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2Tshwane University of Technology
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1. Introduction

Because, among other seismological observations, it is important to be able to predict the
location of the vibrating pattern of an earthquake, in this chapter we take the first tentative
steps towards including "Bryan’s effect" in a mathematical model for the seismic vibration
pattern of a layered slowly rotating vibrating planet or moon.
Historically, G.H. Bryan observed (in his article (Bryan, 1890)) that when a vibrating structure
is subjected to an inertial rotation, the vibrating pattern rotates within the structure at a rate
proportional to (but in general not equal to) the inertial angular rate. This effect has come to
be known as " Bryan’s effect". It is interesting to note that (Rayleigh, 1894) mentions Bryan’s
effect in § 233, but thereafter investigations of Bryan’s effect appear to have lain dormant
for about 75 years, reappearing in connection with a resonator gyroscope in 1965 in the
small Delco Wakefield, MA, USA R&D facility, according to (Rozelle, 2009). Rozelle states
that the resonator gyroscope "has been utilized in many applications over its developmental
lifetime: aircraft navigation, strategic missile navigation, underground borehole navigation,
communication satellite stabilization, precision pointing, and in deep space missions". The
effect may be useful in understanding the dynamics of pulsating stars in astrophysics and this
was mentioned in the paper (Shatalov et al., 2009) in which the theoretical background on this
chapter was discussed in general terms. For the constant of proportionality, Bryan made the
following calculation for a body consisting of a ring or cylinder:

BF =
Angular rate of the vibration pattern

Inertial angular rate of the vibrating body
. (1)

This constant of proportionality BF has come to be known as "Bryan’s factor". The
authors ( Zhuravlev & Klimov, 1988) investigated Bryan’s effect for an elastic, isotropic,
spherically symmetric body, rotating in three-dimensional space. Among other results, they
demonstrated that Bryan’s factor depends on the vibration mode. Their concise formulation
is given in general terms without computational detail or assumptions on the magnitude of
rotation or illustrative examples. In (Shatalov et al., 2009) "slow rotation" (explained below)
was assumed for spherical bodies consisting of concentric layers of elastic and/or acoustic
media. In that paper, some detail was supplied for computations and an illustrative example
was presented. They did not assume a "thin shell theory", as in (Loveday & Rogers, 1998),
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2 Will-be-set-by-IN-TECH

where Bryan’s effect is considered in a thin cylindrical shell for both high and low rotational
rates. Consequently the model described by (Shatalov et al., 2009) is readily adaptable to the
structure of an ideal planet or moon that is rotating slowly.
In this chapter we study Bryan’s effect applied to a rotating planet or moon that may have
several solid and liquid layers that are assumed to be rotating at the same rate. The rotation
rate is assumed to be small when compared to the lowest eigenvalue of vibration ω = 2π

T
where T is the period of oscillation of the vibration pattern for a natural mode of vibration. As
a first tentative approach, we discuss isotropic solid spherical layers that may be isotropically
damped as well as isotropic inviscid spherical liquid layers. If damping is present in the media
we expect to encounter, as a first approach, we assume that it will be isotropic and be light in
the sense that the "damping factor" will be substantially smaller than the lowest eigenvalue
of the system. Using Rayleigh’s dissipation function (Goldstein, et al.), we demonstrate that
light, isotropic, viscous damping does not influence Bryan’s effect or Bryan’s factor (Equation
(1)). Hence, in the sequel, we assume that the body is subjected to nondecaying vibrations
in one of its natural modes. The introduction of "impurities" such as prestress, mass-stiffness
imperfections and anisotropic damping effects into the calculations is important for real-life
situations (as opposed to ideal situations with at most isotropic, viscous damping) and has
been earmarked by us for further study. Indeed, we have recently published a spherical model
with varying mass density (Shatalov et al., 2011) that indicates that the rotation rate of the
vibrating pattern is nonlinear (as opposed to the linear rate for the ideal state discussed below)
and that this nonlinearity manifests itself as a "capture effect" whereby the rotation angle of
the vibration pattern varies periodically.

2. Preliminaries

Consider a coordinate system Oxyz and a composite spherical body, with its centre at the
origin O, consisting of concentric solid and or acoustic layers. Let N be the number of
concentric spherical media in the system and ai and ai−1 the inner and outer radii of the
ith layer respectively, i = 1, · · ·, N. We convert to spherical coordinates Orθφ as depicted in
Figure ??, where we have adopted the notation of (Spiegel, 1967).
Consider the position of rest P(r, θ, φ) of a vibrating particle in the ith layer where ai ≤ r ≤
ai−1. Let r̂ be the unit vector in the direction of increasing r. Hence the position vector of the

point P(r, θ, φ) is r = rr̂. Consider the usual unit vectors φ̂ =
∂r

∂φ
/

∣

∣

∣

∣

∂r

∂φ

∣

∣

∣

∣

(in the direction of

increasing φ) and θ̂ =
∂r

∂θ
/

∣

∣

∣

∣

∂r

∂θ

∣

∣

∣

∣

(in the direction of increasing θ). Let wi + ui + vi (where

wi = wir̂, ui = uiθ̂ and vi = viφ̂) represent the displacement from the position of rest of the
vibrating particle in the ith layer. For the sake of simplicity, we suppress subscripts i when no
confusion is expected. The position vector of the vibrating particle is thus

R = (r + w)r̂+ uθ̂+vφ̂. (2)

Now consider an inertial coordinate system OXYZ with origin O, where initially the
X, Y, Z-axes correspond to the x, y, z-axes respectively. Let the spherical body (the Orθφ ≡
Oxyz system) rotate about the z-axis with respect to inertial space OXYZ with a small constant
angular rate. If k̂ is the unit vector in the direction of increasing z, then let the angular velocity
Ω of the body be

Ω = εΩk̂ = εΩ(r̂ cos θ − θ̂ sin θ), (3)
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The Vibration of a Layered Rotating

Planet and Bryan’s Effect 3

Fig. 1. The spherical coordinate system Orθφ and its relation to the reference frame Oxyz that
is rotating slowly about the z−axis at rate εΩ, showing a particle in the ith layer with position
of rest P(r, θ, φ) and displacement from the position of rest u in the direction of increasing
angle θ, v in the direction of increasing angle φ and w in the radial direction.

where the dimensionless parameter ε is a measure of smallness. By the word “smallness” of
the angular rate of rotation εΩ we mean (as mentioned above) that this rate is substantially
smaller than the lowest eigenvalue of the system.

3. Gyroscopic effects in distributed bodies

The mathematical formulation given below (in spherical coordinates) is presented within the
framework of the linearised, three-dimensional theory of elasticity (Redwood, 1960). With
Lagrange’s equations (Spiegel, 1967) in mind, we formulate expressions for the (approximate)
kinetic and potential energies of the system of concentric spherical bodies. The absolute linear
velocity of the vibrating particle is

V =
dR

dt
+ Ω ×R =

(ẇ − εΩv sin θ)r̂+

(u̇−εΩv cos θ) θ̂+

(v̇ + εΩ (u cos θ + (r + w) sin θ)) φ̂. (4)
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Neglecting terms of O(ε2), the approximate kinetic energy of the system of concentric
spherical bodies is given by

K =
1

2

N

∑
i=1

ρi

2π
∫

0

π
∫

0

∫ ai−1

ai

{(

u̇2
i + v̇2

i + ẇ2
i

)

+ 2εΩ [(ui v̇i − u̇ivi) cos θ +

(v̇i(r + wi)− viẇi) sin θ]} r2 sin θdrdθdφ. (5)

The potential energy of the system of concentric spheres is

P =
1

2

N

∑
i=1

2π
∫

0

π
∫

0

∫ ai−1

ai

{

σi,rrǫi,rr + σi,θθǫi,θθ + σi,φφǫi,φφ +

σi,rθǫi,rθ + σi,θφǫi,θφ + σi,rφǫi,rφ

}

r2 sin θdrdθdφ (6)

where we use ”ρ” for mass density, ”σ” for stress and ”ǫ” for strain. We indicate Lamé’s
constants (from the theory of elasticity) by λi and μi for the ith layer. In a spherical coordinate
system, with the subscript i suppressed for the sake of brevity (i.e. we write σrr for σi,rr etc.), a
standard reference such as (Redwood, 1960) yields stresses

σrr = λ(ǫrr + ǫθθ + ǫφφ) + 2μǫrr; σθθ = λ(ǫrr + ǫθθ + ǫφφ) + 2μǫθθ ;

σφφ = λ(ǫrr + ǫθθ + ǫφφ) + 2μǫφφ;

σrθ = 2μǫrθ ; σθφ = 2μǫθφ; σrφ = 2μǫrφ; (7)

and strains

ǫrr =
∂w

∂r
; ǫθθ =

1

r

(

∂u

∂θ
+ w

)

; ǫφφ =
1

r

(

u cot θ +
1

sin θ

∂v

∂φ
+ w

)

;

ǫrθ =
∂u

∂r
+

1

r

(

∂w

∂θ
− u

)

; ǫθφ =
1

r

(

1

sin θ

∂u

∂φ
+

∂v

∂θ
− v cot θ

)

;

ǫrφ =
∂v

∂r
+

1

r

(

1

sin θ

∂w

∂φ
− v

)

. (8)

Assume that we can express the magnitude of the displacements ui, vi and wi of the vibrating

particle P in the ith body as follows:

ui(r, θ, φ, t) = Ui(r, θ) [C(t) cos mφ + S(t) sin mφ] , (9a)

vi(r, θ, φ, t) = Vi(r, θ) [C(t) sin mφ − S(t) cos mφ] , (9b)

wi(r, θ, φ, t) = Wi(r, θ) [C(t) cos mφ + S(t) sin mφ] , (9c)

where the nature of the functions C(t) and S(t) is still to be determined, Ui(r, θ), Vi(r, θ) and
Wi(r, θ) are unknown eigenfunctions of the system and m is the circumferential wave number.
Substituting Equations (9) into Equations (8), (7), (6) and (5) involves a long algebraic
calculation. A computer algebra system is handy for checking the calculation that yields:

K = π
[

I0

(

Ċ2 + Ṡ2
)

+ 2ΩI1

(

ĊS − CṠ)
)

]

(10)
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and
P = πI2

(

C2 + S2
)

. (11)

Here

I0 =
1

2

N

∑
i=1

ρi

π
∫

0

∫ ai−1

ai

(

U2
i + V2

i + W2
i

)

r2 sin θdrdθ, (12)

I1 =
N

∑
i=1

ρi

π
∫

0

∫ ai−1

ai

(Ui cos θ + Wi sin θ)Vir
2 sin θdrdθ, (13)

I2 =
N

∑
i=1

ρi

π
∫

0

∫ ai−1

ai

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 μi

⎡

⎢

⎢

⎣

(

m csc θ Ui + cot θ Vi −
∂Vi

∂θ

)2

+
(

∂Wi

∂θ
+ r

∂Ui

∂r
− Ui

)2

+

(

Vi + m csc θ Wi)− r
∂Vi

∂r

)2

⎤

⎥

⎥

⎦

+

(cot θ Ui + m csc θ Vi + Wi)×
[

(λi + 2 μi)

[

cot θ Ui+
m csc θ Vi + 2 ( λi + μi) W

]

+ λi

(

∂Ui

∂θ
+ r

∂Wi

∂r

)]

+

(

Wi +
∂Ui

∂θ

)

(

λi (cot θ Ui + m csc θ Vi) +

2 ( λi + μ i)Wi + (λi + 2μi)
∂Ui

∂θ
+ r λi

∂Wi

∂θ

)

+

r
∂Wi

∂r

[

λi

(

cot θ Ui + m csc θ Vi+

2 Wi +
∂Ui

∂θ

)

+ r (λi + 2 μi)
∂Wi

∂r

]}

sin θdrdθ. (14)

Because K = K(C, S, Ċ, Ṡ) and P = P(C, S), the Lagrangian

L(C, S, Ċ, Ṡ) = K − P (15)

yields two equations of motion from Lagrange’s equations (Goldstein, et al.):

d

dt

∂L

∂Ċ
−

∂L

∂C
= −

∂F

∂Ċ
, (16a)

d

dt

∂L

∂Ṡ
−

∂L

∂S
= −

∂F

∂Ṡ
(16b)

where

F =
1

2
(cĊ2 + sṠ2) (17)

is Rayleigh’s dissipation function, c and s are viscous damping constants. We assume isotropic
damping, that is, say, c = s = πD. We further assume that for the media we will encounter,
the "damping factor"

εδ =
D

2I0
(18)
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is substantially smaller than the lowest eigenvalue of the vibrating system. Computation of
Equations (16) yields a coupled system of second-order linear ordinary differential equations
(ODE):

C̈ + 2ηεΩṠ + ω2C + 2εδĊ = 0, (19a)

S̈ − 2ηεΩĊ + ω2S + 2εδṠ = 0, (19b)

where

− 1 ≤ η =
I1

I0
≤ 1 (20)

and

ω2 =
I2

I0
. (21)

We now show that η in Equation (20) is Bryan’s factor as given by Equation (1) and that ω in
Equation (21) is an eigenvalue for the vibrating system.
In order to interpret what the system of ODE (19) represents, combine the two equations by
considering the complex function Z = C + iS to obtain the single equation

Z̈ + 2ε(δ − iηΩ)Ż + ω2Z = 0. (22)

where, as is usual, i2 = −1. Writing Z in polar form

Z(t) = Y(t)eiβ(t) (23)

and assuming that β(t) has the linear form

β(t) = at, (24)

while Y(t) decays according to

Y(t) = X(t)e−bt, (25)

then
Z = X(t)e(ia−b)t (26)

and substituting into Equation (22), we obtain the ODE

Ẍ + 2 [(ia − b) + ε (δ − iηΩ)] Ẋ+
[

2ε (δ − iηΩ) (ia − b) + (ia − b)2 + ω2
]

X = 0. (27)

If we choose a = ηεΩ and b = εδ, then the coefficient of Ẋ vanishes in Equation (27) and we
obtain the ODE

Ẍ + ν2X = 0 (28)

where
ν2 = ω2 − ε2 (δ − iηΩ)2 (29)

Neglecting O(ε2), we obtain
ν ≈ ω. (30)

Consequently Equation (28) approximates the equation of motion of a harmonic oscillator.
Equations (19) can now be viewed in the form

Z(t) =
[

e−δtX(t)
]

eiηεΩt. (31)
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These equations represent a "vector" in the complex plane with its size varying like a damped
harmonic oscillator and its position varying at a rate ηεΩ (in the rotating reference frame
Oxyz). Thus, according to Equation (1) , η is Bryan’s factor for the system. Consequently,
neither Bryan’s effect nor the value of Bryan’s factor η, depends on the inclusion of light
isotropic viscous damping in the model and we will thus neglect damping in the sequel. The
rotation of the vibrating pattern is in the direction of rotation of the system if η > 0 and in
the opposite direction if η < 0. Equations (28) and (30) show that ω is an eigenvalue of the
vibrating system.
Taking Equation (30) into account, Equation (28) has a general solution of the form

X(t) = A cos(ωt + γ) (32)

where the amplitude A and phase angle γ are arbitrary constants. Consequently, neglecting
damping, from Equation (31) we obtain

C + iS = A cos(ωt + γ)eiηεΩt. (33)

Equating real and imaginary parts we have a good approximation

C(t) = A cos ηεΩt cos(ωt + γ), (34a)

S(t) = A sin ηεΩt cos(ωt + γ) (34b)

and so initially, that is, when t ≈ 0, we find that

C(t) ≈ A cos(ωt + γ), (35)

S(t) ≈ 0. (36)

4. Eigenfunctions

In order to determine the nature of Bryan’s constant η (Equation (20)) and the square of the
corresponding eigenvalue ω (Equation (21)), we neglected O(ε2). We are going to demonstrate
that it is also feasible to neglect the small rotation rate εΩ when we derive expressions for
the eigenfunctions Ui(r, θ), Vi(r, θ) and Wi(r, θ), i = 1, · · ·, N, as given in Equations (9).
Indeed, assume that we have a system of partial differential equations (PDE) involving the
eigenfunctions Ui(r, θ), Vi(r, θ) and Wi(r, θ). Using the small parameter ε and a perturbation
method Nayfeh (1973), assume that we have an asymptotic expansion

Ui(r, θ) = Ui,0(r, θ) + εUi,1(r, θ) + ε2Ui,2(r, θ) + · · ·, (37)

where the Ui,j(r, θ), j = 0, 1, 2, · · · are independent of ε and Ui,0(r, θ) is that part of the
solution when ε = 0. A similar argument is valid for the eigenfunctions Vi(r, θ) and Wi(r, θ).
Substituting these three expansions into Equations (12) and (13) and again neglecting all term
of O(ε2), the formula for η given in Equation (20) yields

η =

2 ∑
N
i=1 ρi

π
∫

0

∫ ai−1

ai

[(

Ui,0 cos θ + Wi,0 sin θ
)

Vi,0 + O(ε)
]

r2 sin θdrdθ

∑
N
i=1 ρi

π
∫

0

∫ ai−1

ai

[

U2
i,0 + V2

i,0 + W2
i,0 + O(ε)

]

r2 sin θdrdθ

. (38)
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Now write Bryan’s factor η as an asymptotic expansion

η = η0 + εη1 + ε2η2 + · · · (39)

where the ηj, j = 0, 1, 2, · · · are independent of ε and η0 is given by Equation (38) when ε = 0,
that is

η0 =

2 ∑
N
i=1 ρi

π
∫

0

∫ ai−1

ai

[(

Ui,0 cos θ + Wi,0 sin θ
)

Vi,0

]

r2 sin θdrdθ

∑
N
i=1 ρi

π
∫

0

∫ ai−1

ai

[

U2
i,0 + V2

i,0 + W2
i,0

]

r2 sin θdrdθ

. (40)

Hence, because we neglect O(ε2), Equation (39) yields

εη = εη0 + O(ε2) ≈ εη0 (41)

and so
η ≈ η0. (42)

A similar result is valid for the square of the eigenvalue ω determined by Equation (21).
Consequently, because only the eigenfunctions of a non-rotating body need be considered
for the purposes of numerically calculating η, in the sequel we will use the notation ui for ui,0,
Ui for Ui,0, etc. Indeed, using (Redwood, 1960) and our notation for stresses, the equations of
motion of an isotropic solid, nonrotating vibrating body in spherical coordinates are

ρ ∂2u
∂t2 = ∂σrr

∂r + 1
r

∂σrθ
∂θ + 1

r sin θ
∂σrφ

∂φ +
2σrr−σθθ−σφφ+cot θ σrθ

r , (43a)

ρ ∂2v
∂t2 = ∂σrθ

∂r + 1
r

∂σθθ
∂θ + 1

r sin θ
∂σθφ

∂φ +
3σrθ+cot θ (σθθ−σφφ)

r , (43b)

ρ ∂2w
∂t2 =

∂σrφ

∂r + 1
r

∂σθφ

∂θ + 1
r sin θ

∂σφφ

∂φ +
3σrφ+2 cot θ σθφ

r . (43c)

The stresses are given by Equation (7). The coupled system of second-order PDE given by
Equations (43) for the three displacement components u, v and w can be uncoupled directly,
but this leads to a sixth-order PDE. Hence, in a manner similar to that explained in (Eringen
& Suhubi, 1975), we express the displacement components of Equations (43) in terms of
derivatives of potentials Φ = Φ(r, θ, φ), χ = χ(r, θ, φ) and Ψ = Ψ(r, θ, φ) as follows:

u =
{

1
r

∂
∂θ

[

Φ +
∂(rχ)

∂r

]

+ 1
a sin θ

∂Ψ
∂φ

}

cos (ωt + γ) , (44a)

v =
{

1
r sin θ

∂
∂φ

[

Φ +
∂(rχ)

∂r

]

− 1
a

∂Ψ
∂θ

}

cos (ωt + γ) , (44b)

w =
{

∂Φ
∂r +

∂2(rχ)
∂r2 + r∇2χ

}

cos (ωt + γ) , (44c)

where ∇2 the Laplace operator in spherical coordinates, ω is the eigenvalue mentioned above,
γ is some phase angle (see Equation (32)) and a is a nonzero constant with the dimension of
length. When Equations (44) are substituted into Equations (43) and the resulting equations
of motion are uncoupled, it is found that each potential Φ, χ and Ψ satisfies the Helmholtz
equations

∇2Φ + k2
1Φ = 0, ∇2χ + k2

2χ = 0, ∇2Ψ + k2
2Ψ = 0 (45)
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with wave numbers

k1 = k1(ω) = ω
√

ρ/(λ + 2μ), (46a)

k2 = k2(ω) = ω
√

ρ/μ. (46b)

In order to obtain initial (at t ≈ 0) agreement with our choice of Equations (9), the appropriate
solutions to Equations (45) are

Φm,n (r, θ, φ) =

[B1 jn (k1r) + B2yn (k1r)] Pm
n (cos θ) cos (mφ) , (47a)

χm,n (r, θ, φ) =

[B3 jn (k2r) + B4yn (k2r)] Pm
n (cos θ) cos (mφ) , (47b)

Ψm,n (r, θ, φ) =

[B5 jn (k2r) + B6yn (k2r)] Pm
n (cos θ) sin (mφ) , (47c)

where, as usual, jn(kr) =
√

π
2kr Jn+1/2(kr) and yn(kr) =

√

π
2kr Yn+1/2(kr) represent the

spherical Bessel and Neumann functions respectively where Jn+1/2 and Yn+1/2 represent the
Bessel and Neumann functions respectively, while Pm

n is the associated Legendre polynomial.
The symbols B1, B2, · · ·, B6 are arbitrary constants (if the body contains the centre O, then the
constants B2 = B4 = B6 = 0). By substituting Equations (47) into Equations (44) we obtain
the nature of the eigenfunctions U(r, θ), V(r, θ) and W(r, θ) as given in Equations (9).
The motion of a compressible, inviscid acoustic medium is represented by the following wave
equation:

∇2 p =
ρ
κ

∂2 p
∂t2 , (48)

where κ is the bulk modulus and ρ the mass density of the acoustic medium. With the wave
number

k3 = k3(ω) = ω
√

ρ/κ, (49)

an appropriate solution to PDE (48) is

pm,n (r, θ, φ, t) =

{[B7 jn (k3r) + B8yn (k3r)] Pm
n (cos θ) cos (mφ)} cos (ωt + γ) , (50)

where p = pm,n (r, θ, φ, t) is the pressure in the acoustic medium and B7, B8 are arbitrary
constants. Particle displacement of the acoustic medium in the radial direction is

w = 1
ρω2

∂p
∂r . (51)

In the sequel, keep in mind that for j = 1, 2, 3 and layers i = 1, · · ·, N, we will write ki,j for kj

in layer i, etc.

5. Boundary and continuity conditions

Observing Equations (44) it is possible to distinguish between spheroidal and torsional modes.
For the spheroidal mode we assume that Ψi = 0. In this case the stress components of the
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solids are

σi,rr =
[

2μi
∂2Φi

∂r2 − λik
2
i,1Φi

]

+ 2μi

[

∂3(rχi)
∂r3 + k2

i,2
∂(rχi)

∂r

]

, (52a)

σi,rθ =
2μi

r
∂
∂θ

{

(

∂Φi
∂r − Φi

r

)

+

[

r ∂2χi

∂r2 + ∂χi

∂r +

(

rk2
i,2

2 − 1
r

)

χi

]}

, (52b)

σi,rφ =
2μi

r sin θ
∂

∂φ

{

(

∂Φi
∂r − Φi

r

)

+

[

r ∂2χi

∂r2 + ∂χi

∂r +

(

rk2
i,2

2 − 1
r

)

χi

]}

, (52c)

where i = 1, 2, 3, 4, 6 denotes a solid layer in the spherical structure. Indeed, here we assume
i = 1 for the outer solid layer (“crust”), i = 2 for the next inner layer (“upper mantle-1”), i = 3
for the “upper mantle-2”, i = 4 for the “lower mantle” and i = 6 for the “inner solid core”.
We do not use i = 5 in the list of the solids because this describes the “liquid outer core”.
For the investigation of the torsional modes we assume that Φi = 0 and χi = 0 and hence the
corresponding stress components are

σi,rθ =
μi

a sin θ
∂

∂φ

(

∂Ψi
∂r − Ψi

r

)

, (53a)

σi,rφ = −
μi

a
∂
∂θ

(

∂Ψi
∂r − Ψi

r

)

. (53b)

Let us model a spherical “planet” with solid “inner core”, four solid layers and one liquid
layer. Assume that the outer radius of the planet is r = a and that the boundary between
the “crust” and the “upper mantle-1” is located at radius r = a1. Furthermore, assume that
the boundary between the “upper mantle-1” and the “upper mantle-2” is situated at radius
r = a2, while at r = a3 we find the boundary between the “upper mantle-2” and the “lower
mantle”. All these layers are considered as isotropic solid bodies. Assume that the boundary
between the “lower mantle” and the “liquid outer core” is situated at radius r = a4 and finally,
radius r = a5 is the boundary between the “liquid outer core” and the solid “inner core”.
The elastic potentials and pressure that describe the spheroidal modes of the planet are
solutions given by Equations (47a), (47b) and (50):

Φi (r, θ, φ) =
[

A4i−3 jn
(

ki,1r
)

+ A4i−2yn
(

ki,1r
)]

Pm
n (cos θ) cos mφ, (54a)

χi (r, θ, φ) =
[

A4i−1 jn
(

ki,2r
)

+ A4iyn
(

ki,2r
)]

Pm
n (cos θ) cos mφ, (54b)

p5 (r, θ, φ) = [A17 jn (k5,3r) + A18yn (k5,3r)] Pm
n (cos θ) cos mφ, (54c)

Φ6 (r, θ, φ) = [A19 jn (k6,1r)] Pm
n (cos θ) cos mφ, (54d)

χ6 (r, θ, φ) = [A20 jn (k6,2r)] Pm
n (cos θ) cos mφ, (54e)

where the symbols “A” with various subscripts represent arbitrary constants that will be
determined from the boundary and continuity conditions described below and i = 1, 2, 3, 4.
The “upper core” of the planet does not have a torsional mode and is considered to be an
inviscid ideal fluid. Despite the fact that the “inner core” is solid and hence that it could
support the torsional mode, we do not consider it when we analyse the torsional mode
because the shear stress in the “inner core” cannot be transformed into the outer layers
through the shear free liquid “outer core”. The elastic potential describing the torsional modes
of the planet is obtained from Equation (47c):

Ψi (r, θ, φ) =
[

B2i−1 jn
(

ki,2r
)

+ A2iyn
(

ki,2r
)]

Pm
n (cos θ) cos mφ, (55)

where i = 1, 2, 3, 4.

414
Advances in Geotechnical Earthquake Engineering – 

Soil Liquefaction and Seismic Safety of Dams and Monuments

www.intechopen.com



The Vibration of a Layered Rotating

Planet and Bryan’s Effect 11

The boundary and continuity conditions below express the balance between the radial stresses
and pressure and equality of the tangential stresses in the solid layers. They also express the
equality of the radial and tangential components between the solid layers (correspondingly,
only radial components between the solids and fluid layer). The outer layer is assumed
to be free from radial and tangential stress components. Using these assumptions together
with Equations (52) we obtain the following boundary and continuity conditions for the
investigation of the spheroidal modes:
At r = a0 = a

{[

2μ1
∂2Φ1

∂r2 − λ1k2
1,1Φ1

]

+ 2μ1

[

∂3(rχ1)
∂r3 + k2

1,2
∂(rχ1)

∂r

]}∣

∣

∣

r=a
= 0, (56)

2μ1

a

{

(

∂Φ1
∂r − Φ1

r

)

+

[

r ∂2χ1

∂r2 + ∂χ1

∂r +

(

rk2
1,2

2 − 1
r

)

χ1

]}∣

∣

∣

∣

r=a

= 0. (57)

At r = a1
{[

2μ1
∂2Φ1

∂r2 − λ1k2
1,1Φ1

]

+ 2μ1

[

∂3(rχ1)
∂r3 + k2

1,2
∂(rχ1)

∂r

]}∣

∣

∣

r=a1

=

{[

2μ2
∂2Φ2

∂r2 − λ2k2
2,1Φ2

]

+ 2μ2

[

∂3(rχ2)
∂r3 + k2

2,2
∂(rχ2)

∂r

]}∣

∣

∣

r=a1

, (58)

2μ1

a1

{

(

∂Φ1
∂r − Φ1

r

)

+

[

r ∂2χ1

∂r2 + ∂χ1

∂r +

(

rk2
1,2

2 − 1
r

)

χ1

]}∣

∣

∣

∣

r=a1

=

2μ2

a1

{

(

∂Φ2
∂r − Φ2

r

)

+

[

r ∂2χ2

∂r2 + ∂χ2

∂r +

(

rk2
2,2

2 − 1
r

)

χ2

]}∣

∣

∣

∣

r=a1

, (59)

{

∂Φ1
∂r +

[

∂2(rχ1)
∂r2 + k2

1,2 (rχ1)
]}∣

∣

∣

r=a1

=

{

∂Φ2
∂r +

[

∂2(rχ2)
∂r2 + k2

2,2 (rχ2)
]}∣

∣

∣

r=a1

, (60)

{

Φ1 +
∂(rχ1)

∂r

}∣

∣

∣

r=a1

=
{

Φ2 +
∂(rχ2)

∂r

}∣

∣

∣

r=a1

. (61)

At r = a2
{[

2μ2
∂2Φ2

∂r2 − λ2k2
2,1Φ2

]

+ 2μ2

[

∂3(rχ2)
∂r3 + k2

2,2
∂(rχ2)

∂r

]}∣

∣

∣

r=a2

=

{[

2μ3
∂2Φ3

∂r2 − λ3k2
3,1Φ3

]

+ 2μ3

[

∂3(rχ3)
∂r3 + k2

3,2
∂(rχ3)

∂r

]}∣

∣

∣

r=a2

, (62)

2μ2

a2

{

(

∂Φ2
∂r − Φ2

r

)

+

[

r ∂2χ2

∂r2 + ∂χ2

∂r +

(

rk2
2,2

2 − 1
r

)

χ2

]}∣

∣

∣

∣

r=a2

=

2μ3

a2

{

(

∂Φ3
∂r − Φ3

r

)

+

[

r ∂2χ3

∂r2 + ∂χ3

∂r +

(

rk2
3,2

2 − 1
r

)

χ3

]}∣

∣

∣

∣

r=a2

, (63)

{

∂Φ2
∂r +

[

∂2(rχ2)
∂r2 + k2

2,2 (rχ2)
]}∣

∣

∣

r=a2

=

{

∂Φ3
∂r +

[

∂2(rχ3)
∂r2 + k2

3,2 (rχ3)
]}∣

∣

∣

r=a2

, (64)
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{

Φ2 +
∂(rχ2)

∂r

}∣

∣

∣

r=a2

=
{

Φ3 +
∂(rχ3)

∂r

}∣

∣

∣

r=a2

. (65)

At r = a3

{[

2μ3
∂2Φ3

∂r2 − λ3k2
3,1Φ3

]

+ 2μ3

[

∂3(rχ3)
∂r3 + k2

3,2
∂(rχ3)

∂r

]}∣

∣

∣

r=a3

=

{[

2μ4
∂2Φ4

∂r2 − λ4k2
4,1Φ4

]

+ 2μ4

[

∂3(rχ4)
∂r3 + k2

4,2
∂(rχ4)

∂r

]}∣

∣

∣

r=a3

, (66)

2μ3

a3

{

(

∂Φ3
∂r − Φ3

r

)

+

[

r ∂2χ3

∂r2 + ∂χ3

∂r +

(

rk2
3,2

2 − 1
r

)

χ3

]}∣

∣

∣

∣

r=a3

=

2μ4

a3

{

(

∂Φ4
∂r − Φ4

r

)

+

[

r ∂2χ4

∂r2 + ∂χ4

∂r +

(

rk2
4,2

2 − 1
r

)

χ4

]}∣

∣

∣

∣

r=a3

, (67)

{

∂Φ3
∂r +

[

∂2(rχ3)
∂r2 + k2

3,2 (rχ3)
]}∣

∣

∣

r=a3

=

{

∂Φ4
∂r +

[

∂2(rχ4)
∂r2 + k2

4,2 (rχ4)
]}∣

∣

∣

r=a3

, (68)

{

Φ3 +
∂(rχ3)

∂r

}∣

∣

∣

r=a3

=
{

Φ4 +
∂(rχ4)

∂r

}∣

∣

∣

r=a3

. (69)

At r = a4

{[

2μ4
∂2Φ4

∂r2 − λ4k2
4,1Φ4

]

+ 2μ4

[

∂3(rχ4)
∂r3 + k2

4,2
∂(rχ4)

∂r

]}∣

∣

∣

r=a4

= −p5|r=a4
, (70)

2μ4

a4

{

(

∂Φ4
∂r − Φ4

r

)

+

[

r ∂2χ4

∂r2 + ∂χ4

∂r +

(

rk2
4,2

2 −
1

r

)

χ4

]}∣

∣

∣

∣

r=a4

= 0, (71)

2μ4

a4

{

(

∂Φ4
∂r − Φ4

r

)

+

[

r ∂2χ4

∂r2 + ∂χ4

∂r +

(

rk2
4,2

2 − 1
r

)

χ4

]}∣

∣

∣

∣

r=a4

=

1
ρ5ω2

∂p5

∂r

∣

∣

∣

r=a4

. (72)

At r = a5

{[

2μ6
∂2Φ6

∂r2 − λ6k2
6,1Φ6

]

+ 2μ6

[

∂3(rχ6)
∂r3 + k2

6,2
∂(rχ6)

∂r

]}∣

∣

∣

r=a5

= −p5|r=a5
, (73)

2μ6

a5

{

(

∂Φ6
∂r − Φ6

r

)

+

[

r ∂2χ6

∂r2 + ∂χ6

∂r +

(

rk2
6,2

2 − 1
r

)

χ6

]}∣

∣

∣

∣

r=a5

= 0, (74)

2μ4

a5

{

(

∂Φ6

∂r
−

Φ6

r

)

+

[

r
∂2χ6

∂r2
+

∂χ6

∂r
+

(

rk2
6,2

2
−

1

r

)

χ6

]}∣

∣

∣

∣

∣

r=a5

=

1

ρ5ω2

(

∂p5

∂r

)∣

∣

∣

∣

r=a5

. (75)
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The following eigenfunctions are obtained for the spheroidal modes by substituting Equations
(54) into Equations (44):

Ui (r, θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A4i−3

[

1
r jn

(

ki,1r
)

]

+ A4i−2

[

1
r yn

(

ki,1r
)

]

+

A4i−1

[

(n+1)
r jn

(

ki,2r
)

− ki,2 jn+1

(

ki,2r
)

]

+

A4i

[

(n+1)
r yn

(

ki,2r
)

− ki,2yn+1

(

ki,2r
)

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

×

[

− (n + 1) cot θPm
n (cos θ) + n−m+1

sin θ Pm
n+1 (cos θ)

]

, (76)

Vi (r, θ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A4i−3

[

− m
r sin θ jn

(

ki,1r
)]

+ A4i−2

[

− m
r sin θ yn

(

ki,1r
)]

+

A4i−1

(

− m
r sin θ

) [

(n + 1) jn
(

ki,2r
)

− ki,2rjn+1

(

ki,2r
)]

+

A4i

(

− m
r sin θ

) [

(n + 1) yn
(

ki,2r
)

− ki,2ryn+1

(

ki,2r
)]

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

×

Pm
n (cos θ) , (77)

Wi (r, θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A4i−3

[

n
r jn

(

ki,1r
)

− ki,1 jn+1

(

ki,1r
)]

+

A4i−2

[

n
r yn

(

ki,1r
)

− ki,1yn+1

(

ki,1r
)]

+

A4i−1

[

n(n+1)
r jn

(

ki,2r
)

]

+ A4i

[

n(n+1)
r yn

(

ki,2r
)

]

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

×

Pm
n (cos θ) , (78)

U5 (r, θ) = 1
ρ5ω2

{

A17

[

1
r jn (k5,3r)

]

+ A18

[

1
r yn (k5,3r)

]}

×
[

− (n + 1) cot θPm
n (cos θ) + n−m+1

sin θ Pm
n+1 (cos θ)

]

, (79)

V5 (r, θ) = 1
ρ5ω2

{

A17

[

− m
r sin θ jn (k5,3r)

]

+ A18

[

− m
r sin θ yn (k5,3r)

]}

×

Pm
n (cos θ) , (80)

W5 (r, θ) = 1
ρ5ω2

⎧

⎨

⎩

A17

[

n
r jn (k5,3r)− k5,3 jn+1 (k5,3r)

]

+

A18

[

n
r yn (k5,3r)− k5,3yn+1 (k5,3r)

]

⎫

⎬

⎭

×

Pm
n (cos θ) , (81)

U6 (r, θ) =
{

A19

[

1
r jn (k6,1r)

]

+ A20

[

(n+1)
r jn (k6,2r)− k6,2 jn+1 (k6,2r)

]}

×
[

− (n + 1) cot θPm
n (cos θ) + n−m+1

sin θ Pm
n+1 (cos θ)

]

, (82)
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V6 (r, θ) =

⎧

⎨

⎩

A19

[(

− m
r sin θ

)

jn (k6,1r)
]

+ A20

(

− m
r sin θ

)

×

[(n + 1) jn (k6,2r)− k6,2rjn+1 (k6,2r)]

⎫

⎬

⎭

×

Pm
n (cos θ) , (83)

W6 (r, θ) =

⎧

⎪

⎨

⎪

⎩

A19

[

n
r jn (k6,1r)− k6,1 jn+1 (k6,1r)

]

+

A20

[

n(n+1)
r jn (k6,2r)

]

⎫

⎪

⎬

⎪

⎭

×

Pm
n (cos θ) , (84)

where i = 1, 2, 3, 4.
For the investigation of torsional modes we formulate the boundary and continuity conditions
which express the balance between the tangential stresses in the solid layers as well as the
equality of the corresponding tangential displacements on junctions of the layers. The outer
layer is assumed to be free from tangential stress components. Using these assumptions
together with Equations (53) we obtain the following boundary and continuity conditions:
At r = a

μ1

a

(

∂Ψ1

∂r
−

Ψ1

r

)∣

∣

∣

∣

r=a

= 0. (85)

At r = a1
μ1

a1

(

∂Ψ1

∂r
−

Ψ1

r

)∣

∣

∣

∣

r=a1

=
μ2

a1

(

∂Ψ2

∂r
−

Ψ2

r

)∣

∣

∣

∣

r=a1

, (86)

Ψ1|r=a1
= Ψ2|r=a1

. (87)

At r = a2
μ2

a2

(

∂Ψ2

∂r
−

Ψ2

r

)∣

∣

∣

∣

r=a2

=
μ3

a2

(

∂Ψ3

∂r
−

Ψ3

r

)∣

∣

∣

∣

r=a2

, (88)

Ψ2|r=a2
= Ψ3|r=a2

. (89)

At r = a3
μ3

a3

(

∂Ψ3

∂r
−

Ψ3

r

)∣

∣

∣

∣

r=a3

=
μ4

a3

(

∂Ψ4

∂r
−

Ψ4

r

)∣

∣

∣

∣

r=a3

, (90)

Ψ3|r=a3
= Ψ4|r=a3

. (91)

At r = a4
μ4

a4

(

∂Ψ4

∂r
−

Ψ4

r

)∣

∣

∣

∣

r=a4

= 0. (92)

For the torsional modes, the eigenfunctions are as follow for i = 1, 2, 3, 4:

Ui (r, θ) =
{

B2i−1

[

−
m

a sin θ
jn

(

ki,2r
)

]

+ B2i

[

−
m

a sin θ
yn

(

ki,2r
)

]}

×

Pm
n (cos θ) , (93)

Vi (r, θ) =

{

B2i−1

[

−
1

a
jn

(

ki,2r
)

]

+ B2i

[

−
1

a
yn

(

ki,2r
)

]}

×

[

− (n + 1) cot θPm
n (cos θ) +

n − m + 1

sin θ
Pm

n+1 (cos θ)

]

, (94)

Wi (r, θ) = 0. (95)

418
Advances in Geotechnical Earthquake Engineering – 

Soil Liquefaction and Seismic Safety of Dams and Monuments

www.intechopen.com



The Vibration of a Layered Rotating

Planet and Bryan’s Effect 15

λi(Pa) μi(Pa) ρi

(

kg/ m3
)

αi (m/ s) βi (m/ s)
“Crust” 33.4 × 109 36.4 × 109 2.6 × 103 6.40 × 103 3.75 × 103

“Upper
Mantle
-1”

110 × 109 85.3 × 109 3.7 × 103 8.70 × 103 4.80 × 103

“Upper
Mantle
-2”

156 × 109 130 × 109 4.0 × 103 10.2 × 103 7.50 × 103

“Lower
Mantle”

343 × 109 238 × 109 5.0 × 103 12.8 × 103 6.90 × 103

“Outer
Core”

783 × 109 0 11.1 × 103 8.4 × 103 0

“Inner
Core”

115 × 1010 206 × 109 12.9 × 103 11.0 × 103 4.00 × 103

Table 1. Physical properties of the moon’s layers and the phase velocities αi and βi of the P-
and S- waves respectively.

Consider the following fictional example: In the course of the “Avatar mission” it was found
that the moon “Pandora” has a spherical layered structure with five concentric layers and
an “inner core”. It was determined that the outer radius of the moon is a = 6371 km; the
boundary between the upper layer (“crust”) and the “upper mantle-1” is situated at radius
a1 = 6336 km; the boundary between the “upper mantle-1” and “upper mantle-2” is at radius
a2 = 5961 km; the boundary between the “upper mantle-2” and “lower mantle” is at radius
a3 = 5711 km; the boundary between the “lower mantle” and the “outer core” is at radius
a4 = 3482 km; and finally, the boundary between the “outer core” and “inner core” is at
radius a5 = 1217 km. It is assumed that the outer layers (“crust”, “upper mantle-1”, “upper
mantle-2”, “lower mantle” and the “inner core”) are solids and the “outer core” is liquid,
which does not support shear stresses (i.e. it is simulated by the model of an inviscid ideal
fluid). Table 1 gives the physical properties of the moon as well as the phase velocities of the
P-wave

αi =

√

λi + 2μi

ρi
(96)

and the S-wave

βi =

√

μi

ρi
, (97)

i = 1, · · ·, 6 where λi, μi are Lame coefficients (keeping in mind that λ5 = κ5 the bulk modulus
with μ5 = 0) and ρi are mass densities of the layers.
For the spheroidal mode of vibration, for each pair of wave numbers n and m, by using
Equations (54) and applying the boundary and continuity conditions Equations (56),· · ·,(75)
we obtain a matrix equation

M

⎛

⎜

⎝

A1
...

A20

⎞

⎟


=

⎛

⎜

⎝

0
...
0

⎞

⎟


(98)

5.1 Example
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where the 20 × 20 matrix M = M(ω) =
(

ai,j(ω)
)

i,j=1,···,20
. Linear algebra tells us that

Equation (98) has a nontrivial solution if the determinant

det (M(ω)) = 0. (99)

Fig. 2. A graph of the function g(ω) = ln |det (M (ω))|. The vertical "spikes" point towards
roots of the function f (ω) = M (ω). It appears that "good guesses" for the first and second
eigenvalues are ω1 ≈ 0.002 rad . s−1 and ω2 ≈ 0.004 rad . s−1 respectively.

Determining the roots of the function

f (ω) = det (M(ω)) (100)

numerically yields a sequence of eigenvalues ω1 < ω2 < · · · (and hence periods of vibration
T1 > T2 > · · · where Tj =

2π
ωj
). For instance, with n = m = 2, a graph of the function

g(ω) = ln | f (ω)| (101)

will be similar to that given in Figure 2. The vertical "spikes" indicate roots of the function
f (ω). It appears that "good guesses" for the first and second eigenvalues are ω1 ≈
0.002 rad. s−1 and ω2 ≈ 0.004 rad. s−1 respectively. These "good guesses" are then used in the
numerical routine of a computer algebra system, producing ω1 and ω2 to, say, four significant
figures of accuracy and hence yield the values T1 = 2π

ω1
= 68.7 min and T2 = 24.3 min as

given in Table 2. Once a suitable number of eigenvalues have been determined, by choosing a
fixed eigenvalue ωk, the matrix M(ωk) has known constant entries. Hence it is now possible
to determine a non-trivial solution to

M(ωk)

⎛

⎜

⎝

A1
...

A20

⎞

⎟


=

⎛

⎜

⎝

0
...
0

⎞

⎟


. (102)
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n m
T1 (min)

η1

T2 (min)
η2

T3 (min)
η3

T4 (min)
η4

T5 (min)
η5

2 2
68.7
−0.86

24.3
−0.63

15.7
−0.14

14.4
−0.24

9.2
−0.17

3 2
41.2
−0.47

17.7
−0.51

13.2
−0.05

10.3
−0.10

7.8
−0.13

3 3
41.2
−0.70

17.7
−0.76

13.2
−0.08

10.3
−0.14

7.8
−0.19

4 2
28.2
−0.25

14.4
−0.43

11.8
−0.03

7.9
−0.04

7.1
−0.12

4 3
28.2
−0.44

14.4
−0.64

11.8
−0.04

7.9
−0.06

7.1
−0.19

4 4
28.2
−0.58

14.4
−0.86

11.8
−0.05

7.9
−0.08

7.1
−0.25

5 2
21.0
−0.20

12.5
−0.32

10.5
−0.06

6.7
−0.07

6.5
−0.02

5 3
21.0
−0.30

12.5
−0.48

10.5
−0.09

6.7
−0.11

6.5
−0.03

5 4
21.0
−0.40

12.5
−0.64

10.5
−0.12

6.7
−0.14

6.5
−0.04

5 5
21.0
−0.50

12.5
−0.80

10.5
−0.15

6.7
−0.18

6.5
−0.05

Table 2. Period of oscillation Tj and Bryan’s factor ηj of the spheroidal modes of vibration for
wave numbers n and m.

Consequently the eigenfunctions given by Equations (76) to (84) are completely determined.
Keeping Equations (40) and (42) in mind, Bryan’s factor is calculated by using

η =
2
∫ π

0

{

∑
6
i=1

∫ ai−1

ai
[ρi (Ui cos θ + Wi sin θ)Vi] r2dr

}

sin θ dθ
∫ π

0

{

∑
6
i=1

∫ ai−1

ai
ρi

(

U2
i + V2

i + W2
i

)

r2dr
}

sin θ dθ
, (103)

where a0 = a and a6 = 0.
For the spheroidal modes of vibration, the periods of oscillation Tj = 2π

ωj
as well as the

corresponding Bryan’s factors ηj for a pair of wave numbers m and n are given in Table 2.
Doing a similar analysis (as explained above) for the torsional modes, the eigenfunctions given
by Equations (93),· · ·, (95) as well as the eigenvalues are completely determined by applying
the boundary and continuity conditions given by Equations (85),· · ·, (92) to Equations (55).
Here Equation (103) for Bryan’s factor may be simplified, because the radial displacements
are zero Wi = 0. Bryan’s factor for the torsional modes is calculated by using the formula

ηTM =
2
∫ π

0

{

∑
6
i=1

∫ ai−1

ai
UiVir

2dr
}

sin θ cos θ dθ
∫ π

0

{

∑
6
i=1

∫ ai−1

ai
ρi

(

U2
i + V2

i

)

r2dr
}

sin θ dθ
. (104)

Values of the periods of oscillation Tj and the corresponding Bryan’s factors ηj for the n and
m torsional modes are given in Table 3.
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n m
T1 (min)

η1

T2 (min)
η2

T3 (min)
η3

T4 (min)
η4

T5 (min)
η5

2 2
42.4
0.33

11.9
0.33

7.2
0.33

5.0
0.33

3.7
0.33

3 2
27.2
0.17

11.0
0.17

7.0
0.17

4.9
0.17

3.7
0.17

3 3
27.2
0.25

11.0
0.25

7.0
0.25

4.9
0.25

3.7
0.25

4 2
20.7
0.10

10.0
0.10

6.8
0.10

4.8
0.10

3.6
0.10

4 3
20.7
0.15

10.0
0.15

6.8
0.15

4.8
0.15

3.6
0.15

4 4
20.7
0.20

10.0
0.20

6.8
0.20

4.8
0.20

3.6
0.20

5 2
16.9
0.07

9.1
0.07

6.5
0.07

4.7
0.07

3.5
0.07

5 3
16.9
0.10

9.1
0.10

6.5
0.10

4.7
0.10

3.5
0.10

5 4
16.9
0.13

9.1
0.13

6.5
0.13

4.7
0.13

3.5
0.13

5 5
16.9
0.17

9.1
0.17

6.5
0.17

4.7
0.17

3.5
0.17

Table 3. Period of oscillation Tj and Bryan’s factor ηj of the torsional modes of vibration for
wave numbers n and m.

6. Conclusions and discussions

After deriving expressions for Bryan’s factor η in terms of eigenvalues and eigenfunctions of
vibration we demonstrated that neither Bryan’s effect nor the value of Bryan’s factor η depend
on the inclusion of light, isotropic, viscous damping in the model. Consequently we neglected
damping in the model that we presented. However, we pointed out that preliminary studies
indicate that the inclusion of "impurities" such as mass-stiffness, prestress and anisotropic
damping into the model appears to produce "capture effects" such as the rotation angle of
the vibration pattern varying periodically. Hence more realistic models (as opposed to ideal
situations) that will include these "impurities" need to be developed.
Solutions were obtained for the dynamic equations of slowly rotating, vibrating planets or
moons considered as ideal elastic solid and inviscid acoustic bodies composed of, for instance,
four solid layers, one liquid layer and a solid core. Boundary conditions were formulated for
calculating the eigenvalues and eigenfunctions of vibration and a brief discussion of how they
are numerically calculated was given. It was pointed out that for each pair of wave numbers
n and m, there is a sequence of eigenvalues ω1 < ω2 < · · · and hence periods of vibration
T1 > T2 > · · · (where Tj =

2π
ωj

).

The model derived indicates that there are two modes of vibration, namely the "spheroidal"
and "torsional" modes and Bryan’s effect occurs for both modes.
Table 1 provides feasible physical properties for a fictional moon and gives possible phase
velocities for both P- and S-waves.

422
Advances in Geotechnical Earthquake Engineering – 

Soil Liquefaction and Seismic Safety of Dams and Monuments

www.intechopen.com



The Vibration of a Layered Rotating

Planet and Bryan’s Effect 19

Using Table 1, a numerical experiment produced Table 2, where it appears that for the
spheroidal modes, for a given polar wave number n and a given non-negative integer j, the
period of oscillation Tj does not depend on the circumferential wave number m. However,
Bryan’s factor η depends on both wave numbers n and m as well as the period of oscillation
Tj for each pair n and m. Bryan’s factor η appears to be negative in all cases and this means
that an antinode of vibration will rotate through the moon’s crusts in the opposite direction
to the moon’s rotation at a rate ηϕ, where ϕ is the moon’s rotation rate.
Another numerical experiment produced Table 3, where it appears that for torsional modes,
for a given wave number n and a given non-negative integer j, the period of oscillation Tj

is independent of the circumferential wave number m and that it varies with n. However,
Bryan’s factor η appears to be invariant and independent of the period of oscillation for a
given pair of wave numbers n and m, but appears to vary as each pair varies and it appears to
be positive in all cases. Consequently Bryan’s factors for the torsional modes depend only on
angular components of the vibrating patterns, that is, on the corresponding wave numbers n
and m, and not on radial vibrations because all radial displacements Wi = 0. These positive
Bryan’s factors η indicate that the antinodes of vibration will rotate through the moon’s crusts
in the same direction as the moon’s rotation at a rate ηγ, where γ is the moon’s rotation rate.
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