciation of elapsed time 
recently shown in HD animal models (Höhn et al., 2011) seems to recapitulate similar 
problems exhibited by HD patients, who present difficulties when they are required to 
maintain consistent self-pacing (Rowe et al., 2010).  

The most commonly referenced aspect of cognitive decline exhibited in early HD is 
executive function, manifested as cognitive inflexibility. This cognitive inflexibility, defined 
as an inability to coordinate the most effective strategic response, or adaptation to apparent 
changes in circumstances, is related to expressions of apathy that are not easily perceived by 
preclinical patients but are recognized by their regular companions (Duff et al., 2010). It is 
easy to imagine that when circumstances become complex and patients become overloaded, 
frustration and disappointment lead to irritation or apathy, which can be difficult for 
companions (Quarrell, 2008; Bourne et al., 2006). Assessments of cognitive inflexibility in 
pre-HD typically requires the use of specialized tasks, such as the Wisconsin Card Sorting 
and Tower of London tasks (Brandt et al., 2008), whereby patients are challenged to 
routinely shift strategies, depending on circumstances. Complicated and multifaceted tasks 
are otherwise rare, and, as such, pre-HD patients are typically able to cope in their day-to-
day functions.  

Associating difficulties with cognitive flexibility with the known malfunctions of the basal 
ganglia in pre-HD can be complex. It is perhaps helpful to employ a simplified version of 
the information-processing circuit, which would proceed as follows (see Figure 1): (1) the 
whole cortical mantle including both sensations and emotions converge into the striatum 
(caudate and putamen in humans) which then proceeds to internally process signals within 
the basal ganglia way-stations, converting the original signals into a modulatory feedback 
that is directed back towards the frontal cortex where “executive functions” (strategic 
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behavior decisions) are performed; (2) as the strategies are chosen, the frontal cortex 
attempts to hold the relevant information in short-term memory and adjusts the plan 
according to all available appreciated circumstances until finally feeding it forward to 
primary motor cortex; (3) from there the final decision is generated and sent to lower motor 
systems to be engaged, but these commands can still be vetoed even after initial movements 
begin by engaging antagonist muscles (e.g. when a batter starts a swing in baseball only to 
stop before committing when it becomes clear the ball will fly wide).  

Pre-HD patients, when examined with functional magnetic resonance imaging, show 
metabolic malfunctions in the striatum (Kuwert et al., 1993), the frontal cortex (Wolf et al., 
2007), and even the thalamus, all of which are interconnected (Feigin et al., 2007). The 
degree to which these alterations are evident depends on the cognitive load at the time of 
measurement (Wolf et al., 2008). To demonstrate this, Wolf and colleagues (2008) challenged 
pre-HD patients with a working memory task which would be expected to activate the 
prefrontal cortices (Kane & Engle, 2002). As the working memory load was increased, pre-
HD patients presented decreased correlations in activity between the frontal cortices and 
their striatal activities, similar to the above-described findings of decreased coordination of 
cortical activity in experimental animals (Cummings et al., 2009; Walker et al., 2008). 
Similarly, in animal models of pre-HD, cortical neuron control seems to be diminished, 
largely by the lack of sufficient local inhibition, resulting in uncoordinated activity patterns 
(Cummings et al., 2009). Cortical neuropathology, and even some minor tissue deterioration 
observed in terms of thinning, clearly begins to arise during pre-HD (Kipps et al., 2005), as 
well as at the very beginning of symptom expression (Beglinger et al., 2005), correlating with 
apparent cognitive difficulties.  

While the Wolf (2008) study found a disconnect between activity in the cortex and striatum 
in tasks requiring working memory, complex planning tasks, that are more related to 
executive function and cognitive flexibility, also challenge pre-HD patients. Two extensive 
studies demonstrated that testing pre-HD patients just prior to motoric symptom 
expression, using tests such as the Wisconsin Card Sorting task, resulted in greater 
difficulties than both mutation-free and pre-HD subjects who were further from motor 
symptom expression (Brandt et al., 2008; Snowden et al., 2002). In the first of these studies 
(Snowden et al., 2002), the data indicated that working memory malfunctions may arise 
earlier in the disease progression than problems with executive function. Further 
explorations of executive function suggest that DA plays a pivotal role within both the 
prefrontal cortex and the striatum. Tests of behavioral flexibility using rats in operant 
chambers demonstrated that pharmacological manipulations of DA receptor activity, within 
either the prefrontal cortex (Winter et al., 2009) or the ventral striatum (Haluk & Floresco, 
2009) during ongoing behavior, disrupts the animals’ capacities to switch patterns of 
behavior to obtain more reinforcers.  

Interesting experiments performed to track the activity of DA-producing neurons in 
behaving monkeys, suggest that DA neuron activity depends more on the reward-
predicting value of cues than on rewards themselves (Waelti et al., 2001). The general 
tendency when recording from DA neurons, in either the ventral tegmental area (VTA) or 
substantia nigra pars compacta (SNpc), is that phasic firing increases initially occur at the 
time of reward delivery, but in time become associated with stimuli that predict reward 
rather than the rewards themselves. As this change occurs (when they no longer indicate 
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only the reward) this likely promotes changes in striatal or frontal cortex DA levels that 
increase via acquired associations with the predictive aspect of cues, which themselves 
would suggest appropriate behavior strategies.  

Given the previously-described enhancements to the coordinated signals and 
diminishments to uncoordinated signals revealed in studies using DA iontophoresis in 
intact animals (Kiyatkin & Rebec, 1996; Pierce & Rebec, 1995), these phasic increases in firing 
would allow DA signals to enhance the neuronal responses in targeted areas by eliminating 
background noise in a normally-functioning system. Thus, intact DA modulations should be 
expected to enhance recognition of faulty or maladaptive behavior patterns or at least 
promote cortically coordinated patterns. Perhaps for this reason, unmedicated Parkinson’s 
patients who are tested early in their disease progression (as DA diminishes well before 
movement deficits emerge in PD) exhibit impairment in “set-shifting” tasks that require 
cognitive flexibility (Owen et al., 1992). The previously described declines in 
presymptomatic DA release capacity exposed in HD animal models (Ortiz et al., 2010, 2011) 
would predict a DA-related deficit in behavioral flexibility in HD patients. Such deficits 
were found by Lawrence and his colleagues (1998b), who showed that pre-HD mutation 
carriers were impaired on cognitive tests in a manner that correlated with DA receptor 
binding levels measured by PET scans. A positive correlation was found across HD patients 
and control subjects between success on the Tower of Hanoi task and DA transporter 
binding (Bächman, 1997). The bottom line of these findings were that HD patients had lower 
DAT binding, which predicts lower release capacities, as these transporters are expressed on 
DA neuron terminals in the caudate and putamen (reduced release capacity = reduced 
success). Set-shifting deficits exhibited by pre-HD patients (Lawrence et al., 1998a) are also 
likely to depend upon early DA malfunctions. 

Another pre-HD difficulty exhibited involves the appreciation of emotion. The area of social 
emotion appreciation that is most affected by HD was originally believed to be disgust 
recognition (Hennenlotter et al., 2004; Sprengelmeyer et al., 2006). However, in a more 
recent study (Johnson et al., 2007), the deficits in emotional processing were broadened to 
involve the recognition of all negative emotions (i.e., anger, disgust, fear, and sadness). 
These emotion perception issues are intimately connected to cognitive flexibility, as the 
same population of DA neurons shown to fire in accordance to reward-predictability 
(Waelti et al., 2001), also project throughout the limbic system, including the amygdala and 
prefrontal cortex (Salgado-Pineda et al., 2005) which provide critical support for perception 
of emotion. The critically important role emotion plays in cognitive processing is well 
documented (see Damasio, 1996, 1999) and its role in the disruptive cognitive processing 
observed in pre-HD patients provides a fertile area of research that promises to deliver 
further insights into the etiology and potential treatments for early stage HD. 

6. Conclusions  

Despite the discovery of the gene primarily responsible for HD, it is fair to say that our 
understanding of its etiology is largely preliminary. This is because the gene and 
corresponding protein seem to be incredibly complex and involved in multiple aspects of 
neuronal physiology. Delineating HD-related neurophysiological deficits will necessitate 
appreciation of events that occur before neuronal death and the onset of motoric symptoms. 
Determining the primary, pre-compensatory malfunctions will likely suggest treatment 
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strategies that can target and alleviate these without becoming entangled in compensation 
cascades. Furthermore, coordination and normalization of neuronal activity in key brain 
regions such as the frontal cortex, caudate, and putamen would seem to require restoration 
of healthy GLU management. Experiments with ceftriaxone show promise in that regard 
along with other efforts to boost GLU reuptake.  

The DA system in HD represents a greater puzzle since there are clearly pros and cons to 
the currently FDA approved strategies that mostly diminish DA in the earlier stages of HD, 
which may alleviate emerging motor symptoms but may also aggravate cognitive 
dysfunction. As such, it is important to consider the cognitive domain in the context of 
neuronal activity and transmission deficits, since these circuits seem to show changes before 
motoric disruptions emerge. If sensitivity to DA or NMDA transmission could be 
diminished, these systems could be normalized far more effectively. Attempts to decipher 
the dynamic transmission interactions and elucidate the role of mutant huntingtin should 
continue in parallel to testing potential treatments in animal models of HD. 

In this chapter, we have identified several key sources of physiological disruptions and 
integrated them into a theoretical framework to help explain the early expressions of 
cognitive malfunction in this disease. Isolating the physiological disruptions underlying pre-
HD is critical for devising more effective treatments. Until it becomes possible to repair 
damaged or mutated genes, the most effective therapies will be those that help relevant 
neuron populations resume their normal roles and compensate for the extensive 
dysfunction driven by abnormal huntingtin protein physiology.  

It is likely that both the preliminary malfunctions, such as cognitive decline and the later-

stage loss of movement control depend upon similar physiological alterations within the 

same neuronal populations. However, potential treatments given during earlier stages of 

HD should be more efficacious as they will benefit from greater neuron numbers that would 

be available prior to widespread neuron death. As such, investigations into the early 

pre-HD may provide the greatest hope of effectively slowing the progress of this 

devastating disease. 
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