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1. Introduction

When we open our eyes on earth for the first time, light generates the sensation of vision in
our mind. If there was no light, our way of thinking would undoubtedly be quite different.
Therefore, it is natural to ask the question, what is light? Our early inquisitiveness about light
is documented in many stories and characters from almost all religions and cultures. Later,
with the development of science, we tried to use more rigorous techniques to understand the
nature of light. However, regardless of intense investigations for centuries on this subject, we
are far from obtaining a convincing answer to the question “what is light?” Einstein seems to
have put it best1:

“All the fifty years of conscious brooding have brought me no closer to answer the question, ‘What are
light quanta?’ Of course today every rascal thinks he knows the answer, but he is deluding himself.”

It is clear from the preceding remarks that this question represents one of the ever-lasting ones
in physics. Although, at this stage one does not fully understand the nature of light, one can
nevertheless study its properties. In this context, one may recall Feynman’s illustration of the
principle of scientific research (Feynman et al., 1985):

“. . . in trying to get some idea of what we’re doing in trying to understand nature, is to imagine that
the gods are playing some great game like chess, let’s say, and you don’t know the rules of the game, but
you’re allowed to look at the board, at least from time to time . . . , and from those observations you try
to figure out what the rules of the game are.

To understand the nature of light thus scientists have lead to investigate different properties
of it. Coherence and polarization may be identified as the two important ones. In this
chapter, we will give brief descriptions of them, and will show how the two apparently
different phenomena can be described by analogous theoretical formulations, which involve
incorporating the statistical fluctuations present in light.

Detailed descriptions of the history of the theories of coherence and polarization may be found
in many scholarly articles [see, for example, (Born & Wolf, 1999; Brosseau, 2010; Mandel &
Wolf, 1995). It may be said that the topic originated in Hooke’s conjecture about the wave
nature of light (Hooke, 1665), which was put in a sounder basis by Huygens (Huygens, 1690).

1 From Einstein’s letter to Michael Besso, written in 1954.
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Later Young discovered that light waves may produce interference fringes (Young, 1802).
Young’s discovery lead to many investigations concerning interference properties of light2

and it turned out that light from different sources may differ in their abilities to interfere.
Traditionally “coherence” of an optical field is understood as the ability of light to interfere.
Early relevant investigations on interfering properties of light may be found in the works
of Fresnel and Arago (Arago & Fresnel, 1819)3. An important contribution was made by
Verdet (Verdet, 1865) when he determined the size of the region on the earth-surface, where
“sunlight vibrations are in unison”. Michelson established relationships between visibility of
interference fringes and intensity distribution on the surface of an extended primary source
(Michelson, 1890; 1891a;b; 1902; 1927). He also elucidated the connection which exists between
the visibility of interference fringes and energy distribution in spectral lines. However, he did
not interpret his results in terms of field correlations.

It has become customary in traditional optics to represent an optical field by a deterministic
function. Although a deterministic model provides simple solutions to some problems, it
often suffers from lack of self-consistency and leaves out many questions which can only be
answered by taking the random nature of the field into account. The necessity of developing a
statistical theory of light arises from the fact that all optical fields, whether found in nature or
generated in a laboratory, have some random fluctuations associated with them. Even though
these fluctuations are too rapid to be observed directly, their existence can be experienced by
various experiments which involve effects of correlations among the fluctuating fields at a
point, or at several points in space. In the quantum mechanical description, in addition to
that, one also needs to consider the presence of a detector, which is an atom or a collection of
atoms.

The first quantitative measure of the correlations of light vibrations was introduced by Laue
(Laue, 1906; 1907). Later Berek used this concept of correlation in his work on image formation
in microscopes (Berek, 1926a;b;c;d). A new era in this subject began when van Cittert
determined the joint probability distribution for the light disturbances at any two points on a
plane illuminated by an extended primary source (van Cittert, 1934) and also determined the
probability distribution for light disturbances at one point, at two different instances of time
(van Cittert, 1939).

A simpler and more profound approach for addressing such problems was developed by
Zernike (Zernike, 1938), who also introduced the concept of the “degree of coherence” in
terms of visibility of interference fringes, which is a measurable quantity. Although Zernike’s
work brought new light to this subject, it had some limitations, because it did not take into
consideration the time-difference that may exist between interfering beams. Wolf formulated
a more general theory of optical coherence by introducing more generalized correlation
functions into the analysis (Wolf, 1955). Analyzing the propagation of such correlation
functions is often quite complicated due to time-retardation factors, and in most of the cases
it does not lead to any useful solution. Also, for the same reason, it is rather difficult
in this formulation to analyze many practical problems. Such problems are treated much

2 For a detail discussion of the influence of Young’s interference experiment on the development of
coherence theory, see (Wolf, 2007a).

3 Interpretation of the results obtained by Fresnel and Arago in terms of moderns coherence theory is
given in (Mujat et al., 2004).
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more conveniently by a different formulation, known as the space-frequency formulation of
coherence theory (Wolf, 1981; 1982; 1986).

All the investigations mentioned above were carried out by the use of the scalar theory. To take
into account another property of light, namely polarization, one needs to consider the vector
nature of the fluctuating field. The credit of first notifying polarization properties of light is
attributed to Erasmus Bartholinus, who studied the phenomenon of double refraction using
calcite crystals. In 1672 Huygens (Huygens, 1690) provided an interpretation of the double
refraction from the conception of spherical light waves. Use of double refraction became
widely used in different fundamental and practical applications of optical sciences, which led
to important investigations on this subject by several distinguished scientists. The foundation
of the modern theory of polarization properties of light was laid down by Stokes (Stokes, 1852)
as he formulated the theory of polarization in terms of certain parameters, now known as
Stokes parameters [see also (Berry et al., 1977)]. Poincaré (Poincaré, 1892) provided a detailed
mathematical treatment of the polarization properties of light, in which he introduced the
concept of Poincaré sphere to specify any state of polarization of light. A matrix treatment of
polarization was introduced by Wiener (Wiener, 1927; 1930; 1966), whose analysis related field
correlations and polarization properties of light. Later, Wolf (Wolf, 1959) used a similar matrix
formulation for systematic studies of polarization properties of statistically stationary light
beams [see also, (Brosseau, 1995; Collett, 1993; Mandel & Wolf, 1995)]. A detailed description
of the history of the theory of polarization can be found in a recently published article by
Brosseau (Brosseau, 2010).

From the above discussion, it seems that coherence and polarization are two completely
different phenomena with different histories and origins. However, according to classical
theory, both of the can be interpreted as measures of correlations present between fluctuating
electric field components. It is interesting to note that Verdet probably suspected, almost
140 years ago, that there is some analogy between the concepts of polarization and of
coherence. The title of his paper (Verdet, 1865) states in loose translation: “Study of the
nature of unpolarized and partially polarized light”. Yet in spite of the stress on polarization,
it is the very paper in which Verdet estimated the region of coherence of sunlight on the
earth’s surface4. This connection, became even more prominent in the works of Wiener
and Wolf. However, for many years coherence and polarization have been considered as
two independent branches of optics. The connection between them became evident with the
introduction of a unified theory of coherence and polarization for stochastic electromagnetic
beams (Wolf, 2003a;b).

All the investigations mentioned above are based on the classical theory of electromagnetic
fields. In the early part of the last century, development of quantum mechanics began
to provide deeper explanations of the intrinsic properties of light and its interaction with
matter. Dirac’s quantization of electromagnetic fields (Dirac, 1957) made it possible to analyze
various properties of light by the use of quantum mechanical techniques. In 1963, Glauber
introduced quantum mechanical formulation of coherence theory (Glauber, 1963), which has
been followed by systematic investigations of the subject [see, for example, (Glauber, 2007;
Mandel & Wolf, 1995)].

4 It was pointed out by Wolf in a conference talk (Wolf, 2009b), which was presented by the author.
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This chapter intends to provide a quantum mechanical description of coherence and
polarization properties of light with emphasis on some recently obtained results. We will
begin with a brief discussion on the classical theories of coherence and polarization of light.
We will emphasize how the two apparently different properties of light may be described by
analogous theoretical techniques. We will stress the importance of describing the subject in
terms of observable quantities. We will then recall some basic results of quantum theory of
optical coherence in the space-time domain, followed by detailed description of coherence
properties of optical fields in the space-frequency domain. After that, we will discuss a
formulation of optical coherence in the space-frequency domain. We will also provide a
quantum mechanical description of polarization properties of optical beams. In the end,
we will point out an interesting observation on the connection of Bohr’s complementarity
principle with partial coherence, and with partial polarization.

2. Classical theory of stochastic fields

We already mentioned in the Introduction that a deterministic model of optical fields leads
to many discrepancies in the analysis of properties of light. A systematic development of the
theory of coherence and polarization properties of light requires to take account the random
fluctuations present in the field. We will show how this theory may be used to elucidate
coherence and polarization properties of light.

From the classic theory of Maxwell, it is well known that an optical field can be represented by
an electric field E(r; t) and a magnetic field B(r; t), which obey the four Maxwell’s equations
[see, for example, (Jackson, 2004)]. For a stochastic (randomly fluctuating) three-dimensional
optical field, each of them will be represented by three random components Ei(r; t) and
Bi(r; t), i = x, y, z, where x, y, z are three arbitrary mutually orthogonal directions in space.
In our discussion we will neglect the effects due to magnetic fields.

2.1 Optical coherence in the space-time domain

The word “coherence” refers to the ability of light to interfere. Coherence properties of light
may, therefore, be understood by analyzing the interference fringes produced in an Young’s
interference experiment (Fig. 1). Many years ago, Zernike (Zernike, 1938) defined the “degree
of coherence” of a wave field by the maximum value of visibility in the interference pattern
produced by it “under the best circumstances”5. However, as already mentioned in the
Introduction that Zernike did not take into account the time-delay between the fields arriving
from different pinholes. Consequently, his theory could not address some interesting aspects
of coherence, which was later generalized by Wolf (Wolf, 1955). We will now briefly discuss
the main results of Wolf’s theory in the space-time domain. For simplicity we begin with
scalar description of fields, or in other words we assume that all the electric field components
behave in the same way.

A randomly fluctuating generally complex optical scalar field6, at a point P(r), at a time
t, may be represented by a statistical ensemble {V(r; t)} of realizations. The second-order

5 By the term “best circumstances” Zernike meant that the intensities of the two interfering beams were
equal and that only small path difference was introduced between them.

6 The corresponding technical term is the “complex analytic signal” of a real electric field (Gabor, 1946).
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cross-correlation function Γ(r1, r2; t1, t2) of the random fields at two different space-time
points (r1; t1) and (r2; t2) is defined by the expression

Γ(r1, r2; t1, t2) ≡ 〈V∗(r1; t1)V(r2; t2)〉, (1)

where the asterisk denotes the complex conjugate and the angular brackets denote ensemble
average. Now if the field is statistically stationary, at least in the wide sense (Mandel & Wolf,
1995; Wolf, 2007b), the expression on the right hand side of Eq. (1) then depends only on the
time difference τ ≡ t2 − t1. Therefore, for statistically stationary fields, the cross-correlation
function takes the form

Γ(r1, r2; τ) ≡ 〈V∗(r1; t)V(r2; t + τ)〉. (2)

The cross-correlation function Γ(r1, r2; τ) is known as the mutual coherence function. It
characterizes the second-order correlation properties of such fields in the space-time domain.

The average intensity I(r) of light at a point P(r), apart from a constant factor depending on
the choice of units, is given by 〈|V(r; t)|2〉. From Eq. (2) it follows that

I(r) ≡ 〈|V(r; t)|2〉 = Γ(r, r; 0). (3)

Evidently for statistically stationary light the average intensity does not depend on time.

Let us now consider a Young’s two pinhole interference experiment (Fig. 1). Suppose that a
light beam is incident from the half-space z < 0 onto an opaque screen A, placed in the plane
z = 0 containing two pinholes Q1(r1) and Q2(r2). For the sake of simplicity, we assume that

Fig. 1. Illustrating the notation relating to Young’s interference experiment.

the beam is incident normally on the screen A. In general, interference fringes will be formed
on a screen B, placed in a plane z = z0 > 0, some distance behind the screen A (see Fig. 1). If
we assume that the contributions to the total intensity from the two pinholes are equal to each
other, i.e., that I(1)(r) = I(2)(r) ≡ I(0)(r) (say), then we find that

I(r) = 2I(0)(r)

{
1 +

∣∣∣∣∣
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

∣∣∣∣∣ cos [α(r1, r2; τ)]

}
, (4)

81Quantum Theory of Coherence and Polarization of Light
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where

τ ≡ t2 − t1 =
R2 − R1

c
(5)

is the time delay between the fields arriving at P(r) from pinholes Q(r1) and Q(r2), c being
the speed of light in free space, and α(r1, r2; τ) = arg {Γ(r1, r2; τ)}. The visibility V of the
fringes is defined by the famous formula due to Michelson, viz.,

V ≡
Imax − Imin

Imax + Imin
, 0 ≤ V ≤ 1. (6)

One can readily show from Eq. (4) and (6) that the visibility of the fringes at the point P(r) is
given by ((Wolf, 2007b), Sec. 3.1, Eq. (19))

V =

∣∣∣∣∣
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

∣∣∣∣∣ . (7)

The normalized cross-correlation function in this expression is defined as the degree of coherence
γ(r1, r2; τ), i.e.,

γ(r1, r2; τ) ≡
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

, (8)

Since the visibility is always bounded by zero and by unity, so is the modulus of degree of
coherence. It can also be proved explicitly by use of the Cauchy-Schwarz inequality that

0 ≤ |γ(r1, r2; τ)| ≤ 1. (9)

When |γ(r1, r2; τ)| = 1, sharpest possible fringes are obtained and the field is said to be
completely coherent, for the time delay τ, at the pair of points Q(r1) and Q(r2). In the other
extreme case, when |γ(r1, r2; τ)| = 0, no fringe is obtained and the field is said to be incoherent,
for the time delay τ, at the two points. In the intermediate case 0 < |γ(r1, r2; τ)| < 1, the field
is said to be partially coherent. It is to be noted that the degree of coherence is, in general, a
complex quantity. Its phase is also a meaningful physical quantity and can be determined
from measurements of positions of maximum and minimum in the fringe pattern [see, for
example, (Mandel & Wolf, 1995), p-167]. It must be noted that the mutual coherence function
Γ(r1, r2; τ) obeys certain propagation laws which make it possible to determine changes in
correlation properties of light on propagation. These propagation laws are often called Wolf’s
equations (see, for example, (Wolf, 2007b), Sec. 3.5).

The theory can be immediately generalized to vector fields. If we restrict ourselves to a
stationary stochastic light beam propagating along positive z direction, then the coherence

properties can be described by a 2 × 2 matrix
←→
Γ (r1, r2; τ), which is defined by the formula

←→
Γ (r1, r2, τ) ≡

[
Γij(r1, r2; τ)

]
≡

[
〈E∗

i (r1; t)Ej(r2; t + τ)〉
]

, (i = x, y; j = x, y), (10)

where Ei is a component of the electric field vector. In this case, the average intensity at a
point P(r) is given by

I(r) ≡ Tr
←→
Γ (r, r; 0), (11)

82 Advances in Quantum Theory
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where Tr represents trace of a matrix. The degree of coherence can be shown to be given by
the formula (Karczewski, 1963)

γ(r1, r2, τ) ≡
Tr

←→
Γ (r1, r2, τ)√
I(r1)I(r2)

. (12)

2.2 Optical coherence in the space-frequency domain

The space-time formulation of the coherence theory, discussed in the previous section, is
quite natural, intuitive and often useful. However, as mentioned in the Introduction, there
are some problems in statistical optics which turn out to be almost impossible to solve by
the use of this formulation. For example, attempts to solve problems involving change
in coherence properties of light on propagation through various media, or the problems
involving scattering of partially coherent light, presents considerable difficulties in this
formulation. These types of problems can be much more conveniently addressed by the use
of a somewhat different formulation, known as the space-frequency formulation of coherence
theory (Wolf, 1981; 1982; 1986). This space-frequency formulation has led to discoveries
and understanding of some new physical phenomena, such as correlation-induced spectral
changes (Wolf, 1987) and changes in polarization properties of light on propagation (James,
1994). Recent studies have also revealed a great usefulness of this theory in connection with
determining the structure of objects by inverse scattering technique [see, for example, Refs.
(Lahiri et al., 2009; Wolf, 2009a; 2010a; 2011)]. In this section we will briefly present some basic
results in the theory of optical coherence in the space-frequency domain for scalar fields which
are statistically stationary, at least in the wide sense.

A stationary random function V(r; t) is not square integrable and, consequently, its Fourier
transform does not exist. However, for most statistically stationary optical fields, it is
reasonable to assume that the mutual coherence function Γ(r1, r2; τ) exists and is a square
integrable function of τ. One can then define a function W(r1, r2; ω) which together with
Γ(r1, r2; τ) form a Fourier transform pair, i.e.,

W(r1, r2; ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2; τ)eiωτ dτ, (13a)

Γ(r1, r2; τ) =
∫ ∞

0
W(r1, r2; ω)e−iωτ dω, (13b)

where ω denotes the frequency. The quantity W(r1, r2; ω) is called the cross-spectral density
function (to be abbreviated by CSDF) of the field. It can be shown that CSDF is also a
correlation function, i.e., that it can be represented in the form

W(r1, r2; ω) = 〈U∗(r1; ω)U(r2; ω)〉ω , (14)

where U(r; ω) is a typical member of a suitably constructed ensemble of monochromatic
realizations7, all of frequency ω ((Wolf, 2007b), Sec. 4.1). In the special case, when the two
points r1 and r2 coincide, it follows from generalized Wiener-Khinchin theorem (see, for
example, (Mandel & Wolf, 1995), sec. 2.4.4) that the CSDF represents the spectral density

7 It is important to note that U(r; ω) is not the Fourier transform of the field V(r; t).

83Quantum Theory of Coherence and Polarization of Light
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S(r, ω) of the field, i.e., that
S(r, ω) = W(r, r; ω). (15)

The spectral density S(r, ω) is a physically meaningful quantity which represents the average
intensity at a particular frequency.

The CSDF is the key quantity in the second-order coherence theory in space-frequency
domain. As Eq. (15) shows, one can obtain the spectral density directly from it by taking
the two spatial arguments to be equal. The spectral coherence properties of scalar fields are
also completely described by the CSDF. To see that let us consider, once again, an Young’s
interference experiment (Fig. 1), but now we consider the fringe pattern produced by each
frequency component present in the spectrum of the light. This situation can be realized
by imagining that the incident light is filtered around the frequency ω before reaching the
pinholes. The distribution of the spectral density S(r; ω) on the screen B is given by the
expression [(Wolf, 2007b), Sec. 4.2]

S(r; ω) = S(1)(r; ω) {1 + |μ(r1, r2; ω)| cos [β(r1, r2; ω)− δ]} . (16)

Here S(1)(r; ω) is the contribution of light reaching at P(r) from either of the two pinholes,
δ = ω(R2 − R1)/c, and β(r1, r2; ω) is the phase of the so-called spectral degree of coherence
μ(r1, r2; ω) which is given by the expression ((Wolf, 2007b), Sec. 4.2)

μ(r1, r2; ω) ≡
W(r1, r2; ω)√

S(r1, ω)
√

S(r2, ω)
. (17)

The formula (16) is known as the spectral intensity law. By analogy with the space-time
formulation, one can readily show that |μ(r1, r2; ω)| is equal to the fringe visibility associated
with the frequency component ω, in the experiment sketched out in Fig. 1. It should be
noted that in this case, unlike in the case of the space-time formulation, the fringe visibility is
constant over the screen B. It can be shown that [(Mandel & Wolf, 1995), Sec. 4.3.2]

0 ≤ |μ(r1, r2; ω)| ≤ 1. (18)

When |μ(r1, r2; ω)| = 1, the field at the two points Q1(r1) and Q2(r2) is said to be spectrally
completely coherent at the frequency ω. If μ(r1, r2; ω) = 0, the field is said to be spectrally
completely incoherent at the two points, at that frequency. In the intermediate case, it is said
to be spectrally partially coherent at frequency ω. Like the mutual coherence function, the
cross-spectral density function also obey certain propagation laws [see, for example, (Mandel
& Wolf, 1995), Sec. 4.4.1].

The theory can also be generalized to the vector fields. For an optical beam propagating along
positive direction of z axis, one can define a 2 × 2 matrix, known as the cross-spectral density
matrix (CSDM), which is the Fourier transform of mutual coherence matrix [(Wolf, 2007b),
Chapter 9, Eqs. (1) and (2)]:

←→
W (r1, r2; ω) ≡

1

2π

∫ ∞

−∞

←→
Γ (r1, r2; τ) exp[iωτ] dτ. (19)

As was in the scalar case, it can be shown that each element of the CSDM is a correlation
function [see, (Wolf, 2007b), Chapter 9]. In this case, the spectral density S(r, ω) is given by
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the expression [(Wolf, 2007b), Sec. 9.2, Eq. (2)]

S(r, ω) = Tr
←→
W (r, r; ω), (20)

and the spectral degree of coherence is given by the expression [(Wolf, 2007b), Sec. 9.2, Eq.
(8)]

μ(r1, r2; ω) =
Tr

←→
W (r1, r2; ω)√

S(r1; ω)
√

S(r2; ω)
. (21)

The relationship between coherence properties of light in the space-time and in the
space-frequency domains have been subject of interest [for details see, for example, (Friberg
& Wolf, 1995; Lahiri & Wolf, 2010a;d; Wolf, 1983)].

2.3 Polarization properties of stochastic beams in the space-time domain

In this section, we will briefly discuss some basic results in the matrix theory of polarization
of electromagnetic beams, following the work of Wolf. For detailed discussions on this topic
see any standard textbook, for example, (Born & Wolf, 1999; Brosseau, 1995; Collett, 1993;
Mandel & Wolf, 1995). Let us consider a statistically stationary light beam characterized
by a randomly fluctuating electric field vector E(r, t). Without any loss of generality, we
assume that the beam propagation direction is along positive z axis. Therefore, E(r, t) may
be represented by the two mutually orthogonal random components Ex(r, t) and Ey(r, t).
Suppose that these components are represented by the ensembles of realizations {Ex(r, t)}
and

{
Ey(r, t)

}
, respectively. One can construct a 2× 2 correlation matrix, known as coherency

matrix (Wiener, 1927), which is given by [see, for example, (Mandel & Wolf, 1995), Sec. 6.2,
Eq. 6.2-6]

←→
J (r) ≡

←→
Γ (r, r; 0) ≡

[〈
E∗

i (r; t)Ej(r, t)
〉]

, i = x, y, j = x, y. (22)

The elements of this matrix are equal-time correlation functions; consequently for statistically
stationary fields they are time independent. This matrix contains all information about
polarization properties of a stationary stochastic light beam at a point. Each element of
this matrix can be determined from a canonical experiment, which involves passing the
beam thought a compensator plate and polarizer, and then measuring the intensities for
different values of the polarizer angle and of different values time delays introduced by the
compensator plate among the components of electric field (Born & Wolf, 1999). A similar
experiment will be discussed in detail in section 7. The Stokes parameters can be expressed
in terms of the elements of a coherency matrix [see, for example, (Born & Wolf, 1999), section
10.9.3].

2.3.1 Unpolarized light beam

It can be shown that if a light beam is unpolarized at a point P(r), then at that point the
coherency matrix is proportional to a unit matrix, i.e., it has the form ((Mandel & Wolf, 1995),
Sec. 6.3.1)

←→
J (u)(r) = A (r)

(
1 0
0 1

)
. (23)

85Quantum Theory of Coherence and Polarization of Light
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It implies that in this case x and y components of the electric field are completely uncorrelated
[Jxy(r) = Jyx(r) = 0], and intensities of x and y components of the field are equal [Jxx(r) =
Jyy(r) ≡ A (r)]. It immediately follows that in this case the normalized correlation function

jxy(r) ≡ Jxy(r)/
√

Jxx(r)Jyy(r) = 0 (24)

2.3.2 Polarized light beam

In the other extreme case when |jxy(r)| = 1, one can readily show that the elements of the
coherency matrix factorize in the form

J
(p)
ij (r) = E∗

i (r)Ej(r), (i = x, y; j = x, y), (25)

where Ei(r) is a time-independent deterministic function of position. This coherency matrix
is identical with that of a monochromatic field which is given by the expression

E(r; t) = Ei(r)e
−iωt. (26)

In analogy with monochromatic beams, completely polarized beams are traditionally defined
by the the coherency matrices which can be expressed in the form (25). However, a polarized
light beam must not be confused with a monochromatic light beam. Recently, the distinction
between the two has been clearly pointed out (Lahiri & Wolf, 2009; 2010a).

2.3.3 Partially polarized light beam

Any optical beam, which is neither unpolarized, nor polarized, is said to be partially
polarized. Evidently, any coherency matrix which cannot be expressed in the form (23), or
in the form (25) represents a partially polarized beam. However, it is remarkable that any
such coherency matrix, can always be uniquely decomposed into the sum of two matrices
representing a polarized beam and an unpolarized beam (Wolf, 1959) (see also, (Mandel &
Wolf, 1995), Sec. 6.3.3), i.e., that

←→
J (r) =

←→
J (u)(r) +

←→
J (p)(r). (27)

consequently, the average intensity [I(r) ≡ Tr
←→

J (r)] of any light beam, at a point, has
contributions from a completely polarized and a completely unpolarized beam. The degree
of polarization at a point P(r) is defined as the ratio of the average intensity of the polarized
part to the total average intensity at that point (Wolf, 1959). One can show that it is given by
the expression (Wolf, 1959) (see also, Ref. (Born & Wolf, 1999), Sec. 10.9.2, Eq. (52))

P(r) ≡
I(p)(r)

I(r)
=

√√√√1 −
4 Det

←→
J (r)

[Tr
←→

J (r)]2
, (28)

where Det denotes the determinant and Tr denotes the trace. One can show that the degree of
polarization is always bounded between zero and unity:

0 ≤ P(r) ≤ 1. (29)
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If the degree of polarization is unity at a point r, then the beam is said to be completely polarized
at that point and if it has zero value, the light is said to be completely unpolarized at that point.

2.4 Polarization properties of stochastic beams in the space-frequency domain

As was in the case of coherence, polarization properties of light can also be analyzed in the
space-frequency domain. Such a theory has certain advantages, because it makes it easier to
study the change in polarization properties of light on propagation and scattering. The theory
involves analyzing polarization properties of light at each frequency present in its spectrum.

It is similar to the theory in the space-time domain, except that the coherency matrix
←→

J (r) is

replaced by equal-point CSDM
←→
W (r, r; ω). In this case the spectral degree of polarization is

given by the expression ((Wolf, 2007b), Sec. 9.2, Eq. (14))

P(r; ω) ≡

√√√√1 −
4 Det

←→
W (r, r; ω)

[Tr
←→
W (r, r; ω)]2

. (30)

The relationship between space-time and space-frequency description of polarization
properties of light are being investigated recently [for details see, for example, (Lahiri, 2009;
Lahiri & Wolf, 2010a; Setälä et al., 2009)].

2.5 Unified theory of coherence and polarization

For many years coherence and polarization properties of light have been considered as
independent subjects. However, the matrix formulation, especially in the space-frequency
domain, shows that they are intimately related. This fact was firmly established by the
introduction of unified theory of coherence and polarization (Wolf, 2003b). According to the
unified theory, both the coherence and polarization properties of a stochastic electromagnetic
beam, can be described in terms of the 2 × 2 cross-spectral density matrix (CSDM)
←→
W (r1, r2; ω). The spectral density, spectral degree of coherence, and the spectral degree of
polarization are described by Eqs. (20), (21), and (30) respectively.

Elements of the CSDM obey definite propagation laws [see, for example, (Wolf, 2007b), Sec.
9.4.1, Eq. (3)]. If the CSDM is specified at all pairs of points at any cross-sectional plane of a
beam, then it is possible to determine the CSDM at all pairs of points on any other cross-section
of that beam, both in free space and in a medium. Therefore, it is possible to study the changes
in spectral, coherence and polarization properties of a beam on propagation.

3. Optics in terms of observable quantities

At this point, we would like to emphasize that every optical phenomenon, which will be
addressed in this chapter, will be illustrated and interpreted in terms of observable quantities.
Formulating optical physics in terms of observable quantities is due to valuable work of Emil
Wolf (Wolf, 1954). His effort was highly appreciated by Danis Gabor in a lecture on “Light
and Information” (Gabor, 1955), as he mentioned “perhaps the most satisfactory feature of
the theory is that it operates entirely with quantities which are in principle observable, in line
with the valuable efforts of E. Wolf to rid optics of its metaphysical residues.”

87Quantum Theory of Coherence and Polarization of Light

www.intechopen.com



12 Will-be-set-by-IN-TECH

The analysis of coherence and polarization properties of light are based on the theory of
electromagnetic fields. However, one must note that even today, one is not able to “directly”
detect such a field at an optical frequency, or at a higher frequency. Any optical phenomenon
that one observes in a laboratory, or in nature, is the result of generation of electric currents
in detectors. Such currents originate from the so-called destruction of photons by light-matter
interactions. An example of commonly available sophisticated optical detectors is a human
eye. Another example of an optical detector is an EM-CCD camera, which is often used in
today’s laboratories. From the measurement of current in a detector one may predict the
so-called photon detection rate, or intensity of light.

In section 2, we interpreted spatial coherence properties of light in terms of correlation
between classical electric field at a pair of points. However, since electric field in an
optical frequency is not observable, one must not be too much carried away with such an
interpretation. It must be kept in mind that coherence is the ability of light to interfere and
a physical measure of coherence is the visibility of fringes in an interference experiment,
not a correlation function. On the other hand, polarization properties of light beams were
interpreted as correlation between electric field components at a particular point. However,
the physical phenomenon which leads to such a mathematical formulation is the modulation
of intensity of the beam, as it is passed through polarization controlling devices, such as
polarizers, compensator plates etc.

4. Quantum theory of optical fields

We begin by recalling some basic properties of quantized electromagnetic fields (Dirac, 1957).
A quantized electric field may be represented by a Hermitian operator (Mandel & Wolf, 1995)

Ê(r, t) = i ∑
k

∑
s

(
1

2
h̄ω

) 1
2 [

âk,sCk,sǫǫǫk,sei(k·r−ωt) − â†
k,sC∗

k,sǫǫǫ
∗
k,se−i(k·r−ωt)

]
, (31)

where the wave vectors k labels plane wave modes, |k| = k = ω/c, c is the speed of light in
free space, Ck,s is a constant, and ǫǫǫk,s (s = 1, 2), are mutually orthonormal base vectors, which
obey the conditions8

k · ǫǫǫk,s = 0, ǫǫǫ∗
k,s · ǫǫǫk,s′ = δss′ , ǫǫǫk,1 × ǫǫǫk,2 = k/k. (32)

In the expansion (31), âk,s and â†
k,s are the photon annihilation and the photon creation

operators respectively, for the mode labeled by (k, s). These operators obey the well known
commutation relations [see, for example, (Mandel & Wolf, 1995), Sec. 10.3]

[
âk,s, â†

k′ ,s′

]
= δ3

kk′δss′ ,
[
âk,s, âk′ ,s′

]
= 0, (33)

[
â†

k,s, â†
k′ ,s′

]
= 0,

8 The unit base vectors ǫǫǫk1, ǫǫǫk2 may be chosen to be complex for general expansion of the field into two
orthogonal polarization components, for example, in connection with elliptic polarization.
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where δij is the Kronecker symbol. As evident from Eq. (31), the electric field operators

consists of a positive frequency part9

Ê
(+)(r, t) = i ∑

k

∑
s

(
1

2
h̄ω

) 1
2

âk,sCk,sǫǫǫk,sei(k·r−ωt), (34)

and a negative frequency part Ê(−)(r, t), which is the Hermitian adjoint of the positive
frequency part. The expansion (31) represents the field in discrete modes. Such a
representation is appropriate, for example, when treating an electric field in a cavity. In more
general situations, a continuous mode representation may be more appropriate [for discussion
on such representation see (Mandel & Wolf, 1995), Sec. 10.10].

The state of the field is described by a state vector |i〉 in the Fock space, or, more generally, by a
density operator ρ̂ = {〈i| |i〉}average, where the average is taken over an appropriate ensemble.

The expectation value
〈

Ô
〉

of any operator Ô is given by the well known expression

〈
Ô
〉
= Tr

{
ρ̂ Ô

}
, (35)

where Tr denotes the trace. An informative description of how the measurable quantities
may be interpreted in terms of quantized field and density operators, was given by Glauber
(Glauber, 1963). In the following section, we will briefly go over some basic concepts from the
Glauber’s interpretation of quantum theory of optical coherence.

5. Summary of some basic results of the quantum theory of optical coherence in

the space-time domain

In the quantum-mechanical interpretation, a photon can be detected only by destroying
it. The photo-detector is assumed to be ideal in the sense that it is of negligible size and
has a frequency-independent photo absorbtion probability. Let us now consider absorption
(detection) of a photon by an ideal detector at a space-time point (r; t). Suppose that due to
this absorption the field goes from the initial state |i〉 to a final state | f 〉. The probability of

the detector for absorbing a photon in final state | f 〉 is
∣∣∣〈 f | Ê(+)(r; t) |i〉

∣∣∣
2
. The counting rate

in the detector is obtained by summing over all the final states which can be reached from |i〉,
by absorption of a photon. One can extend the summation over a complete set of final states,
since the states which cannot be reached in this process will not contribute to the result [for
details see (Glauber, 2007)]. The counting rate of the detector then becomes proportional to

∑
f

∣∣∣〈 f | Ê
(+)(r; t) |i〉

∣∣∣
2
= 〈i| Ê

(−)(r; t) · Ê
(+)(r; t) |i〉 . (36)

9 The classical analogue of the positive frequency part of electric field operator is the so-called complex
analytic signal of a real electric field, introduced by Gabor (Gabor, 1946). For a discussion of the physical
interpretation of the positive and negative frequency parts of the quantized electric field operator see
(Glauber, 1963).
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If one considers the random fluctuations associated with light, one leads to a more general
expression involving the density operator. The average counting rate of a photo-detector
placed at a position r at time t then becomes proportional to [c.f (Glauber, 1963), Eq. (3.3)]

R(r, t) ≡ Tr
{

ρ̂ Ê
(−)(r, t) · Ê

(+)(r, t)
}

. (37)

Here the dot (·) denotes scalar product.

Using similar arguments, one can obtain quantum-mechanical analogues of all correlation
functions (such as mutual coherence function etc.) used in the classical theory. The first-order
correlation properties (corresponds to second-order properties in the classical theory) of the
field may be specified by a 3 × 3 correlation matrix (Glauber, 1963)

←→
G (1)(r, t; r

′, t′) ≡
[

G
(1)
μν (r, t; r

′, t′)
]

≡
[
Tr

{
ρ̂ Ê

(−)
μ (r, t)Ê

(+)
ν (r′, t′)

}]
, (38)

where μ, ν label, mutually orthogonal components of the electric field operator. For the
sake of simplicity, let us neglect the polarization properties of the light, restricting our

analysis to scalar fields. Hence, with a suitable choice of axes, only one element G
(1)
μμ (r, t; r′, t′)

[no summation over repeated indices] of
←→
G (1)(r, t; r′, t′) will completely characterize all

first-order correlation properties of the field in the space-time domain. We omit the suffix
μ and write

G(1)(r, t; r
′, t′) = Tr

{
ρ̂ Ê(−)(r; t)Ê(+)(r′; t′)

}
. (39)

The simplest coherence properties of light, in the space-time domain, are characterized by the

first-order correlation function
←→
G (1)(r, t; r′, t′). In terms of it one can define the first-order

degree of coherence by the formula [(Glauber, 1963), Eq. (4)]

g(1)(r, t; r
′, t′) ≡

G(1)(r, t; r′, t′)√
G(1)(r; t; r; t)

√
G(1)(r′; t′; r′; t′)

. (40)

The modulus of g(1)(r, t; r′, t′) may be shown to be bounded by zero and unity [(Glauber,
1963), Eq. (4.2)], i.e.,

0 ≤ |g(1)(r, t; r
′, t′)| ≤ 1. (41)

It can be shown that this quantity is related to fringe visibility in interference experiments [see,
for example, (Glauber, 2007), Sec. 2.7.2]. Complete first-order coherence (corresponding to
second-order coherence in classical theory) is characterized by the condition |g(1)(r, t; r′, t′)| =
1, and complete first-order incoherence by the other extreme, g(1)(r, t; r′, t′) = 0. Equations
(8), and (40) may look similar, but one must appreciate the fact that the quantum mechanical
interpretation is much more effective as one goes to a low-intensity domain, where absorption
or emission of one, or, few numbers of photons may affect the experimental observations.

Detailed descriptions on this topic have been discussed in many scholarly articles [see, for
example, (Glauber, 1963; 2007; Mandel & Wolf, 1995)].
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6. Quantum theory of optical coherence in space-frequency domain

In this section we present a quantum-mechanical theory of first-order optical coherence for
statistically non-stationary light in the space-frequency domain. We discuss some relevant
correlation functions, associated with the quantized field and the density operator, which can
be introduced in the space-frequency representation. We also show, by use of the technique of
linear filtering, that these new correlation functions may be related to the photo-counting rate
and to well known coherence-functions of space-time domain. We consider non-stationary
light10, because the assumption of statistical stationarity is not always appropriate, especially
in many situations encountered in quantum optics where light emission may take place over
a finite time-interval. A detailed description of the main material presented in this section has
been recently published (Lahiri & Wolf, 2010c).

6.1 Correlation functions in the space-frequency domain

Let us first note some properties of the operator ê(r, ω), which is the Fourier transform of
Ê(r; t), i.e., which is given by

ê(r, ω) =
1

2π

∫ ∞

−∞
Ê(r; t)eiωt dt. (42)

Using the fact that Ê(r; t) = Ê(+)(r; t) + Ê(−)(r; t), one may express ê(r, ω) in the form

ê(r, ω) = ê
(+)(r, ω) + ê

(−)(r, ω), (43)

where

ê
(+)(r, ω) =

1

2π

∫ ∞

−∞
Ê
(+)(r; t)eiωt dt, (44a)

ê
(−)(r, ω) =

1

2π

∫ ∞

−∞
Ê
(−)(r; t)eiωt dt. (44b)

Using the property
{

Ê(+)(r; t)
}†

= Ê(−)(r; t), it follows from Eqs. (44) that
{

ê(+)(r, ω)
}†

=

ê(−)(r,−ω).

Let us now consider the following 3 × 3 correlation matrix

←→
W

(1)(r, ω; r
′, ω′) ≡

[
W

(1)
μν (r, ω; r

′, ω′)
]
≡ Tr

{
ρ̂ ê

(−)
μ (r,−ω)ê

(+)
ν (r′, ω′)

}
. (45)

On using Eqs. (44) and (45), one can readily show that the elements of the correlation matrices
←→
G (1)(r, t; r′, t′) and

←→
W (1)(r, ω; r′, ω′) are Fourier transforms of each other, i.e., that

W
(1)

μν (r, ω; r
′, ω′) =

(
1

2π

)2 ∞�

−∞

G
(1)
μν (r, t; r

′, t′)ei(−ωt+ω′t′) dt dt′, (46a)

G
(1)
μν (r, t; r

′, t′) =
∞�

0

W
(1)

μν (r, ω; r
′, ω′)ei(ωt−ω′t′) dω dω′. (46b)

10 Attempts to formulate coherence theory for classical non-stationary fields have been made (Bertolotti
et al., 1995; Sereda et al., 1998).
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We will restrict our analysis to scalar fields. Therefore, the 3 × 3 correlation matrix
←→
W (1)(r, ω; r′, ω′) may now be replaced by the correlation function

W
(1)(r, ω; r

′, ω′) = Tr
{

ρ̂ ê(−)(r,−ω)ê(+)(r′, ω′)
}

, (47)

which, in analogy with the relations (46), is the Fourier transform of G(1)(r, t; r′, t′); viz,

W
(1)(r, ω; r

′, ω′) =

(
1

2π

)2 ∞�

−∞

G(1)(r, t; r
′, t′)ei(−ωt+ω′t′) dt dt′, (48a)

G(1)(r, t; r
′, t′) =

∞�

0

W
(1)(r, ω; r

′, ω′)ei(ωt−ω′t′) dω dω′. (48b)

We will refer to W (1)(r, ω; r′, ω′) as the two-frequency cross-spectral density function (to
be abbreviated by two-frequency CSDF) and the single-frequency correlation function
W (1)(r, ω; r′, ω) as the cross-spectral density function (CSDF) of the field, in analogy with
terminology used in the classical theory.

6.2 Physical interpretation of correlation functions in the space-frequency domain

Let us now assume that a light beam is transmitted by a linear filter which allows only a
narrow frequency band to pass through it. Suppose that the light, emerging from the filter,
has mean frequency ω̄ and effective bandwidth ∆ω ≪ ω̄. The field operators representing
this filtered narrow-band light in the space-frequency domain, may then be represented by
the formulas

ê
(+)
(ω̄)

(r, ω) = T(ω̄)(ω)ê(+)(r, ω), (49a)

ê
(−)
(ω̄)

(r,−ω) = T∗
(ω̄)(ω)ê(−)(r,−ω), (49b)

where T(ω̄)(ω) is the transmission function of the filter, whose modulus is negligible outside
the pass-band ω̄ − ∆ω/2 ≤ ω ≤ ω̄ + ∆ω/2 of the filter. Using Eqs. (47) and (49), it follows
that for the filtered light,

W
(1)
(ω̄)

(r, ω; r
′, ω′) = T∗

(ω̄)(ω)T(ω̄)(ω
′)W (1)(r, ω; r

′, ω′). (50)

Here, the function W
(1)
(ω̄)

(r, ω; r′, ω′) is the two-frequency CSDF of the filtered light, of mean

frequency ω̄, and W (1)(r, ω; r′, ω′) on the right hand side is the two-frequency CSDF of the
unfiltered light incident on the filter.

From Eqs. (48b) and (50), one readily finds that the space-time correlation function

G
(1)
(ω̄)

(r; t; r′; t′) of the filtered narrow-band light is given by the expression

G
(1)
(ω̄)

(r; t; r
′; t′) =

ω̄+∆ω/2�

ω̄−∆ω/2

T∗
(ω̄)(ω)T(ω̄)(ω

′)W (1)(r, ω; r
′, ω′)ei(ωt−ω′t′) dω dω′. (51)
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Because of the assumption that ∆ω/ω̄ ≪ 1, the function W (1)(r, ω; r′, ω′) in Eq. (51) does not
change appreciably as function of ω and ω′ over the ranges ω̄ − ∆ω/2 ≤ ω ≤ ω̄ + ∆ω/2,
ω̄ − ∆ω/2 ≤ ω′ ≤ ω̄ + ∆ω/2 and is approximately equal to W (1)(r, ω̄; r′, ω̄). From Eq. (51) it
then follows that

G
(1)
(ω̄)

(r; t; r
′; t′) ≈ W

(1)(r, ω̄; r
′, ω̄)

ω̄+∆ω/2�

ω̄−∆ω/2

T∗
(ω̄)(ω)T(ω̄)(ω

′)ei(ωt−ω′t′) dω dω′. (52)

6.3 Physical significance of W (1)(r, ω; r, ω)

Let us consider light generated by some physical process which begins at time t = 0 and ceases
at time t = T , say; for example light emitted by a collection of exited atoms. Clearly, such
light is not statistically stationary. Suppose now that this light is filtered and is then incident
on a photo-detector. It follows from Eq. (52) that the average counting rate R(ω̄)(r; t) ≡

G
(1)
(ω̄)

(r; t; r; t) of the detector placed at a point r, at time t, is given by the expression

R(ω̄)(r; t) ≈ W
(1)(r, ω̄; r, ω̄)

ω̄+∆ω/2�

ω̄−∆ω/2

T∗
(ω̄)(ω)T(ω̄)(ω

′)ei(ω−ω′)t dω dω′. (53)

Since, R(ω̄)(r; t) = 0, unless 0 < t < T , the total energy E (r; ω̄) detected (total counts) by the
photo-detector will be proportional to

E (r; ω̄) ≡
∫ T

0
R(ω̄)(r; t) dt =

∫ ∞

−∞
R(ω̄)(r; t) dt

≈ W
(1)(r, ω̄; r, ω̄)

{
2π

∫ ω̄+∆ω/2

ω̄−∆ω/2

∣∣∣T(ω̄)(ω)
∣∣∣
2

dω

}
(54)

Thus, we may conclude that the total energy E (r; ω) detected by the photo-detector, placed
at a point r in the path of a narrow-band light beam of mean frequency ω, is proportional to
W (1)(r, ω; r, ω), i.e., that

E (r; ω) ≡
∫ T

0
R(ω̄)(r; t) dt ∝ W

(1)(r, ω; r, ω), (55)

the proportionality constant being dependent on the filter and on the choice of units. In other
words, the correlation function W (1)(r, ω; r, ω) provides a measure of the energy density, at a
point r, associated with the frequency ω of light. It is evident that W (1)(r, ω; r, ω) ≥ 0.

W (1)(r, ω; r, ω) must not be confused with the well-known Wiener’s spectral density (Wiener,
1930) of statistically stationary light. In the quantum mechanical interpretation, Wiener’s
spectral density is equivalent to the counting rate of the photo-detector, associated with a
frequency. On the other hand, the quantity W (1)(r, ω; r, ω) represents the total counts in the
photo-detector associated with the frequency ω. Therefore, W (1)(r, ω; r, ω) has a different
dimension than Wiener’s spectral density. Even in the stationary limit, W (1)(r, ω; r, ω) does
not reduce to the Wiener’s spectral density. In fact, in such a case, the energy density E (r; ω)
will be infinitely large and hence, in that limit, the quantity W (1)(r, ω; r, ω) will not be useful.
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For a light that is not statistically stationary, defining spectral density is a nontrivial problem
which is still a subject of an active discussion. Many publications have been dedicated to it
and several different definitions have been proposed [see, for example, (Eberly & Wódkievicz,
1977; Lampard, 1954; Mark, 1970; Page, 1952; Ponomarenko et al., 2004; Silverman, 1957)].
Nevertheless, for statistically non-stationary processes, W (1)(r, ω; r, ω) is measurable and a
physically meaningful quantity. In the following sections we show that it has an important
role in defining the spectral-degree of coherence of non-stationary light.

6.4 First-order coherence

We will now consider the first-order coherence properties of non-stationary light, again
restricting ourselves to scalar fields. As in the previous Section, we will consider a filtered
narrow-band light. On using Eqs. (40) and (52), one then has

g
(1)
(ω̄)

(r, t; r
′, t′) ≈

W (1)(r, ω̄; r′, ω̄)√
W (1)(r, ω̄; r, ω̄)

√
W (1)(r′, ω̄; r′, ω̄)

Θ(t, t′), (56)

where

Θ(t, t′) =

� ω̄+∆ω/2
ω̄−∆ω/2 T∗

(ω̄)(ω)T(ω̄)(ω
′)ei(ωt−ω′t′) dω dω′

∣∣∣
∫ ω̄+∆ω/2

ω̄−∆ω/2 T(ω̄)(ω)e−iωt dω
∣∣∣
∣∣∣
∫ ω̄+∆ω/2

ω̄−∆ω/2 T(ω̄)(ω)e−iωt′ dω
∣∣∣
. (57)

Since, the numerator on the right hand side of Eq. (57) factorizes into a product of the two
integrals which appear in the denominator, it is evident that

|Θ(t, t′)| = 1, (58)

for all values of t and t′. From Eqs. (56) and (58), one readily finds that the modulus of
the first-order “space-time” degree of coherence of the filtered narrow-band light of mean
frequency ω̄, is given by the formula

∣∣∣g(1)(ω̄)
(r, t; r

′, t′)
∣∣∣ ≈

∣∣∣∣∣∣
W (1)(r, ω̄; r′, ω̄)√

W (1)(r, ω̄; r, ω̄)
√

W (1)(r′, ω̄; r′, ω̄)

∣∣∣∣∣∣
. (59)

The expression within the modulus signs on the right-hand side is the normalized CSDF at
the frequency ω̄.

It may be concluded from Eq. (59) that this normalized CSDF provides a measure of first-order
coherence of the filtered light of mean frequency ω̄. Consequently, one may define the
first-order spectral degree of coherence at frequency ω by the formula

η(1)(r, ω; r
′, ω) ≡

W (1)(r, ω; r′, ω)√
W (1)(r, ω; r, ω)

√
W (1)(r′, ω; r′, ω)

. (60)

It can be immediately shown that (Lahiri & Wolf, 2010c)

0 ≤ |η(1)(r, ω; r
′, ω)| ≤ 1. (61)
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When |η(1)(r, ω; r′, ω)| = 1, the light may be said to be completely coherent at the frequency ω,
and when η(1)(r, ω; r′, ω) = 0, it may be said to be completely incoherent at that frequency. We
stress, once again, that W (1)(r, ω; r′, ω) and η(1)(r, ω; r′, ω) being single-frequency quantities,
provide measures of the ability of a particular frequency-component of the light to interfere.

We will now return to the two-frequency correlation function W (1)(r, ω; r′, ω′) given by
formula (47). It characterizes correlations between different frequency components of light,
i.e., the ability of two different frequency components to interfere. Interference of fields of
different frequencies has generally not been considered in the literature, probably because
it is not a commonly observed phenomenon. According to the classical theory, different
frequency components of statistically stationary light do not interfere (see, for example, (Wolf,
2007b), Sec. 2.5). For the sake of completeness, we will now show that this fact is also true
in the non-classical domain. The proof is similar to that for classical fields. If one considers
light whose fluctuations are statistically stationary in the wide sense, i.e., if G(1)(r, t; r′, t′) =
G(1)(r, r′; t′ − t) then, ignoring some mathematical subtleties, one finds from Eq. (48a) that the
two-frequency CSDF W (1)(r, ω; r′, ω′) has the form

W
(1)(r, ω; r

′, ω′) = f [r, r
′; (ω + ω′)/2]δ(ω − ω′), (62)

where f is, in general, a complex function of its arguments and δ denotes the Dirac delta
function. This formula shows that when ω = ω′, the two-frequency CSDF W (1)(r, ω; r′, ω′) =
0, implying that different frequency components of statistically stationary light do not
interfere. However, for non-stationary random processes, this correlation function may have
a non-zero value and, consequently, interference among different frequency components may
take place. One may define a normalized two-frequency correlation function

η(1)(r, ω; r
′, ω′) =

W (1)(r, ω; r′, ω′)√
W (1)(r, ω; r, ω)W (1)(r′, ω′; r′, ω′)

(63)

as a generalized first-order spectral degree of coherence for a pair of frequencies ω and ω′. It
can also be shown that (Lahiri & Wolf, 2010c)

0 ≤ |η(1)(r, ω; r
′, ω′)| ≤ 1. (64)

The extreme value |η(1)(r, ω; r′, ω′)| = 1, which corresponds to maximum possible
fringe visibility observed in interference experiments, represents complete coherence in the
space-frequency domain. The other extreme value, η(1)(r, ω; r′, ω′) = 0, implies that no
interference fringes will be present, i.e that there is complete incoherence between different
frequency components.

7. Polarization properties of optical beams

In this section we will discuss the polarization properties of light. As is clear from previous
discussions that a scalar treatment will no more be sufficient for his purpose, and we have
to consider the vector nature of the field. However, since, we will restrict our analysis to
beam-like optical fields, we will encounter 2 × 2 correlation matrices.
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We consider the canonical experiment depicted in Fig. 2. Suppose that a light beam,
propagating along the positive z axis, passes through a compensator, followed by a polarizer
(see Fig. 2). Light emerging from the polarizer is linearly polarized along some direction,

Fig. 2. Illustrating notation relating to the canonical polarization experiment.

which makes an angle θ, say, with the positive direction of a chosen x axis. We call θ the
polarizer angle. Effects of the compensator may be described by introducing phase delays αx

and αy in the x and the y components of the field operator Ê(+) respectively. Suppose now
that a photodetector is placed behind the polarizer (see Fig. 2), which detects photons that
emerge from the polarizer. From Eq. (37), it follows that the counting rate Rθ,α(r; t) in the
detector will be given by the formula

Rθ,α(r; t) = Tr
{

ρ̂ Ê
(−)
θ,α (r; t)Ê

(+)
θ,α (r; t)

}
, (65)

where
Ê
(±)
θ,α = Ê

(±)
x eiαx cos θ + Ê

(±)
y eiαy sin θ. (66)

Using Eqs. (65) and (66), one readily finds that the average counting rate of the photo-detector
is given by the expression

Rθ,α(r; t) = G
(1)
xx (r, t; r, t) cos2 θ + G

(1)
yy (r, t; r, t) sin2 θ

+ 2

√
G
(1)
xx (r, t; r, t)

√
G
(1)
yy (r, t; r, t) sin θ cos θ|g

(1)
xy (r; t)| cos

[
βxy(r; t)− α

]
, (67)

where α = αy − αx and

g
(1)
xy (r; t) ≡

G
(1)
xy (r, t; r, t)

√
G
(1)
xx (r, t; r, t)

√
G
(1)
yy (r, t; r, t)

≡ |g
(1)
xy (r; t)|eiβxy(r;t). (68)

It is important to note that only the “equal-point” (r1 = r2 ≡ r) and “equal-time” (t1 = t2 ≡ t)

correlation matrix
←→
G (1)(r, t; r, t) contributes to the photon counting rate. We will refer to this

matrix as the quantum polarization matrix. Equation (67) makes it possible to determine the

elements of the quantum polarization matrix
←→
G (1)(r, t; r, t) in a similar way as is done for the

elements of the analogous correlation matrix for a classical field, introduced in Ref. (Wolf,
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1959). One can readily show that

G
(1)
xx (r, t; r, t) =R0,0(r; t), (69a)

G
(1)
yy (r, t; r, t) =Rπ/2,0(r; t), (69b)

G
(1)
xy (r, t; r, t) =

1

2

[
Rπ/4,0(r; t)−R3π/4,0(r; t)

]
+

i

2

[
Rπ/4,π/2(r; t)−R3π/4,π/2(r; t)

]
, (69c)

G
(1)
yx (r, t; r, t) =

1

2

[
Rπ/4,0(r; t)−R3π/4,0(r; t)

]
−

i

2

[
Rπ/4,π/2(r; t)−R3π/4,π/2(r; t)

]
. (69d)

Let us now briefly examine some properties of the quantum polarization matrix
←→
G (1)(r, t; r, t). Each element of this matrix, being a correlation function, has the properties

of a scalar product11. In particular, the elements of any such matrix satisfy the constraints

G
(1)
μμ (r, t; r, t) ≥ 0, (70a)

G
(1)
μν (r, t; r, t) =

{
G
(1)
νμ (r, t; r, t)

}∗
, (70b)

Det
←→
G (1)(r, t; r, t) ≥ 0, (70c)

where μ = x, y; ν = x, y and Det denotes the determinant. Conditions (70a) and (70c) imply
that a quantum polarization matrix is always non-negative definite. Formula (70c) follows from
the Cauchy-Schwarz inequality. From Eqs. (68) and (70c), it follows that

0 ≤ |g
(1)
xy (r; t)| ≤ 1. (71)

7.1 Unpolarized light beam

We will now assume that an unpolarized photon-beam12 is used in the experiment depicted in
Fig. 2. For such a beam, the photon detection rate Rθ,α(r; t), has to be independent of θ and α

and consequently, one has from Eq. (67) that

g
(1)
xy (r; t) = 0, (72a)

and G
(1)
xx (r, t; r, t) = G

(1)
yy (r, t; r, t) ≡ A(r; t), say, (72b)

where A(r; t) is a real function of space and time and A(r; t) ≥ 0. From Eqs. (72) it is evident

that for an unpolarized beam, the quantum polarization matrix
←→
G

(1)
(u)

(r; t; r; t) is proportional

to a unit matrix, i.e., that
←→
G

(1)
(u)

(r; t; r; t) = A(r; t)

(
1 0
0 1

)
. (73)

11 The proof is similar to that given for scalar field operators (Titulaer & Glauber, 1965).
12 For discussion on unpolarized radiation see, for example, Refs. (Agarwal, 1971; Prakash et al., 1971)
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7.2 Polarized light beam

Let us now consider the other extreme case, namely when the beam is fully polarized13, i.e.,

when |g
(1)
xy (r; t)| = 1. In this case, it follows from Eq. (68) that the elements of

←→
G

(1)
(p)

(r; t; r; t)

can be expressed in the factorized form

{←→
G

(1)
(p)

(r; t; r; t)
}

μν
= E∗

μ (r; t)Eν(r; t), (μ = x, y; ν = x, y), (74)

where

Ex(r; t) =

√
G
(1)
xx (r, t; r, t) exp [iφxx(r; t)] , (75a)

Ey(r; t) =

√
G
(1)
yy (r, t; r, t) exp

[
iφyy(r; t)

]
. (75b)

Here φyy(r; t) − φxx(r; t) = βxy(r; t), where βxy(r; t) is the phase of g
(1)
xy (r; t), defined in

Eq. (68). The fact that the elements of
←→
G

(1)
(p)

(r; t; r; t) can be factorized, was also noted in

Ref. (Glauber, 1963). The condition (74) may readily shown to imply that for a completely
polarized light beam

Det
←→
G

(1)
(p)

(r; t; r; t) = 0. (76)

The converse of this statement is also true, i.e., if condition (76) holds at a point r, at time t,

one can readily show by use of properties (70a) and (70b) that |g
(1)
xy (r; t)| = 1; hence the light

is then completely polarized at that point at time t.

We will next establish a necessary and sufficient condition of complete polarization14. We
express it in the form of the following theorem:

Theorem 7.1. In order that a beam is completely polarized, it is necessary and sufficient that the
quantized field components and the density operator satisfy the condition

Ê
(+)
x (r; t)ρ̂ = A(r; t)Ê

(+)
y (r; t)ρ̂, (77a)

where A(r; t) =
G
(1)
yx (r, t; r, t)

G
(1)
yy (r, t; r, t)

, (77b)

Proof. To prove that Eq. (77) is a necessary condition, let us introduce the operator

M̂(r; t) = Ê
(+)
x (r; t)− A(r; t)Ê

(+)
y (r; t), (78)

where A(r; t) is given by Eq. (77b). On using Eqs. (77b) and (78), one readily finds that

Tr
{

ρ̂ M̂† M̂
}
=

Det
←→
G (1)(r, t; r, t)

G
(1)
yy (r, t; r, t)

. (79)

13 For discussion on polarized radiation see Ref. (Mehta et al., 1974)
14 An analogous condition hold for complete first-order coherence in the space-time domain (Titulaer &

Glauber, 1965). In the classical limit, these conditions resembles the recently introduced concept of
statistical similarity (Roychowdhury & Wolf, 2005; Wolf, 2010b) for statistically stationary beams.
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If the field is completely polarized, Eqs. (76) and (79) imply that

Tr
{

ρ̂ M̂† M̂
}
= 0, (80)

and, consequently,
M̂ρ̂ = ρ̂M̂† = 0. (81)

Substituting for M̂ from Eq. (78) into Eq. (81), one readily find that condition (77) is satisfied.
Thus we have proved that Eq. (77) is a necessary condition for complete polarization of a light
beam at a point r, at time t.

On the other hand, if one imposes condition (77) on the components of the field operator and

evaluates Det
←→
G

(1)
(p)

(r; t; r; t), one readily obtains Eq. (76), i.e., one finds that if condition (77)

holds, the beam is completely polarized. Hence this condition is also a sufficiency condition.

7.3 Partially polarized light beam

We have discussed the properties of completely polarized and completely unpolarized beams.

Next we consider beams which are partially polarized, i.e., beams for which 0 < |g
(1)
xy (r; t)| <

1.

We will first establish the following result: If a beam of partially polarized photons is incident on a
photo-detector, the average counting rate of the detector, at any time t, can always be decomposed into
two parts, one which represents the counting rate for a polarized beam and the other the counting rate

for an unpolarized beam. It can be proved that any quantum polarization matrix
←→
G (1)(r, t; r, t)

can be uniquely decomposed in the form (Lahiri & Wolf, 2010b)

←→
G (1)(r, t; r, t) =

←→
G

(1)
(p)

(r; t; r; t) +
←→
G

(1)
(u)

(r; t; r; t), (82)

where the elements of
←→
G

(1)
(p)

(r; t; r; t) and
←→
G

(1)
(u)

(r; t; r; t) can be uniquely expressed in terms

of the elements of
←→
G (1)(r, t; r, t). From Eqs. (37) and (82), one can at once deduce that the

counting rate of the photo-detector has contribution from an unpolarized part and from a
polarized part; i.e., that

R(r, t) = Tr
←→
G (1)(r, t; r, t) = R(p)(r, t) +R(u)(r, t). (83)

By analogy with the classical theory of stochastic electromagnetic beams, we define the degree
of polarization P , at a point P(r), at time t, as the ratio of the photon counting rate for the
polarized part to the total counting rate:

P(r; t) ≡
R(p)(r, t)

R(r, t)
=

Tr
←→
G

(1)
(p)

(r; t; r; t)

Tr
←→
G (1)(r, t; r, t)

. (84)
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On expressing the elements of
←→
G

(1)
(p)

(r; t; r; t) in terms of the elements of
←→
G (1)(r, t; r, t), one

can show that (Lahiri & Wolf, 2010b)

P(r; t) =

√√√√√1 −
4 Det

←→
G (1)(r, t; r, t)

{
Tr
←→
G (1)(r, t; r, t)

}2
. (85)

From Eqs. (73) and (85), one can readily show that for a beam of unpolarized photons P = 0;
and from Eqs. (82) and (85) it follows, at once, that for a completely polarized beam of photons
P(r; t) = 1.

Although, formulas (28), and (85) look similar in form, one must bear in mind that the
definition used in classical theory is not appropriate for light of low intensity, nor has it been
shown that it is valid for fields that are not necessarily statistically stationary. On the other
hand, the expression (85) for the degree of polarization applies also to low intensity light and
for light whose statistical properties are characterized by non-stationary ensembles, such as,
for example, fields associated with a non-stationary ensemble of pulses.

8. Wave-particle duality, partial coherence and partial polarization of light

Quantum systems (quantons15) possess properties of both particles and waves. Bohr’s
complementarity principle (Bohr, 1928) suggests that these two properties are mutually
exclusive. In other words, depending on the experimental situation, a quanton will behave
as a particle or as a wave. In the third volume of his famous lecture series (Feynman et al.,
1966), Feynman emphasized that this wave-particle duality may be understood from Young’s
two-pinhole interference experiments (Young, 1802). In such an experiment, a quanton
may arrive at the detector along two different paths. If one can determine which path the
quanton traveled, then no interference fringe will be found (i.e., the quanton will show
complete particle behavior). On the other hand, if one cannot obtain any information about the
quanton’s path, then interference fringes, with unit visibility, will be obtained (i.e., the quanton
will show complete wave behavior), assuming that the intensities at the two pinholes are the
same. In the intermediate case when one has partial “which-path information” (WPI), fringes
with visibility smaller than unity are obtained, even if the intensities at the two pinholes
are equal. For the sake of brevity, we will use the term “best circumstances” to refer to the
situation when in an Young’s interference experiment, the intensities at the two pinholes are
equal, or to equivalent situations in other interferometric setups.

The relation between fringe visibility (degree of coherence) and WPI has been investigated by
researchers [see, for example, (Englert, 1996; Jaeger et al., 1995; Mandel, 1991)]. It has been
established that a quantitative measure of WPI and fringe-visibility obey a certain inequality.
In this section, we will first recollect the results obtained by Mandel and then will show that
it is not only the fringe-visibility, but also the polarization properties of the superposed light,
which may depend on WPI in an interference experiment.

15 This abbreviation is due to M. Bunge [see, for example, J.-M. Lévy-Leblond, Physica B 151, 314 (1988)].
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Suppose, that |ψ1〉 and |ψ2〉 represent two normalized single-photon states (eigenstates of the
number operator), so that

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = 0, (86a)

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1. (86b)

We will consider the superposition of the two states in some interferometric arrangement,
where a photon may travel along two different paths. Suppose that |ψID〉 represents a state of
light, which is formed by coherent superposition of the two states |ψ1〉 and |ψ2〉, i.e., that

|ψID〉 = α1 |ψ1〉+ α2 |ψ1〉 , |α1|
2 + |α2|

2 = 1, (87)

where α1 and α2 are, in general, two complex numbers. In this case, a photon may be in
the state |ψ1〉 with probability |α1|

2, or in the state |ψ2〉 with probability |α2|
2, but the two

possibilities are intrinsically indistinguishable. The density operator ρ̂ID will then have the
form

ρ̂ID = |α1|
2 |ψ1〉 〈ψ1|+ |α2|

2 |ψ2〉 〈ψ2|+ α∗1α2 |ψ2〉 〈ψ1|+ α∗2α1 |ψ1〉 〈ψ2| . (88)

In the other extreme case, when the state of light is due to incoherent superposition of the two
states, the density operator ρ̂D will be given by the expression

ρ̂D = |α1|
2 |ψ1〉 〈ψ1|+ |α2|

2 |ψ2〉 〈ψ2| . (89)

Here |α1|
2 and |α2|

2 again represent the probabilities that the photon will be in state |ψ1〉 or
in state |ψ2〉, but now the two possibilities are intrinsically distinguishable. Mandel (Mandel,
1991) showed that in any intermediate case, the density operator

ρ̂ = ρ11 |ψ1〉 〈ψ1|+ ρ12 |ψ1〉 〈ψ2|+ ρ21 |ψ2〉 〈ψ1|+ ρ22 |ψ2〉 〈ψ2| (90)

can be uniquely expressed in the form

ρ̂ = I ρ̂ID + (1 −I )ρ̂D, 0 ≤ I ≤ 1. (91)

Mandel defined I as the degree of indistinguishability. If I = 0, the two paths are
completely distinguishable, i.e., one has complete WPI; and if I = 1, they are completely
indistinguishable, i.e., one has no WPI. In the intermediate case 0 < I < 1, the two
possibilities may be said to be partially distinguishable. Clearly, I may be considered as
a measure of WPI. According to Eqs. (90) and (91), one can always express ρ̂ in the form

ρ̂ = |α1|
2 |ψ1〉 〈ψ1|+ |α2|

2 |ψ2〉 〈ψ2|+I (α∗1α2 |ψ2〉 〈ψ1|+ α∗2α1 |ψ1〉 〈ψ2|). (92)

Clearly, the condition of “best circumstances” requires that |α1| = |α2|.

8.1 WPI and partial coherence

Mandel considered a Young’s interference experiment, in which the two pinholes (secondary
sources) were labeled by 1 and 2. He assumed |n〉j to be a state representing n photons
originated from pinhole j (n = 0, 1; j = 1, 2). Clearly, in this case

|ψ1〉 = |1〉1 |0〉2 , |ψ2〉 = |0〉1 |1〉2 . (93)
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Calculations show that [for details see (Mandel, 1991)] “visibility ≤ I ”, and the equality
holds in the special case when |α1| = |α2|. Since fringe-visibility is a measure of coherence
properties of light (modulus of degree of coherence is equal to the fringe visibility), Mandel’s
result displays an intimate relationship between wave-particle duality and partial coherence.

8.2 WPI and partial polarization

Let us now assume that |ψ1〉 and |ψ2〉 are of the form

|ψ1〉 = |1〉x |0〉y , (94a)

|ψ2〉 = |0〉x |1〉y , (94b)

where the two states are labeled by the same (vector) mode k, and x, y are two mutually
orthogonal directions, both perpendicular to the direction of k. For the sake of brevity, k is
not displayed in Eqs. (94). Clearly |ψ1〉 represents the state of a photon polarized along the x
direction, and |ψ2〉 represents that along the y direction. In the present case, one may express

Ê
(+)
i (r; t) in the form

Ê
(+)
i (r; t) = Cei(k·r−ωt) âi, (i = x, y), (95)

where the operator âi represents annihilation of a photon in mode k, polarized along the i−
axis, and C is a constant. From Eqs. (38), (92), and (95), one readily finds that the quantum

polarization matrix
←→
G (1)(r, t; r, t) has the form

←→
G (1)(r, t; r, t) = |C|2

(
|α1|

2 I α∗1α2

I α1α∗2 |α2|
2

)
. (96)

From Eqs. (84) and (96) and using the fact |α1|
2 + |α2|

2 = 1, one finds that, in this case, the
degree of polarization is given by the expression

P =
√
(|α1|2 − |α2|2)2 + 4|α1|2|α2|2I 2. (97)

It follows from Eq. (97) by simple calculations that

P
2 −I

2 = (1 −I
2)(2|α1|

2 − 1)2. (98)

Using the fact that 0 ≤ I ≤ 1, one readily finds that

P ≥ I . (99)

Thus, the degree of polarization of the out-put light in a single-photon interference experiment
is always greater or equal to the degree of indistinguishability (I ) which a measure of
“which-path information”.

Let us now assume that the condition of “best circumstances” holds, i.e., one has |α1| = |α2|.
It then readily follows from Eq. (97) that

P = I . (100)
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This formula shows that under the “best circumstances”, the degree of indistinguishability (a
measure of WPI) and the degree of polarization are equal. The physical interpretation of this
result may be understood from the following consideration: If one has complete “which-path
information” (i.e., I = 0), then it follows from Eq. (100) that the degree of polarization of the
light emerging from the interferometer is equal to zero. Complete “which-path information”
in an single-photon interference experiment implies that a photon shows complete particle
nature, and our analysis suggests that in such a case light is completely unpolarized. In the
other extreme case, when one has no “which-path information”, i.e., when a photon does not
display any particle behavior, the output light will be completely polarized. Any intermediate
case will produce partially polarized light. For details analysis see (Lahiri, 2011).

9. Conclusions

We conclude this chapter by saying that we have given a description of first-order coherence
and polarization properties of light. The main aim of this chapter was to emphasize the fact
that although, coherence and polarization seem to be two different optical phenomena, both of
them can be described by analogous theoretical techniques. Our discussion also emphasizes
some newly obtained results in quantum theory of optical coherence in the space-frequency
domain, and in quantum theory of polarization of light beams.
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