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1. Introduction

In those days before the development of the gauge field theories there were many attempts

to construct multi-local field theories of hadrons. The motivation for that was in the existence

of wide variety of hadrons which may be categorized by quantum numbers indebted to

the presumed internal structures. The success of QFD and/or QCD, however, impressed

us the power of the local field theories of quarks and leptons, and swept away almost all

alternative attempts describing the low energy physics. On the other hand the concept of the

multi-locality (or non-locality) was promoted to the string model which is now regarded as

one of candidates of the quantum gravity.

Although the realm of validity of the local field theory may be extended to the Planck scale

the conceptual gap between the string and the local field theory is so large that we cannot treat

them on an equal footing. Is there no room for the multi-local field theory in describing the

phenomena near the Planck scale?

We have sought the theoretical possibility of the multi-local objects, consisting of N particles,

which stay in an intermediate position between the local particle and the string. In the

papers (Hori, 1992)−(Hori, 2009) we have constructed the models with N = 2, which have

resembling properties as the string, though extremely simple in structure. The simplest

model with N = 2 is a system of two relativistic particles with specific interaction among

them. We called the object as a bilocal particle. We have found a hidden gauge symmetry

in the bilocal model (Hori, 1992), which reveals SL(2, R) in the canonical theory. This causes

the pathological property that the amount of the gauge invariance does not match with the

number of the first class constraints in the canonical theory. This means breakdown of Dirac’s

conjecture (Dirac, 1950).

The BRST analysis of the bilocal model shows the existence of spacetime critical dimensions,

D = 2 or D = 4 (Hori, 1996). But the quantum theory of the model can not be treated in the

similar way as the ordinary gauge theories, since the ghost numbers of the physical states are

not zero. Because the reason of the difficulty is in the constraint structure we have constructed

an improved version of N = 2 model based on the object called complex particle (Hori, 2009).

The coordinates of a complex particle are complex numbers and depend on the internal time.

In the lagrangian formulation the gauge degrees of freedom is two in the ordinary sense.

This causes the breakdown of Dirac’s conjecture as in the bilocal model. We argued that

a modification of the definition of the physical equivalence remedies the situation, and the
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2

system has all of the three gauge freedom of SL(2, R). The constraint structure is different

from that of the bilocal model in such a way that two of three constraints are hermitian

conjugate to each other, and a natural quantization scheme can be applied similar to the string

theory. The physical state conditions are fulfilled in the ghost number zero sector, and the

requirement that the momentum eigenstate should be physical restricts the dimension of the

spacetime to be two or four.

In the present paper we achieve the complete first quantization of the complex particle,

supplementing the results obtained in ref.(Hori, 2009). We also propose the field theory action

of the Chern-Simons type. The action is shown to be invariant under gauge transformations

in the field theoretical sense only if D = 4.

Finally we extend the previous results to N ≥ 3 particle system. Especially we define an open

N-particle and closed N-particle systems. We restrict ourselves, however, to the open cases

because the constraint structure in the canonical theory is much complicated in the closed

cases compared with the open cases.

2. Preliminary remark

The notion of gauge invariance or physical equivalence in the models considered in the

present paper is so subtle that one may easily fall into confusion. Therefore let us consider first

the ordinary relativistic particle, and count the number of gauge as well as physical degrees

of freedom. The spacetime coordinates of the particles xµ, (µ = 0, 1, 2, .., D − 1) are functions

of internal time τ, where D is the dimension of the spacetime. The action is written as 1

I0 =
∫

dτ
ẋµ ẋµ

2g
, (1)

where g is the einbein needed for the reparametrization of the internal time. The action is

invariant under the transformations

δxµ = ǫẋµ + ǫµνxν + aµ, δg =
d

dτ
(ǫg), (ǫµν = −ǫνµ) (2)

where infinitesimal constant parameters ǫµν, aµ are those of Lorenz transformations and

translations, respectively, and the parameter ǫ depends on τ, corresponding to the

reparametrization of τ.

Now what is the gauge freedom, by which the τ development of variables is not determined

uniquely? The existence of the invariance of the action, with τ dependent parameter, ǫ, leads

to redundant variables, because of which the Euler-Lagrange(EL) equations have not unique

solutions even if one chooses suitable initial conditions.

We get the answer by first choosing gauge fixing conditions and by ascertaining consistency

of the solutions to EL equations. The first integral of EL equations is

ẋµ = cµg, ẋµ ẋµ = 0, (3)

1 The metric convension is ηµν = diag(−1, 1, 1, ..1).
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Quantum Theory of Multi-Local Particle 3

where c’s are arbitrary constants. By using the freedom ǫ(τ) we can fix the gauge as

x0(τ) = τ. (4)

The remaining freedom (of finite degrees) is ǫ0i, ǫij, ai, which is counted 1
2 (D − 1)(D + 2).

Setting the initial conditions as

xi(0) = xi
0, ẋi(0) = cig0, g(0) = g0, (ci)2 = 1/g2

0, (5)

we get the unique solution

xi(τ) = cig0τ + xi
0, g(τ) = g0. (6)

That is, if the spacial coordinates and the spacial direction of the particle both at τ = 0

and the value g(0) are given, the whole orbit of the particle moving with velocity of light

is determined. The number of the physical degrees of freedom must be the number of degrees

of freedom to put the independent initial condition, i.e., 2(D − 1). On the other hand, among

the 1
2 (D − 1)(D + 2) degrees of freedom of the remaining symmetry in the gauge (4) the

number of freedom which does not move ci is 1
2 (D − 1)(D − 2). Hence the net degrees of

freedom for changing the initial condition is 1
2 (D − 1)(D + 2)− 1

2 (D − 1)(D − 2) = 2(D − 1).
This coincidence implies that the gauge freedom corresponds to the transformation with the

parameter ǫ(τ), by which one can fix one variable for all τ.

Presumably, the above coincidence may be due to Dirac’s conjecture in the canonical theory,

which claims that every first class constraint should generate gauge transformations. In

the subsequent sections we will encounter the situations where a naive counting leads to

mismatch of degrees of freedom in the lagrangian form.

3. N = 2 model

3.1 Classical action

The simplest example of the multi-local particle is the two particle system with some bilinear

interactions. We call it bilocal particle (Hori, 1992). Let us denote the coordinates of the two

particles as x
µ
a , (a = 1, 2; µ = 0, 1, 2, .., D − 1), which are functions of internal time, τ. We

introduce the einbeins, ga, (a = 1, 2), for the sake of the reparametrization invariance along the

world lines, which are auxiliary variables and their equations of motion make the trajectories

of the particles put on the light-cones. The proposed action of the bilocal particle is written as

I =
∫

dτL, L =
ẋ2

1

2g1
+

ẋ2
2

2g2
+ κ(ẋ1x2 − ẋ2x1), (7)

where κ is a constant with dimension of mass squared. (Here and hereafter we suppress the

spacetime indices µ, if no confusions occur.) The first two terms in the action are separately

invariant under

δxa = ǫa ẋa, δga =
d

dτ
(ǫaga), (a = 1, 2) (8)
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where ǫa, (a = 1, 2) are infinitesimal parameters depending on τ. This is the well known

reparametrization gauge invariance of the relativistic particle. Apparently the third term in

the action would violate this invariance with independent ǫ1 and ǫ2, but we found larger

invariance under the following transformations (Hori, 1992),

δx1 = ǫ1 ẋ1 +
ǫ0

g2
ẋ2, δx2 = ǫ2 ẋ2 +

ǫ0

g1
ẋ1, (9)

δg1 =
d

dτ
(ǫ1g1) + 4κǫ0g1, δg2 =

d

dτ
(ǫ2g2)− 4κǫ0g2, (10)

where the infinitesimal parameters ǫ1, ǫ2, ǫ0 are functions of τ, two of which are arbitrary,

while another is subjected to the constraint

ǫ̇0 + 2κg1g2(ǫ2 − ǫ1) = 0. (11)

In fact the variation of the lagrangian under (9) and (10) is

δL =
d

dτ

[

ǫ0

(

ẋ1 ẋ2

g1g2
+ κ

(

ẋ2x2

g2
−

ẋ1x1

g1

))

+
2

∑
a,b=1

ǫa

(

κǫabxa ẋb + δab
ẋa ẋb

gb

)

]

+ [ǫ̇0 + 2κg1g2(ǫ2 − ǫ1)]
ẋ1 ẋ2

g1g2
, (ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0). (12)

We can regard ǫ1 and ǫ2 as the independent gauge parameters, and ǫ0 as dependent one

determined by (11) except its constant mode, a relic of the global invariance of the action. The

existence of the above unexpected gauge invariance is the origin of some curious properties

of our model such that the SL(2, R) gauge symmetry in the canonical theory and the existence

of the critical dimension as is shown later.

In the case κ �= 0, the first integral to the equations of motion derived by the action (7) is

ẋa

ga
+ 2κ ∑

b

ǫab(xb − cb) = 0, (a = 1, 2), (13)

where ca, (a = 1, 2) are constants. Since the variations of ga give ẋ2
a = 0, we have

(xa − ca)
2 = 0, (a = 1, 2). (14)

Thus the two particles are put on the light-cone with tops of arbitrary spacetime points, and

moving with velocity of light.

For the sake of the reparametrization invariance we can fix the gauge as

x0
1(τ) = x0

2(τ) = τ, (15)

then from (13) we have

1

g1
= −2κ

(

τ − c0
2

)

,
1

g2
= 2κ

(

τ − c0
1

)

. (16)
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Quantum Theory of Multi-Local Particle 5

Substituting them back into (13), and dividing by κ, we obtain

(τ − c0
2)ẋi

1 = (x2 − c2)
i, (τ − c0

1)ẋi
2 = (x1 − c1)

i. (i = 1, 2, .., D − 1). (17)

Note that eqs.(17) do not depend on κ. (The case κ = 0 should be treated separately, since in

that case we must set ẋa/ga = c′a instead of (13) with other constants c′a, leading to ẋa = c′a
in the above gauge. We assume κ �= 0 henceforth.) Differentiating (17) with respect to τ we

have

(τ − c0
1)(τ − c0

2)ẍi
a + (τ − c0

a)ẋi
a − (xa − ca)

i = 0, (i = 1, 2, .., D − 1; a = 1, 2). (18)

These are the ordinary linear differential equations of second rank with regular singularities,

and are solved by Frobenius’s method. The general solutions are written as

xi
a(τ) = ci

a + (τ − c0
a)v

i
a + fa(τ)w

i
a, (i = 1, 2, .., D − 1; a = 1, 2), (19)

where vi
a, wi

a, (a = 1, 2) are arbitrary constants, and fa(τ) are the solutions to the equations

(τ − c0
2) ḟ1 = f2 and (τ − c0

1) ḟ2 = f1, with vanishing asymptotic values, the concrete form of

which are written as

fa(τ) = c0
1 − c0

2 + (τ − c0
a) ln

∣

∣

∣

∣

∣

τ − c0
1

τ − c0
2

∣

∣

∣

∣

∣

, (a = 1, 2). (20)

Substituting (19) once again into (17), we see vi
1 = vi

2 ≡ vi, wi
1 = wi

2 ≡ wi . Furthermore using

(14), we see v
2 = 1, v · w = w

2 = 0. Since we assume the Euclidean signature for the spacial

part of the metric, wi must vanish. Then we obtain

xi
a(τ) = ci

a + (τ − c0
a)v

i, v
2 = 1, (i = 1, 2, .., D − 1; a = 1, 2). (21)

Thus we see that the relative coordinates xi
1 − xi

2 do not depend on τ, and each particle moves

with velocity of light. In other words the bilocal particle is the two end points of a rigid stick

with arbitrary length, which moves with velocity of light. Since this result is independent of

κ, the system does not transfered to that of two free particles in the limit κ → 0.

In the gauge choice (15), the einbeins are determined by (16) for arbitrary τ. The independent

parameters determining the initial condition are xi
a(0), (a = 1, 2; i = 1, 2, .., D − 1) and

vi, (i = 1, 2, .., D − 2). The number of them, 3D − 4, should be the number of the physical

degrees of freedom. On the other hand the number of constant parameters corresponding

to the τ-independent symmetry of the action, including ǫ0 as well as Lorenz and translations,

which survives after gauge fixing is 1
2 (D− 1)(D+ 4)+ 1. Among them the number of freedom

which fixes vi is 1
2 (D − 1)(D − 2). The net freedom to move the initial condition counts

3D − 2. The discrepancy, (3D − 2)− (3D − 4) = 2, suggests existence of extra gauge degrees

of freedom in the case κ �= 0, which is not explicit in the lagrangian formulation.

3.2 Canonical theory

The canonical conjugate variables corresponding to x1 and x2 are p1 = ẋ1/g1 + κx2, and

p2 = ẋ2/g2 − κx1, respectively, while those corresponding to ga, denote πa, are subjected to

55Quantum Theory of Multi-Local Particle
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primary constraint πa ∼ 0. The total hamiltonian is

HT =
1

2
(g1χ1 + g2χ−1) + v1π1 + v2π2, (22)

where

χ1 =
1

2
(p1 − κx2)

2, χ−1 =
1

2
(p2 + κx2)

2, (23)

and v1, v2 are the Dirac variables which are unphysical.

Preservation of the primary constraints πa ∼ 0 along time development gives the secondary

constraints χ±1 ∼ 0, while the preservation of them gives tertiary constraints

χ0 =
1

2
(p1 − κx2)(p2 + κx2) ∼ 0. (24)

There are no other constraints in our model. These constraint functions satisfy the SL(2, R)
algebra on account of the Poisson brackets:

{χn, χm} = −2κ(n − m)χn+m, (n, m = 0,±1). (25)

The whole first class constraints of our model are χ0 ∼ χ±1 ∼ π1 ∼ π2 ∼ 0. The coefficients

of the first class constraints in the hamiltonian are all unphysical variables, and the values

of which can be arbitrarily fixed for the sake of the gauge freedom. Two hamiltonians with

different coefficients are called gauge equivalent.

According to Dirac (Dirac, 1950)(Dirac, 1964), one may say that two points in the phase space

are physically equivalent if there exists another point in the phase space which develops

to the two points through equations of motion determined by respective guage equivalent

hamiltonians. Transformations from a point in the phase space to the physically equivalent

point are called gauge transformation. Dirac conjectured (Dirac, 1950) that all first class

constraints generate gauge transformations. (On the validity of Dirac’s conjecture it has been

argued by some authors, see, e.g., (Sugano & Kamo, 1982), (Frenkel, 1982).)

Now let us examine whether the first class constraints of our model, χ0, χ±1, π1, π2, generate

the gauge transformations. Consider the transformations of a canonical variable q, generated

by the constraint functions χ±1, χ0 and π1, π2;

δq = {q, Q}, Q = ∑
a=0,±1

ǫaχa + η1π1 + η2π2, (26)

where transformation parameters ǫ, η1,2 are time dependent with ǫa(0) = η1,2(0) = 0. If time

development of q is generated by the total hamiltonian, i.e., q̇ = {q, HT}, then it turns out,

using the Jacobi identity, that q′ = q + {q, Q} develops as

q̇′ = {q, H′
T}

∣

∣

q=q′
+ O(ǫ2), (27)

H′
T = HT + Q̃ + η̇1π1 + η̇2π2, Q̃ = ∑

a=0,±1

ǫ̇aχa + {Q, HT}. (28)
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We get the point q′(τ) from the initial point q(0) through the “hamiltonian” H′
T . The point

q(τ) is also developed from the same initial point but through the hamiltonian HT . Thus if

H′
T and HT are gauge equivalent, then the two points q′(t) and q(t) are physically equivalent

in Dirac’s sense. But this is not the case, since HT does not contain the tertiary constraint χ0

but H′
T does. Even if we set ǫ0 = 0 the situation does not change, so we see that not only

χ0 but χ±1 do not generate gauge transformations. This indicates the breakdown of Dirac’s

conjecture in our model.

The above fact, however, does not contradict with the gauge invariance in the lagrangian

formulation. If we restrict ourselves to the transformation parameters so that Q̃ = 0, then

we see HT is gauge equivalent to H′
T . Thus χ0, χ±1 generate the gauge transformations with

the restricted parameters. These transformations coincide with those of the lagrangian form,

(9),(10), as is shown bellow. Rewriting the parameters ǫa in (26) as ǫ′a, the condition Q̃ = 0

gives

η1 = ǫ̇′1 + 2κǫ′0g1, η2 = ǫ̇′−1 − 2κǫ′0g1, ǫ̇′0 + 4κ(ǫ′2g1 − ǫ′−1g2) = 0. (29)

Therefore we have

δx1 = ǫ′1(p1 − κx2)−
1

2
ǫ′0(p2 + κx1), δx2 = ǫ′−1(p2 + κx1)−

1

2
ǫ′0(p1 − κx2), (30)

δg1 = ǫ̇′1 + 2κǫ′0g1, δg1 = ǫ̇′1 − 2κǫ′0g2. (31)

Substituting the definition of momenta, p1 = ẋ1/g1 + κx2, p2 = ẋ2/g2 − κx1, into above

equations, we have

δx1 = ǫ′1
ẋ1

g1
+

1

2
ǫ′0

ẋ2

g2
, δx2 = ǫ′1

ẋ2

g2
+

1

2
ǫ′0

ẋ1

g1
. (32)

Finally redefining the parameter as ǫ′1 = g1ǫ1, ǫ′−1 = g2ǫ2, ǫ′0 = 2ǫ0, we get (9),(10). The last

condition in (29) is the same as (11) if the redefined parameters are used.

The definition of the physical equivalence in the phase space owing to Dirac and the concept

of gauge transformations based on it may be cumbersome at least in the present model. In

ref.(Hori, 2009) we proposed another definition of physical equivalence, which seems natural

both in the lagrangian and the canonical theories, and in accordance with Dirac’s conjecture.

The basic observation is that every conserved quantities have the same values along the gauge

invariant orbits of canonical variables. Therefore any two physically equivalent points in

Dirac’s sense have the same values of all conserved quantities. Our claim is that the concept

of the physical equivalence should be relaxed so that the reverse proposition holds. That is,

we define that if all of the conserved variables at two points in the physical phase space (lied

in the constrained subspace) coincide then the two points are called physically equivalent.

In order to determine the conserved quantities in our model let us examine the global

symmetries. Since the deviations of the lagrangian under the global translations δxa = Ea

is δL = κ d
dτ (x1E2 − x2E1), the corresponding conserved charges are

p̃
µ
1 =

ẋ
µ
1

g1
+ 2κx

µ
2 , p̃

µ
2 =

ẋ
µ
2

g2
− 2κx

µ
1 , (33)

57Quantum Theory of Multi-Local Particle
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which, in terms of the canonical variables, are written as

p̃
µ
1 = p

µ
1 + κx

µ
2 , p̃

µ
2 = p

µ
2 − κx

µ
1 . (34)

Similarly the conserved charges corresponding to the Lorenz invariance are

Mµν = x1[µ p1ν] + x2[µ p2ν]. (35)

All of the Poisson brackets between the charges p̃
µ
a , Mµν and the constraints χ0, χ±1 vanish.

There is another global symmetry of the lagrangian, which is seen by setting ǫ0 to a constant

and ǫ1 = ǫ2 = 0 in (9) and (10). The corresponding conserved charge turnes out to be

χ0 which is vanishing in the physically admissible orbits. In our model the maximal set

of conserved quantities are p̃
µ
a , Mµν and χ0. Since these variables are invariant (up to the

first class constraints) under the transformations generated by all of the first class constraints,

Dirac’s conjecture holds.

In the canonical theory the gauge transformations are generated by five constraints χ0,±1, π1,2.

If one fixes the gauge by five subsidiary conditions, then the equations of motion determine

unique solutions. These ten conditions eliminate ten variables among 4(D + 1) canonical

variables xa, pa, ga, πa, and the remaining 2(2D − 3) canonical variables, i.e., 2D − 3 canonical

pairs become the physical variables.

3.3 Quantization

In this subsection we present the quantum theory, assuming that our model is a constrained

hamiltonian system with gauge symmetries generated by χ0,±1. This point of view is

consistent with the reduction of the classical degrees of freedom mentioned in 3.1.

Let us represent the dynamical variables as linear operators on the space of differentiable

and square integrable functions of x1,2. The momentum observables of the two particles are

defined by

p̃1 = −i∂1 + κx2, p̃2 = −i∂2 − κx1. (36)

They satisfy the commutation relation

[ p̃
µ
1 , p̃ν

2 ] = 2κiηµν. (37)

That is, the momenta of the two particles do not have simultaneous eigenvalues. This is

the reason why we call our system a bilocal particle instead of two particles. This is the

fundamental uncertainty relation of the model.

The classical constraint functions are replaced by the following operators:

L1 =
i

4κ
(−i∂1 − κx2)

2, (38)

L−1 =
i

4κ
(−i∂2 + κx1)

2, (39)

L0 =
i

4κ
(−i∂1 − κx2)(−i∂2 + κx1)− α, (40)

58 Advances in Quantum Theory
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Quantum Theory of Multi-Local Particle 9

where ∂a = ∂/∂xa, and the constant α represents the ambiguity due to the operator ordering.

The above operators constitute a basis of SL(2, R) with central term as

[Ln, Lm] = (n − m)

(

Ln+m +

(

α −
D

4

)

δn+m

)

, (n, m = 0,±1), (41)

where D is the dimension of spacetime.

According to the gauge algebra (41) the BRST charge is defined by

Q = ∑
n=0,±1

cnLn −
1

2 ∑
n,m=0,±1

(n − m)cncm
∂

∂cn+m
, (42)

where ca, (a = 0,±1) are the BRST ghost variables. The square of the BRS charge is

Q2 = 2

(

α −
D

4

)

c1c−1. (43)

As in the ordinary gauge theory we require the nilpotency of Q so that the ordering ambiguity

is fixes as α = D/4, which also eliminates the central term in (41).

In ref.(Hori, 1996) we have calculated the BRST cohomology classes in the bilocal model in

order to get the physical Hilbert space. We found there that there exists non-trivial physical

states only in the dimensions D = 2 or D = 4. In the case D = 2 there exists vector

states, while in the case D = 4 only scalar states are permitted. However, the analysis is

very complicated and it seems difficult to obtain simple scheme for calculations of quantum

phenomena.

The reason for the difficulty is in the fact that one can not define such an inner product in

the Hilbert space that L1 is hermitian conjugate to L−1. To obtain physical states represented

by functions of spacetime coordinates we are forced to solve the over determined system

L±1|pys〉 = L0|pys〉 = 0, which has no solution.

A field theory, however, has been constructed (Hori, 1993) by using the Chern-Simons action

whose exterior derivative is replaced by the BRST operator as Witten has done (Witten, 1986)

in a string field theory. But the formulation is formal and a concrete calculation of physical

processes has not been achieved due to lack of connections to the first quantized theory.

This situation has been partially overcome by a modification of the model, where two particles

in the bilocal model are replaced by the real and the imaginary parts of one complex particle

(Hori, 2009). The model is illustrated in the next section.

4. Complex particle

4.1 Action and invariance

The improved version of the N = 2 model is defined as follows. Let us consider the spacetime

with complex coordinates zµ, (µ = 0, 1, 2, ..D − 1), and a particle moving in the spacetime,

the complex coordinates of which are functions of the internal time τ. The einvein g is also

59Quantum Theory of Multi-Local Particle
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complex valued function of τ. The proposed action is

IC =
∫

dτ LC, LC =
ż2

2g
+ iκżz̄ + c.c. (44)

The action describes dynamics of two real coordinates corresponding to the real and the

imaginary parts of z = x + ia. We call the object defined above as complex particle (Hori,

2009).

The action is invariant under the transformations

δz = ǫż +
ǫ0

ḡ
˙̄z, δg =

d

dτ
(ǫg) + 4iκǫ0g, (45)

where ǫ and ǫ0 depend on τ. While ǫ has arbitrary complex value, ǫ0 is real and subjected to

the constraint,

ǫ̇0 − iκgḡ(ǫ − ǭ) = 0. (46)

Classical solutions, the constraint structure and so force are analyzed in the similar way as

those of the bilocal model. Thus we recapitulate the results. In the gauge choice

g−1 = 2κ|τ − τ0|, (47)

it turns out that in the kinetic terms of the action x(real part) and a(imaginary part) have

correct and wrong signs, respectively. Thus x’s are physical variables, while a’s are ghosts.

The solution for z = x + ia to the equations of motion is

x(τ) = x0 + (τ − τ0)k +
e

τ − τ0
, (48)

a(τ) = a0 + s(τ − τ0)

(

(τ − τ0)k +
e

τ − τ0

)

, (49)

where s(τ) is the step function, and k and e are D-dimensional light-like vectors with real

valued components, which are mutually orthogonal.

The canonical momenta of z and z̄ are

p =
ż

g
+ iκz̄,

p̄ =
˙̄z

ḡ
− iκz, (50)

while those of g and ḡ, denoting π and π̄, respectively, vanish. Note that the momenta (50)

are not conserved quantities with respect to τ, and the conserved momenta, denoted p̃ and ˜̄p,

are

p̃ = p + iκz̄,

˜̄p = p̄ − iκz, (51)
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while the generators of Lorentz transformations defined by Mµν = z[µ pν] + z̄[µ p̄ν] are

conserved. The deviation of p’s and p̃’s (and their c.c.) comes from the fact that under

global translations the action is invariant but the lagrangian varies by total derivatives. For an

arbitrary variation δz (and δz̄), the identity

∫

dτ

[

[EL] +
d

dτ
( p̃δz + ˜̄pδz̄)

]

= 0 (52)

holds, where

[EL] =

(

∂L

∂z
−

d

dτ

∂L

∂ż

)

δz + c.c. (53)

vanishes if the Euler-Lagrange equations are satisfied. Since in the translations, δz and δz̄ are

constants, p̃ and ˜̄p are conserved. From the invariance under the Lorenz transformations we

get Mµν as conserved quantities.

Now the total Hamiltonian generating τ development is

HT = gχ1 + ḡχ−1 + vπ + v̄π̄, (54)

where

χ1 =
1

2
(p − iκz̄)2,

χ−1 =
1

2
( p̄ + iκz)2, (55)

and v and v̄ are the Dirac variables corresponding to the primary constraints, π ∼ π̄ ∼ 0. The

preservation of the primary constraints requires the secondary constraints, χ1 ∼ χ−1 ∼ 0, and

the preservation of them requires the tertiary constraint

χ0 =
1

2
(p − iκz̄)( p̄ + iκz) ∼ 0. (56)

These constraint functions form a SL(2, R) algebra with regard to Poisson brackets:

{χn, χm} = −2iκ(n − m)χn+m, (n, m = 0,±1), (57)

and generate gauge transformations as argued in the bilocal model.

4.2 1st quantization

Now let us proceed to the quantum theory. We represent the canonical variables as operators

on the Hilbert space of differentiable and square integrable functions of z and z̄. The state

vectors are functions in the Hilbert space. The inner product of two states φ1, φ2 is defined by

〈φ1|φ2〉 =
∫

dDzdD z̄ φ∗
1 (z, z̄)φ2(z, z̄). (58)
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A dynamical variable q is replaced by the differential operator −i∂/∂q. The classical constraint

functions are replaced by

L1 =
1

4κ
(−i∂ − iκz̄)2, (59)

L−1 =
1

4κ
(−i∂̄ + iκz)2, (60)

L0 =
1

4κ
(−i∂̄ + iκz)(−i∂ − iκz̄) + α, (61)

where ∂ = ∂/∂z, and the constant α represents the ambiguity due to the operator ordering.

L0,±1 satisfy the algebra,

[Ln, Lm] = (n − m)

(

Ln+m −

(

α −
D

4

)

δn+m

)

, (n, m = 0,±1). (62)

The expression for the BRST operator is the same as eq.(42), and the requirement of the

nilpotency of it is guaranteed by α = D/4.

In the classical theory the constraints, χn = 0, (n = 0,±1), are imposed for guaranteeing the

equivalence of the lagrangian and the hamiltonian formulations 2. These constraints define

the physical subspace of whole phase space. In the quantum theory we cannot regard them

neither as operator equations nor as the equations to physical states, L0,±1|phys〉 = 0, since

they have no solution. Hence the conditions are relaxed so that a product of the constraint

operators has vanishing matrix elements between any physical states, |ϕ〉 and |φ〉:

〈ϕ|Ln1 · · · LnN |φ〉 = 0. (63)

This is realized by requiring

L1|φ〉 = L0|φ〉 = 0, (64)

for physical state |φ〉, since we have 〈φ|L−1 = 0 by virtue of the Hermiticity, L†
1 = L−1, the

property lacking in the original bilocal model. The above conditions for physical states are

analogous to those of string model, and seems most natural ones.

In order that our model is physically meaningful there should exist the eigenstates of

momentum. As is shown shortly this requirement gives rise to restriction on the space

time dimension. The conserved quantities derived by the invariance under the space time

translations are

p̃ = −i∂ + iκz̄,

˜̄p = −i∂̄ − iκz. (65)

Thus the momentum should be combinations of these quantities. From the reality of

eigenvalues, it should have the form P = β p̃ + β̄ ˜̄p, with arbitrary complex constant β. Any

2 Strictly speaking, only the primary constraints are involved for the equivalence, and the secondary and
tertiary constraints are imposed on the initial conditions so that one stays on the subspace defined by the
primary constraints in later τ.
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two of the eigenstates of P would be taken as independent momentum eigenstates. However,

we regard one of them as the physical momentum state, since these two operators are not

mutually commuting and have not simultaneous eigenvalues. Any choice of β is physically

equivalent because it changes by global rotations. Here we choose the momentum of the real

part of z as the physical momentum, which corresponds to β = 1 (see eq.(52)).

Now let us solve the following equations:

L1|k〉 = L0|k〉 = 0, (66)

P|k〉 = k|k〉. (67)

If one puts

|k〉 = e−κzz̄ f (z, z̄), (68)

the condition L1|k〉 = 0 reduces to ∂∂ f = 0, i.e., f (z, z̄) is an harmonic function with respect to

z. The eigenvalue equation P|k〉 = k|k〉 reduces to

(∂ + ∂̄ − 2κz̄ − ik) f (z, z̄) = 0. (69)

This equation is of the form with separate variables, and has the solution of the form

g1(z)g2(z̄). The solution is written as

f (z, z̄) = eik1z+i(k−k1)z̄+κz̄2
, (70)

with arbitrary separation constant k1. Multiplying arbitrary function a(k1) to (70), and

integrating over k1, we obtain the general solution to (69) as

f (z, z̄) = eikz̄+κz̄2
g(y), y = i(z̄ − z), (71)

where g(y) is an arbitrary differentiable function of real arguments y’s, which can be Fourier

expanded. Since f (z, z̄) is harmonic with respect to z, g(y) must be an harmonic function.

Finally, the condition L0|k〉 = 0 reduces to

(∂̄∂ − 2κz∂ − 4κα) f (z, z̄) = 0. (72)

Substituting (71) into this, we get

[(

yµ −
kµ

2κ

)

∂

∂yµ + 2α

]

g(y) = 0. (73)

If we put

g(y) =

[

(

y −
k

2κ

)2
]−α

h

(

y −
k

2κ

)

, (74)
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eq.(73) and the harmonicity of g are reduced to

uµ ∂

∂uµ h(u) = 0, (75)
(

u −
K

u2

)

h(u) = 0, K = 2α(D − 2(α + 1)) =
1

4
D(D − 4), (76)

where u = ∂2/∂uµ∂uµ and u’s are D-dimensional real coordinates. These equations are

solved by the pseudo-harmonic analysis in D-dimensions. Transforming to the pseudo-polar

coordinates 3, (r, θ1, θ2, ..., θD−1), we see that from eq.(75) h does not depend on r. Since the

d’Alembertian u is written as r∂/∂r + (1/u2)∆, where ∆ is the Laplace-Beltrami operator

on S1,D−2, we see from (76) that ∆h = Kh. It is well known in the theory of spherical functions

(Takeuchi, 1975) that if the Laplace-Beltrami operator on SD−1 have single valued bounded

eigenfunctions, then the eigenvalues must be of the form K = −ℓ(ℓ + D − 2) with non

negative integer ℓ. Hence if we take the Eucledian signature for the metric we get D = 4 − 2ℓ,

i.e., D = 2 or D = 4. In the present case, however, the signature of the metric is Minkowskian,

and the base space is S1,D−2 which is non-compact. The theory of pseudo-spherical functions

on non-compact space (Raczka et al., 1966) (Limi’c et al., 1966) (Limi’c et al., 1967) (Strichartz,

1973) shows variety of series of eigenvalues, including continuous as well as discrete ones.

An explicit form of the eigenfunctions are recently obtained for D = 3 (Kowalski et al., 2011).

The real eigenvalues of single valued eigenfunctions on the non-compact base space are of the

same form as those of the compact space except some supplementary continuous series. Here

we restrict ourselves to the former cases.

We have assumed here that the eigenfunctions are single valued. If one permits double valued

eigenfunctions a half integer value of K should be taken into account. The double values might

come from rotations around y0 axis. Since physical meaning of the rotations around the time

axis is not clear, we simply do not consider the effects.

The eigenfunctions are expressed by Gegenbauer’s polynomials for general ℓ, but are

constants for ℓ = 0. In the case D = 2, eqs.(75) and (76) are directly solved 4, and we get

h(u) = (u0 ± u1)(u2)−1/2.

The physical eigenstates of the momentum in four and two dimensions is written as

|k〉 ∝
eikz̄+κz̄(z̄−z)

(

z − z̄ − ik
2κ

)2
×

{

1 (for D = 4)

z0 − z̄0 − ik0

2κ ±
(

z1 − z̄1 − ik1

2κ

)

(for D = 2).
(77)

There are spurious states defined by Ln
−1|k〉, (n = 1, 2, ..), which are orthogonal to all physical

states and have zero norm. In the string theory there are many spurious states which are

physical and have zero norm, especially in the critical dimension. Existence of these states in

the string theory suggests some underlying gauge invariance, since they must be decoupled

from physical S-matrix. In the present model, however, spurious states are all unphysical by

3 According to the metric ηµν = (−1, 1, 1, .., 1), the pseudo-polar coordinates are defined by y0 =

r sinh θ1, y1 = r cosh θ1 sin θ2 · · · sin θD−1, y2 = r cosh θ1 sin θ2 · · · cos θD−1, ..., yD−1 = r cosh θ1 cos θ2.
4 The solution D = 2 was overlooked in ref.(Hori, 2009).
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virtue of the constraint algebra without central term, and do not enter in physical S-matrix

from the outset.

4.3 Toward a field theory

A field theory based on the complex particle might have some gauge symmetries in the field

theoretic sense, which may have some connections with the SL(2, R) in the first quantized

theory. The most likely candidate for the action of the field theory may be the Chern-Simons

form written, for example, as (Hori, 1993)

I =
∫

d3cdDzdD z̄ V(z)
(

Ai ⋆ QAi −
g

3
ǫijk Ai

⋆ Aj
⋆ Ak

)

, (78)

where Q is the BRST charge and ⋆ is some associative binary operator like a convolution. V(z)
is a possible measure factor. The fields Ai, (i = 1, 2, 3) are fermionic and may be written as

Ai = ∑n cnΨi
n with ghost variables cn.

The nomenclature of “Chern-Siomons” comes from the Chern-Simons gauge theory on

three-manifold, which has been investigated in connection with knot theory. The formal

resemblance of our model to the C-S gauge theory is that the wedge product corresponds

to the operator ⋆, which we call star product, and the exterior derivatives correspond to Q,

which are both nilpotent. The star product satisfies

A ⋆ B(x) = (−1)F(A)F(B)B ⋆ A(x), (79)

where F(A) = 1 for fermionic A and F(A) = 0 otherwise.

Now the action is invariant under the gauge transformations:

δAi = QΛi + gǫijkΛj ⋆ Ak, (80)

where Λi is arbitrary bosonic parameters depending on z’s and c’s. A necessary condition for

the invariance is the Leibniz rule for Q expressed as

Q(A ⋆ B) = Q(A) ⋆ B + (−1)F(A)F(B)A ⋆ Q(B), (81)

for arbitrary fields A and B. Then the action is invariant if the integral of total derivative

vanishes:
∫

d3cdDzdD z̄ V(z) QA = 0. (82)

Expanding the fields Ψi
n in powers of the imaginary parts of z, the coefficients may represent

physical fields. After integrations over the imaginary parts of z’s and ghost variables, the

action is expressed as integral of these fields over the real parts of z’s, which has some gauge

invariance.

Since there is no guideline for defining the star product apart from the condition (81), let us

examine the Leibniz rule in the following simple representation. Consider the representation
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of sl(2, R), on the space of functions of a single variable x, defined by

λ−1 = x − x0, λ0 = (x − x0)
d

dx
+ a, ł1 = (x − x0)

d2

dx2
+ 2a

d

dx
, (83)

where x0 is a constant, and a is a constant which appears due to the ordering ambiguity. λ’s

satisfy the algebra,

[λn, λm] = (n − m)λn+m, (n, m = 0,±1). (84)

The natural choice for the (wedge) product of two functions, which permits the Leibniz rule,

may be the convolution defined by

A ∧ B(x) =
∫ x

x0

dx′ A(x + x0 − x′)B(x′). (85)

The limits in the integration in the definition of the product is so chosen as it is

(anti-)commuting:

A ∧ B(x) = (−1)F(A)F(B)B ∧ A(x). (86)

Also we see from (85),

A ∧ B(x0) = 0. (87)

This suggests that the representation space, S, should be restricted to the functions which

vanish at z = z0:

S = { A | A ∈ C2, A(x0) = 0}. (88)

Now let us examine the Leibniz rule for the exterior derivative defined by

d = ∑
n=0,±1

cnłn −
1

2 ∑
n,m=0,±1

(n − m)cncm
∂

∂cn+m
. (89)

As in the ordinary exterior derivative, d is nilpotent. After straightforward calculations we

obtain

d(A ∧ B)− (dA ∧ B + A ∧ dB) = c1

[

2(1 − a)A ∧ B′ + (2a − 1)A0B + AB0

]

+(1 − a)c0 A ∧ B, (90)

where A0 = A(x0), B0 = B(x0), B′ = dB/dx. Thus we find that if and only if a = 1 and

A, B ∈ S then d behaves like a derivative operator.

Next let us examine the eigenstate expansions. The basis functions uk = (z − z0)
k, (k =

0, 1, 2, ..) satisfy

λ0u0 = au0, λ1u0 = 0, uk = λk
−1u0. (k = 1, 2, ..) (91)
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A function in S is expanded as

A(x) =
∞

∑
k=1

uk

k!
Ak. (92)

Note that u0 = 1, representing the ’ground state’, does not belong to S. The wedge product of

A and B in S is expanded as

A ∧ B(x) =
∞

∑
k=1

uk

k!

k−1

∑
m=0

Ak−m−1Bm. (93)

The summation in (93) over m is, in fact, carried out from 1 to k − 2 due to A0 = B0 = 0. The

k-th component of the wedge product is thus

(A ∧ B)k =
k−2

∑
m=1

Ak−m−1Bm. (94)

Finally, let examine whether an integration of dA vanishes for any A. Since the ghost

derivative parts in dA are of the form c1c−1∂/∂c0, c0(c1∂/∂c1 − c−1∂/∂c−1), they vanish after

integrations by parts. Thus it is sufficient to check only that
∫

dx V(x)λn A = 0, (n = 0,±1),
with some measure factor V. This leads to V(x) = δ(x − x0) and a = 0. Therefore it is

impossible in the present representations to satisfy all the requirements.

Now go back to the complex particle model. Let us define the basis functions vk as follows:

L0v0 = αv0, L1v0 = 0, vk = Lk
−1v0. (k = 1, 2, ..) (95)

where

v0 = e(ip+κ(z̄−z))z̄, α =
D

4
. (96)

v0 is the eigenstate of the momentum with eigenvalue p, but not a physical state, since

L0v0 �= 0. The basis vk(p, z, z̄), (k = 0, 1, 2, ...) may span a dense subset of functions which

are differentiable and square integrable. We consider fields which are expanded as

A =
∞

∑
k=0

vk

k!
Ak, (97)

where Ak are functions of the ghost variables and not depend on z’s . The each component of

a field A is denoted as Ak. In analogy with (94) let us define the star product as

(A ⋆ B)k =
k+δ

∑
m=0

(

Ak−m+βBm+γ + Am+γBk−m+β

)

, (98)

where integer constants, β, γ and δ, are introduced so that the Leibniz rule might be

satisfied. The star product satisfies the (anti-)symmetry, A ⋆ B = (−1)F(A)F(B)B ⋆ A, and the

associativity, (A ⋆ B) ⋆ C = A ⋆ (B ⋆ C).
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The Leibniz rule can be examined merely using the commutation relations (62) with α = D/4,

and it is sufficient to check for the first term in the BRST charge, since the second terms are in

the form of derivatives. For an operator O writing as

Leib[O; A, B] = (OA) ⋆ B + A ⋆ (OB)− O(A ⋆ B), (99)

we get

Leib[L0; A, B]k = (β + γ + α)
k+δ

∑
m=0

(Ak−m+βBm+γ + Ak−m+γBm+β), (100)

Leib[L−1; A, B]k = (β + γ + 1)
k+δ

∑
m=0

(Ak−m+βBm+γ−1 + Am+γ−1Bk−m+β)

−(1 + β)(Ak+βBγ−1 + Aγ−1Bk+β), (101)

Leib[L1; A, B]k = (β + γ + 2α − 1)
k+δ

∑
m=0

(Ak−m+βBm+γ+1 + Am+γ+1Bk−m+β)

+(
¯
Ak+β+1Bγ + AγBk+β+1)

−(β + 2α − 1 − δ)(A−α+βBk+α+γ+1 + Ak+α+γ+1B−α+β). (102)

The bulk parts (the summations) of these quantities vanish if we put

β + γ + α = 0, (103)

β + γ + 1 = 0, (104)

β + γ + 2α − 1 = 0, (105)

which are equivalent to

(D/4 =)α = 1, β + γ = −1. (106)

The marginal parts (single terms) vanish if

β = −1, γ = 0, δ = 0, (107)

and A0 = B0 = 0. Thus we see that the Leibniz rule for the BRST charge is valid only if D = 4

and restricting the function space to

S = {A|A0 = 0}. (108)

The star product should be

(A ⋆ B)k =
k

∑
m=1

(Ak−m−1Bm + AmBk−m−1) . (109)

Note (A ⋆ B)k = 0 for k ≤ 2. The reason for restriction to D = 4 seems a technical one in

building a field theory, while the restriction to D = 2 or D = 4 in the first quantized theory is

intrinsic in the model.

Finally let us examine the vanishing of the integral of the total derivatives of the form QA. As

in the simple representation (83), it is sufficient to check
∫

VLn A = 0, (n = 0,±1). Integrating
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by parts, the conditions become KnV = 0, (n = 0,±1), where

K1 =
1

4κ
(i∂ − iκz̄)2, (110)

K−1 =
1

4κ
(i∂̄ + iκz)2, (111)

K0 =
1

4κ
(i∂ − iκz̄)(i∂̄ + iκz) + α, α =

D

4
. (112)

Now let us find the explicit form of V(z, z̄). Putting

V(z, z̄) = eiκz̄yG(y), y = i(z̄ − z), (113)

we find after straightforward calculations that the conditions are

K1V(z) = −
1

4κ
eiκz̄y

yG(y) = 0, (114)

K−1V(z) = eiκz̄y

(

y∂y +
1

2
(y2 + D)

)

G(y) = 0, (115)

K0V(z) = −
1

2
eiκz̄y

(

y∂y + D − 2α
)

G(y) = 0. (116)

From the last two equations we see y2G(y) = 0, so we find G(y) ∝ (.y
2). Thus the solution

must be

V(z, z̄) = eiκz̄yδ(y2). (117)

Substituting this back into (114)-(116), we get

K1V(z) = −
1

2κ
eiκz̄y

[

(D − 4)δ′(y2) + 2(2δ′(y2) + y2δ′′(y2))
]

(118)

K−1V(z) =
1

2
eiκz̄y

[

(D − 4)δ(y2) + y2δ(y2) + 4(δ(y2) + y2δ′(y2))
]

(119)

K0V(z) = −
1

4
eiκz̄y

[

(D − 2 − 2α)δ(y2) + 4(δ(y2) + y2δ′(y2))
]

. (120)

From the identity xδ(x) = 0, we see δ(x) + xδ′(x) = 0 and 2δ′(x) + xδ′′(x) = 0. Hence we see

that KnV = 0, (n = 0,±1) if and only if D = 4. Once again D = 4 makes us happy!

The action of the field theory is an integral over z and z, where the imaginary part of z’s are

restricted on the light-cone.

5. Extension to N ≥ 3

5.1 Actions and gauge invariance

The action of the N-extended multi-local particle is defined by

IN =
∫

dτ LN , LN =
N

∑
a=1

1

2ga
ẋ2

a + ∑
a,b

κab ẋaxb, (121)
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where xa are the (real) coordinates of the N particles and each ga is the einbein of the a-th world

line which is parametrized by τ, and dots denote the derivatives with respect to internal time

τ. The difference of this N particle system from the ordinary free particles comes from the

second term in eq.(121), where κab is an arbitrary anti-symmetric constant matrix.

The action has the hidden local symmetry generated by

δxa = ǫa ẋa + ∑
b

sab
ẋb

gb
, (122)

δga =
d

dτ
(ǫaga) + kaga, (123)

where ǫa, sab and ka are infinitesimal local parameters constrained by sab = sba and

ṡab + 2κabgagb(ǫb − ǫa) + 2 ∑
c
(κacgascb + κbcgbsca) = gakaδab, (124)

In fact the variation of the lagrangian is

δLN =
d

dτ

[

∑
a

ǫa ẋ2
a

2ga
+ ∑

a,b

(κabǫaxb ẋa +
sab ẋa ẋb

2gagb
) + ∑

a,b,c

κabsacxb ẋc

gc

]

+
1

2 ∑
ab

(sab − sba)
ẋa

ga

d

dτ

(

ẋb

gb

)

+∑
a,b

[

1

2
ṡab + 2κabgagbǫb + ga

(

2 ∑
c

κacscb −
1

2
kaδab

)]

ẋa ẋb

gagb
. (125)

In order to fix the model we set the non-vanishing components of the anti-symmetric

parameter κab as in the following two cases:

(i) Closed N-particle (N ≥ 3):

κaa+1 = κ, (a = 1, ..., N − 1), κN1 = −κ, κab = −κba, (126)

(ii) Open N-particle (N ≥ 2):

κaa+1 = κ, (a = 1, ..., N − 1), κab = −κba, (127)

and other κ’s are set to zero, where κ is the coupling constant. The closed N-particle system is

characterized by the anti-symmetric matrix κab, each row (or column) of which has two non

vanishing elements, while in the open N-particle system this is valid except for the first (or

N-th) row (or column) corresponding to the two ends of the N particles. The bilocal particle

is the open 2-particle. In what follows we restrict ourselves to the open N-particle, since the

constraint structures in the canonical theories of the closed N-particle are rather complicated

compared with the open ones.

Now the number of the gauge degrees of freedom can be counted in the similar way as in the

bilocal particle, where the degrees of freedom of the initial condition are counted in suitable
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gauge condition. But this procedure is rather cumbersome in the lagrangian formalism

compared with the hamiltonian one.

However, a shortcut derivation of the physical degrees of freedom in the lagrangian formalism

is possible. The result coincides precisely with the hamiltonian one, if Dirac’s conjecture

holds. The reasoning is as follows. The number of the unphysical, i.e., the gauge degrees of

freedom is the number of the independent parameters and their time derivatives appeared in

the transformation rules, where a parameter and all of its (higher order) time derivative(s) are

formally regarded as independent. (For a skeptical reader we recommend to check the above

rule in the case of the Yang-Mills or the local Lorentz symmetries.)

The counting argument in the open N-particle system is as follows. The independent

transformation parameters are extracted by solving the constraint, eq.(124). For a = b in

eq.(124), we obtain ka in terms of ṡab and sab. For b = a + 1, we see ǫa(a = 2, ..., N) are

expressed in terms of ǫ1, ṡaa+1, (a = 1, ..., N − 1) and sab. Next, for b ≥ a + 2, we see ṡab are

expressed by sab. Thus we have the independent parameters, sab(
N(N+1)

2 ), ṡaa(N), ṡaa+1(N −
1) and ǫ1(1), where the numbers of each independent parameter are written in the

parentheses.

Substituting the above parameters into eqs.(122) and (123), we get the extra independent

parameters, s̈aa+1(N − 1) and ǫ̇1(1). Thus we have the total of 1
2 N(N + 1) + 3N independent

parameters in eqs.(122) and (123). However, a short manipulation shows that saa and ṡaa

actually do not appear or be absorbed into ǫa by shifting ǫa → ǫa +
saa
ga

. Hence, finally, we see

the number of the gauge degrees of freedom is 1
2 N(N + 1) + N. Among them N degrees of

freedom are used for fixing ga, and the remaining 1
2 N(N + 1) are of our interest. 1

2 N(N + 1)
constraints and the same number of gauge fixing conditions eliminate a part of the canonical

variables, xa, pa, (a = 1, 2, .., N), leaving 1
2 N(2D − N − 1) canonical pairs as physical. Hence

if N ≤ 2(D − 1) there are at least one physical degrees of freedom.

In the next subsection we show that the number of the first class constraints in the hamiltonian

formalism coincides precisely with the above number. This is in accordance with Dirac’s

conjecture, i.e., all of the first class constraints generate the gauge symmetry of the system.

5.2 Canonical theory

The algebraic structure of the symmetry is clarified in the canonical formalism. Introducing

the momenta pa and πa conjugate to xa and ga, respectively, and defining

Vab =
1

2
p
(−)
a p

(−)
b , (128)

p
(−)
a = pa − ∑

b

κabxb, (129)

we can express the total hamiltonian as

H
(N)
T = ∑

a
gaVaa + ∑

a
Λaπa, (130)
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where Λ’s are Dirac variables which can be set to arbitrary functions of canonical variables.

The Poisson brackets of V’s are given by

{Vab, Vcd} = κc(aVb)d + κd(aVb)c. (131)

Now let us derive the constraints for the canonical variables in the open N-particle system.

The primary constraints are πa ∼ 0, since the lagrangian does not contain ġ’s. The stability

of the primary constraints along the time development requires the secondary constraints

Vaa ∼ 0. The stability of the latter, in turn, requires Vaa+1 ∼ 0, (a = 1, ..., N − 1). In general,

the stability of Vaa+k ∼ 0 requires Vaa+k+1 ∼ 0. After all we have 1
2 N(N + 1) secondary

and tertiary constraints, Vab, which close under the Poison brackets, and form the first class

constraints.

Vab generate the gauge symmetry which has the form of eqs.(122) and (123) in the lagrangian

formalism, and transform the hamiltonian, eq.(130), into the same form but with different

coefficients of Vaa. This ambiguity of the coefficients is a reflection of the gauge invariance

and is removed by the gauge fixing.

5.3 Quantization

In order to quantize the system we replace p
µ
a ’s by −i∂µa, and we denote the quantum

operators obtained by this replacement by writing hats on these quantities. The generators

of the gauge transformations are defined by

V̂ab =
1

4

(

p̂
(−)
a p̂

(−)
b + p̂

(−)
b p̂

(−)
a

)

. (132)

The gauge algebra is expressed as
[V̂ab, V̂cd] = iκc(aV̂b)d + iκd(aV̂b)c. (133)

The ambiguities from the operator ordering are fixed by requiring the nilpotency of the BRST

operator as in the N = 2 theories, then the central terms in the gauge algebra also vanish.

The generators for the kinematic symmetry are as follows:

translations : p̂
(+)
a = p̂a + ∑

b

κabxb, (a = 1, ..., N) (134)

Lorentz tfm. : Mµν =
N

∑
a=1

p̂a[µxaν] (135)

where p̂aµ ≡ −i∂aµ. p̂
(+)
+a generate the translation of a-th particle. They form the following

algebra with a central term:

[Mµν, Mλρ] = iηρ[µ Mν]λ − iηλ[µ Mν]ρ, (136)

[Mµν, p̂
(+)
aλ ] = −iηλ[µ p̂

(+)
ν]a

, (137)

[ p̂
(+)
aµ , p̂

(+)
bν ] = 2iκab. (138)
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The algebra defined above contains the Poincaré algebra as a subalgebra. The crucial point is

the uncertainty relation (138). The momentum of each particle does not have a certain value

irrespective to the momentum of the neighboring particles. Another important feature is the

commutativity of the kinematic generators and those of gauge generators:

[V̂ab, p̂
(+)
µa ] = [V̂ab, Mµν] = 0. (139)

These relations assure the consistency of the gauge structure and the kinematic properties of

the model.

The first quantizations of the N-extended models may be achieved in the similar way as that

of the bilocal models. Chern-Simons type actions may be used in field theories. It is interesting

to know whether the critical dimensions exist also in the N-extended models. However, there

might be similar difficulties as in the bilocal model, and they may be overcome by improving

them to those like complex particle as is done in the bilocal model. We leave these problems

to future studies.

6. Summary

In the present paper we have analyzed the multi-local particle models especially emphasizing

on the complex particle. At first sight the guage degrees of freedom of the multi-local

particle are less than those of the canonical theory, which may lead to breakdown of Dirac’s

conjecture. The concept of physical equivalence is argued to be modified so that the guage

transformations are extend to whole algebra, recovering Dirac’s conjecture.

The constraint structure of the model of the complex particle is suited for the ordinary

quantization scheme as opposed to the original bilocal model, due to the Hermiticity property

of L±1. In the first quantization we see that, requiring the existence of the momentum

eigenstates which satisfy the physical state conditions, the dimension of the spacetime is

restricted to be two or four. The most natural action of the field theory might be of the form of

Chern-Simons one, where the exterior derivative is replaced by the BRST charge. It is rather

unexpected that the action has gauge invariance only in the four dimensions. This fact is

caused by the Leibniz rule of the BRST charge and the vanishing of the total derivative, i.e.,
∫

QA = 0, which are satisfied only in four dimensions.

Although the complex particle model is favorable in many respects than the original bilocal

model, the latter is more intuitive in that the classical solution is interpreted as a rigid stick.

As far as we know the bilocal model is the first example of relativistically admissible rigid

stick.

We extend the bilocal model to N ≥ 3 particle system, and obtain large classes of actions. The

larger the guage algebra, the less physical degrees of freedom. The models categorized into

two classes, i.e., open and closed types. In open N-particle system it turns out that the number

of the constraints and the corresponding gauge symmetry is 1
2 N(N + 1). Consequently the

physical degrees of freedom survives only if N ≤ 2(D − 1).

The models proposed here have not been aimed so far to phenomenological applications but

to the analysis in their theoretical aspects such as the gauge invariance or critical dimensions.
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Of course we do not intend to claim that the present model is the theory of the nature and

for that reason the dimension of our spacetime should be four. However, it is interesting that

there exist simple models other than the string, which have critical dimensions. We hope that

the future investigations along with the direction described here may open a new perspective

in the area of quantum gravity where some non-locality of a fundamental object should play

the central role in the Planck scale.
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