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1. Introduction  

Recent devastating earthquakes in many countries, particularly the 2010 Haiti earthquake 

(e.g., Eberhard et al., 2010) and the 2011 off the Pacific coast of Tohoku earthquake (e.g., 

Takewaki et al., 2011) in Japan, have caused severe damages to buildings and structures. 

The past and the recent seismic events have led us to attempt to improve technologies used 

in practical applications for evaluating the dynamic behavior of structural systems subjected 

to earthquake ground motions. To accomplish this, it is considered that an appropriate 

representation of soil-structure interaction (SSI) effects may be of great importance in 

earthquake engineering. 

SSI has been studied since the late 19th century. Since then, developments in SSI science 

over the years have resulted in the latest SSI technologies (Kausel, 2010). In recent years, the 

effects of SSI have been taken into consideration in various practical numerical 

computations. For analyzing the dynamic response of SSI systems, a substructure method is 

often used for performing more efficient computations with lesser degrees of freedom 

(DOFs) rather than more comprehensive models with extremely large number of DOFs. In a 

substructure method, impedance functions (IFs) are generally used to represent the dynamic 

stiffness and damping of soil-foundation systems. Most IFs of soil-foundation systems 

exhibit various frequency-dependent characteristics; they usually occur as a result of the 

reflection and refraction of traveling waves originating from the foundations. Numerous 

studies associated with the frequency-dependent characteristics of IFs have been conducted 

over the past several years. IFs exhibit the following typical frequency-dependent 

characteristics: (a) slight oscillation shown in soil reaction and surface rigid foundations or 

embedded rigid foundations (Baranov, 1967; Beredugo & Novak, 1972; Novak, 1974; Novak 

et al., 1978; Veletsos & Dotson, 1988; Gazetas, 1991; Saitoh & Watanabe, 2004; Tileylioglu et 

al., 2011); (b) multiple oscillations typically exhibited in pile groups (Kaynia & Kausel, 1982; 

Dobry & Gazetas, 1988; Makris & Gazetas, 1993; Mylonakis & Gazetas, 1998); and (c) a cut-

off frequency below which damping is negligible and above which damping increases 

rapidly (Novak & Nogami, 1977; Nogami & Novak, 1977; Kausel & Roesset, 1975; Elsabee & 
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Morray, 1977; Takemiya & Yamada, 1981). These studies have indicated that considering 

frequency dependency in the response analysis of structures can yield more accurate 

calculations in SSI systems. 

In contrast to the findings of many of the latest studies of various foundations under diverse 

conditions and in recent numerical computations, frequency dependency in SSI systems has 

been recognized as a hindrance. In accordance with the recent performance-based seismic 

design of structures, nonlinearity in structural members, such as cracking, yielding, and 

collapse, needs to be considered in computations in order to predict the inelastic response of 

structural systems subjected to the expected earthquake waves. In calculating the response, 

step-by-step numerical procedures in the time domain are usually used with constitutive 

models, because the nonlinearity of structural members strongly depends upon the stress 

pass being integrated stepwise. Therefore, a conventional method for considering frequency 

dependency in the frequency domain cannot be applied. This has been one of the most 

important problems in structural engineering and geotechnical engineering over the past 

few decades. 

Recently, various methods that are ready to use in practice have been proposed to overcome 

this issue, when frequency dependency in IFs and nonlinearity in structures are 

simultaneously taken into account. Basically, there are two main streams of thought in 

dealing with this problem. One is to use a method for transforming IFs into impulse 

responses in the time domain. The origins of this method date back to Wolf & Obernhuber, 

1985, who developed a numerical method in the time domain in which the impulse response 

obtained from dynamic soil stiffness by using inverse Fourier transform was applied to the 

response analysis. Since this method was first developed in the 1980s, many transform 

methods in the time domain have been proposed and improved to overcome difficulties in 

various frequency dependencies in IFs (Wolf & Motosaka, 1989; Meek, 1990; Motosaka & 

Nagano, 1992; Hayashi & Katsukura, 1990). Nakamura (2006a; 2006b; 2008a; 2008b) has 

developed various sophisticated transform methods that can deal with strong frequency 

dependency in IFs, non-causal impedance with large hysteretic damping, and soil 

nonlinearity. 

The other method for dealing with the SSI problem is the use of a lumped parameter model 

(LPM), which is considered to be a very powerful tool for solving this problem. In general, 

an LPM consists of springs, dashpots, and masses having frequency-independent 

coefficients. A particular combination of these elements can simulate a frequency-dependent 

impedance characteristic. The advantage of LPMs is that they can be easily incorporated into 

a conventional numerical analysis in the time domain, even under nonlinear conditions of 

superstructures. Time stepping methods that have conventionally been applied to structural 

analyses, such as the central difference method, Newmark’s method, and Wilson’s 

method—employed as conventional integration schemes—can be used with LPMs, while 

time-domain transform methods usually need a specific scheme to incorporate the impulse 

response into the response analysis.  

From the viewpoint of construction schemes in LPMs, the existing LPMs can be 

categorized into three types: a) semi-empirical LPMs, b) systematic LPMs, and c) modal 

LPMs. 
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Fig. 1. Semi-empirical lumped parameter models proposed in previous studies [(a) Meek & 
Veletsos, 1974; Wolf & Somaini, 1986; (b) Nogami & Konagai, 1986; 1988; (c) de Barros & 
Luco, 1990; (d) Jean et al., 1990; (e) Wu & Chen, 2001; (f) Taherzadeh et al., 2009; and (g) 
Saitoh, 2011a].  

In semi-empirical LPMs, mechanical elements such as springs, dashpots, and masses, which 

have frequency-independent coefficients, are arranged appropriately, depending on how 

significantly an optimal fit of the IFs obtained using LPMs with the corresponding target 

(exact) IFs can be achieved using specific arrangements. The values of the elements are 

usually determined by minimizing the errors from the target IFs. Meek & Veletsos, 1974, 

initially presented an LPM that represents the lateral and rocking impedance characteristics 

for a truncated semi-infinite cone that can be considered as an analog of an elastic half space. 

In an LPM, a mass has an additional DOF that is not directly attached to the foundation 

node but rather is connected to it through a dashpot, as shown in Fig. 1a. Wolf & Somaini, 

1986, extended the above model to a rigid disk, an embedded cylinder, a rectangle, and a 

strip, and specified the coefficients of the elements comprising the foundations. Nogami & 

Konagai, 1986; 1988, represented the subgrade reaction of soil surrounding single piles by 

using three Voigt models connected in series (in the axial direction) and those with a mass 

(in the flexural direction), as shown in Fig. 1b. Alternative LPMs (de Barros & Luco, 1990 

www.intechopen.com



Advances in Geotechnical Earthquake Engineering –  
Soil Liquefaction and Seismic Safety of Dams and Monuments 

 

362 

(Fig. 1c); Jean et al., 1990 (Fig.1d)) were proposed for a better fit to the impedance functions 

than the precedent LPMs. For a more concise usage of LPMs in practical applications, the 

coefficients of simple LPMs have been specified in tables for rigid foundations on the 

surface and with embedment in all translational and rotational motions (Wolf & Paronesso, 

1992; Wolf, 1997). Wu & Chen, 2001, proposed an LPM consisting of a set of units in which 

each unit consists of a mass connected to a spring and a dashpot arranged in parallel, as 

shown in Fig. 1e. Wu & Chen, 2002, adopted the LPM to a simple SSI analysis for seismic 

excitations. Recently, other forms of LPMs have been proposed by researchers (Taherzadeh 

et al., 2009, (Fig. 1f); Khodabakhshi et al., 2011). 

As described in Wolf, 1994; Wu & Chen, 2002; and Wu & Lee, 2002, however, the inclusion 

of any mass in an LPM becomes a drawback when an LPM is straightforwardly used in 

seismic excitations, that is, the driving forces at the foundation node induced by a 

foundation input motion differ from the corresponding forces by applying the same input 

motion at the bottom end (the far end) of an LPM because of the mass. This problem does 

not occur when an LPM consists of springs and dashpots. However, the lack of mass in an 

LPM tends to show difficulty in an appropriate fit to the exact impedance functions, and 

thus, a substantial increase in the number of elements and DOFs is necessary.  

To overcome this issue, Saitoh, 2007, proposed an LPM that uses a gyro-mass element 

instead of an ordinary mass. The gyro-mass element generates a reaction force proportional 

to the relative acceleration of the nodes between which it is placed. The use of the gyro-mass 

element does not influence the driving forces acting at the foundation because the gyro-

mass element does not generate any inertia force. An LPM with a gyro-mass element 

(GLPM) accomplishes a rapid change in frequency in IFs with a small number of elements 

without an ordinary mass. In Saitoh’s study, two types of LPMs—Type I and Type II models 

—are presented for simulating IFs that have cut-off frequencies and frequency-dependent 

oscillations, respectively. In Saitoh, 2011a, the accuracy in the GLPMs was verified using an 

example of 2  4 pile groups embedded in a layered soil medium, supporting a 1DOF 

system having inelasticity in the structural member when subjected to ground motions. In 

his study, a more generalized GLPM, called “the Type III model” was proposed for a more 

appropriate fit (Fig. 1g). 

In the development of semi-empirical LPMs, attempts have been made to obtain an easier 

and more systematic determination of the values for the coefficients in LPMs. A systematic 

procedure was first proposed by Wolf, 1991a; 1991b. In the procedure, the dynamic-stiffness 

coefficient is approximated as a ratio of two polynominals, which is then formulated as a 

partial-fraction expansion whose each term is represented by a discrete model comprising 

parallel-form LPMs, as shown in Fig. 2a. Wu & Lee, 2002, proposed series-form LPMs (Fig. 

2b) formulated with a ratio of two polynominals approximating the flexibility functions 

(compliance functions) instead of using IFs. Moreover, Wu & Lee, 2004, alternatively 

proposed nested LPMs (Fig. 2c) based on a continued-fraction expansion instead of a 

partial-fraction expansion. The advantage of nested LPMs is that the configuration is 

independent of the soil-foundation systems being dealt with, whereas the previous series-

form LPMs, which use the partial-fraction expansion, depend upon them. Another new 

systematic LPM (Fig. 2d) based on the continued-fraction expansion was proposed by Zhao 

& Du, 2008.  
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Fig. 2. Systematic lumped parameter models [(a) Wolf, 1991a; 1991b; (b) Wu & Lee, 2002; (c) 
Wu & Lee, 2004; and (d) Zhao & Du, 2008] and a modal LPM [(e) Saitoh, 2010a] proposed in 
previous studies.  

The aforementioned LPMs need to approximate the target IFs by using specific functions 
such as the ratio of two polynominals in the case of systematic LPMs. Recently, two new 
transform methods for constructing an exact LPM from the original systems have been 
developed in the field of computational mechanics (Saitoh, 2010a; 2010b). In Saitoh, 2010a, 
an LPM consisting of units arranged in series—in which each unit consists of a spring, a 
dashpot, and a gyro-mass element arranged in parallel (Fig. 2e)—is formulated, i.e., 
calculated from a closed-form solution based on a modal expansion. In Saitoh’s study, an 
LPM that represents the impedance characteristics at the extremity of a uniform, isotropic, 
and homogeneous rod supported by continuously distributed springs and dashpots (the 
Kelvin–Voigt model is assumed as a viscoelastic medium) was proposed. This method can 
be applied to systems where the conventional modal expansion is available for solving the 
differential equation of motion. In a later study (Saitoh, 2010b), a transformation procedure 
based on a conventional complex modal analysis was proposed in which the impedance 
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function in general linearly elastic systems with non-classical damping is transformed into 
an exact one-dimensional spring-dashpot system (1DSD) comprising units arranged in 
series. Each unit, which is directly related to each vibrating mode of the original system, is a 
parallel system consisting of a spring, a dashpot, and a unit having a spring and a dashpot 
arranged in series. The properties of the elements comprising the 1DSDs are automatically 
determined through the proposed procedure by using complex modal quantities. The 
advantage of 1DSDs is that 1DSD transformation offers compatibility with the merit of 
complex modal analysis, that is, a large number of units associated with high modes beyond 
the target frequency region can be removed from the 1DSDs as an approximate expression 
of impedance functions. Accordingly, a marked decrease in the computational domain size 
and time with the use of the 1DSDs can be achieved. Extremely complicated frequency 
dependency in impedance functions over a wide frequency range tends to appear in diverse 
technological applications, as exhibited in Saitoh, 2010b. In such cases, the approximation of 
the target IFs by using specific functions in the previous LPMs may encounter a certain 
limitation in terms of accuracy and may not be accomplished sufficiently. On the other 
hand, the 1DSDs transform procedure provides an exact LPM at the initial step, that is, we 
can adjust the number of DOFs (the number of units) in the reduced LPM by achieving a 
balance with the accuracy from the exact LPM. A transformation procedure for general 
linearly elastic systems with classical damping was also proposed in his recent study 
(Saitoh, 2011b). 

Therefore, the main aim of this study is to verify the applicability of the transformation 

method of 1DSDs to SSI problems influenced by seismic excitations. This study deals with 

an application example of a four-story shear building supported by a shallow foundation 

embedded in layered soil resting on a rigid bedrock. The soil-foundation system is modeled 

using two-dimensional isoparametric finite elements, as shown in Fig. 4. In most previous 

studies, nonlinearity in structural members was not considered when verifying the 

performance of the proposed LPMs. In this study, therefore, the Clough model (Clough & 

Johnson, 1966), which has a bilinear skeleton curve, is applied to each inter-story in the 

building to compare the relationship between force and inter-storey drift obtained with 

1DSDs with that obtained with the original finite element (FE) model.  

2. Methodology for transforming structural systems with non-classical 

damping into reduced 1DSDs 

This section presents an overview of the method for transforming structural systems into a 

1DSD. The configuration of a 1DSD is shown in Fig. 3. In general, the impedance function 

 IJS   is defined as the ratio of the dynamic force JP  applied at an arbitrarily selected DOF 

(denoted as “J-th DOF”) and the response displacement Iu  at the same or another DOF 

(denoted as “I-th DOF”). Here   is the excitation frequency. The properties of the elements 

comprising a 1DSD are derived from a proposed procedure based on complex modal 

analysis. In accordance with the detailed description in Saitoh, 2010b, the properties of the 

elements are evaluated using the stiffness matrix, the damping matrix, the mass matrix, and 

complex eigenvalues and eigenvectors. Once these values are obtained by a one-time 

complex modal calculation, the properties are automatically determined from the 

mathematical formula presented in Saitoh’s study.  
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Fig. 3. One-dimensional lumped parameter model with spring and dashpot elements for 

simulating the impedance function  IJ J IS p u   in general structural systems [Saitoh, 

2010b].  

In this method, the equations of motion of general linearly elastic structural systems 

comprising N  DOFs are dealt with and are expressed by the following form: 

           M u C u K u p                                (1) 

where  M ,  C , and  K  are the mass matrix, damping matrix, and stiffness matrix, 

respectively, of the original structural systems. Each matrix has order N N .  u  and  p  

are the response displacements and the external forces at the nodes, respectively, and each 

vector has order N . The dots denote partial derivatives with respect to time t . In this 

study, the damping matrix  C  is assumed to be based on non-classical damping. 

In complex modal analysis, the following 2N  first-order equations are considered instead 

of the N  second-order equations of Eq. 1:  

        R z S z f                                 (2) 

where 

     
   0

C M
R

M

 
  
 

,      
   

0

0

K
S

M

 
   

,    
 
u

z
u

    
  

,    
 0

p
f

    
  

. 

The complex eigenvalues and eigenvectors can be obtained according to the conventional 

complex modal procedure. Each complex eigenvalue n  is known to have an eigenvalue 

n , which is the complex conjugate of n ; the corresponding vector  n  has a vector  n , 

whose components are complex conjugates of those of  n . The eigenvectors are assembled 

compactly into a matrix using diagonal matrices    and     comprising the eigenvalues 

n  and n , respectively, as 

  
   

    
 

 

 
   

     
                                (3a) 

where 
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        1 2 N                                   (3b) 

        1 2 N                                   (3c) 

    ndiag  , 1,2, ,n N                             (3d) 

 ndiag       , 1,2, ,n N                             (3e) 

The matrix    is called the modal matrix. In general,     T
R   becomes a diagonal 

matrix owing to the orthogonality relationships. Here the upper N components of the matrix 

are denoted as n , while the lower N components are the complex conjugates of n , 

denoted as n . 

At the end of the mathematical derivation in Saitoh’s study, the properties of the elements 
can be determined using the following formula:  

 
 

2 2

2
n dn

Tn
n n n dn

k
G R

 
 
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

                              (4) 
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                                          (5) 
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
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
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where nI nJ
n n

n

G iR
 


   and nI nJ
n n

n

G iR
 


  . 

Here nI  and nJ  are the components of the n -th eigenvector at the I-th and J-th DOFs, 

respectively; nI  and nJ  are the complex conjugates of the components nI  and nJ , 

respectively. n  is the n -th modal decay rate and dn  is the n -th damped natural circular 

frequency defined as 

 
n n dni                                       (8) 

  
n n dni                                       (9) 

In practice, over-damped modes often appear. In this case, eigenvalues n  are real and 

negative. In Saitoh, 2010b, it was mathematically derived that the impedance function 

associated with over-damped modes is expressed as a Kelvin–Voigt unit comprising spring 

Tnk and dashpot Tnc , as shown in Fig. 3. 
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 n
Tn

n

k
G


                                        (10) 

 
1

Tn
n

c
G

                                        (11) 

Note that over-damped modes generally appear with even numbers 2m  in 2N  modes, so 

the total unit number N  changes to  N N m    when over-damped modes exist. 

3. Application to soil-shallow foundation-structure system 

3.1 FE model studied 

This is the first application of a 1DSD to SSI problems. In principle, the dynamic response of 
the original structural systems, which have even inelasticity in their superstructures, can  be 
correctly simulated using 1DSDs. However, the accuracy of the transfer functions and the 
time histories of the dynamic response of the structural system comprising 1DSDs have 
never been verified. In this section, therefore, a soil-shallow foundation system interacting 
with a multiple-DOF system with inelasticity is used for verification. 

The overall system is shown in Fig. 4. A shallow foundation 10 m wide, 50 m long, and 2 m 

deep is embedded in layered soil up to the middle of the foundation. The elastic modulus of 

the foundation is assumed to be rigid, imposing unique displacements fu  and f  at the 

center of gravity in the horizontal and rotational directions, respectively. The mass and the 

mass moment of inertia of the foundation are 1000fm   t and 8500fJ   tm2, respectively. 

A four-story building supported by the foundation is represented by a 4-DOF system. The 

properties of the system are shown in the figure. In this study, the inelasticity in each story  
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Fig. 4. Two-dimensional FE model for a soil-shallow foundation system supporting a four-
story building. The unit weight, modulus of elasticity, Poisson’s ratio, and damping ratio of 
the i-th soil layer are denoted as wi, Ei,νi, and ζi, respectively. 
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is taken into account. The soil-foundation system is modeled using conventional two-

dimensional rectangular isoparametric elements (Weaver et al., 1990), in which each element 

has eight DOFs. The soil strata are composed of three soil layers resting on a rigid bedrock. 

The bottom of the layered soil is fixed in the vertical and lateral directions, whereas a 

viscous boundary proposed by Lysmer and Kuhlemeyer, 1969, is applied to the sidewalls of 

the soil as a fictitious boundary that dissipates energy toward an infinite region of soil. The 

moduli of elasticity and the damping ratios of the soil shown in the figure are assumed to 

approximately account for the appreciable levels of strain during ground shaking. The total 

number of nodes comprising the isoparametric elements is 560, whereas the degrees of 

freedom minus the fixed degrees of freedom are 1,050. The thickness of the elements is the 

same as the length of the foundation (50 m) under a plane-strain condition. 

3.2 Equations of motion of FE model with structures 

In this model, the soil-foundation system consists of conventional isotropic elements, 

whereas the structural system comprising the superstructure and the mass of the foundation 

is discretized by springs, dashpots, and masses. Therefore, the global mass matrix, stiffness 

matrix, and damping matrix in the equations of motion of the total system are obtained by 

superimposing local matrices in both equilibrium equations. The details of the equations are 

described as follows. 

The equations of motion of the soil-foundation system are expressed as 

           G G G G G G GM u C u K u f                          (12)  

where  GM ,  GC , and  GK  are the mass matrix, damping matrix, and stiffness matrix, 

respectively, of the soil-foundation system.  Gu  and  Gf  are the response displacements 

and the forces at the DOFs in the system, respectively. In this study, the damping matrix for 

each element is constructed on the basis of 

    e l eC K                                  (13) 

where 

 
1

2 l
l




                                    (14) 

where  eC  and  eK  are the local damping matrix and stiffness matrix, respectively, of the 

isoparametric element; the parameter l  is the damping ratio given in each soil layer at the 

fundamental natural frequency of the soil-foundation system; and 1  is the fundamental 

natural circular frequency of the undamped system. The damping ratio of each soil layer 

used in this model is shown in Fig. 4. In the FE model, the elastic modulus of the elements in 

the foundation is appreciably higher than that of the soil for realizing rigid body movement 

of the foundation. In addition, the mass density of the elements is negligible because the 

mass and the mass moment of inertia of the foundation are taken into account in the model 

of the building. 
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The equilibrium equation of the 4-DOF system connected with the rigid mass of the 

foundation is expressed as follows: 

  
 

 
 

 
   0

0

0

s s s

I f I f I f

f f f

u u u

M u C u K u

  

       
                     
       

           

 
 
 

                    (15) 

where 
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                        (18) 

where     1 2 3 4
T

su u u u u  are the absolute displacements of the DOFs in the 

superstructure, excluding the displacements related to the rotational response of the 

foundation, and ic  and ik  are the damping coefficient and the initial stiffness of each story 

in the superstructure, respectively. Here the suffix i  is numbered from top to bottom. The 

damping matrix is constructed as Rayleigh damping by using the mass matrix (Eq. 16) and 

the stiffness matrix (Eq. 18) with a first and second modal damping constant of 0.05. 

In fact, the DOF of the foundation in the rotational direction is incompatible with the DOFs 

in the FE model as no rotational DOF is explicitly considered at each node in the FE model. 

Therefore, the rotational displacement f  in the rigid mass of the foundation is transformed 
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in the FE model based on the geometrical relationship using the relative displacement at the 

center of the foundation to the displacement of the successive node located at the bottom of 

the foundation. In addition, the rotational moment is transmitted to the corresponding 

nodes in the FE model using an equivalent couple. 

3.3 Transforming the original system into a 1DSD 

According to the procedure shown in Section 3.1, the FE model is to be transformed into an 
equivalent 1DSD. Complex modal analysis is performed to obtain the fundamental 
quantities by which the properties of the elements in the 1DSD are determined. Complex 
modal analysis has commonly been used for estimating modal components. In this study, a 
conventional modal analysis (Foss, 1958) is used. First, the impedance function in the 
horizontal direction is considered. In this case, although movement of the foundation in the 
rotational direction may be restrained more accurately to obtain a net horizontal impedance 
function (by extracting the interactive components), it was not restrained in this study 
because the foundation is embedded in the soil only a little in the model. Thus, no difference 
was observed in either of the impedance functions. 

The results of complex modal analysis show that the number of over-damped modes is 
2,026, whereas that of under-damped modes is 74 (the total number of modes is 2,100). 
Therefore, the 1DSD consists of 2,026 Kelvin–Voigt units and 37 standard units. The results 
show that the lowest natural frequency is 2.11 Hz, whereas the highest frequency is 
4,760,000 Hz. As described above, a significant advantage of a 1DSD is that the units 
comprising a 1DSD are associated with the vibration modes of the original structural 
system. Therefore, a small set of units associated with modes from the lowest order can 
appropriately express the dynamic characteristics of structural systems without using all 
units. Recently, Saitoh, 2011a, studied the influence of frequency dependency in pile-group 
impedance functions upon the elastic and inelastic responses of superstructures. The results 
indicate that the important frequency range is the dominant frequency of foundation input 
motions that excite the inertial structural systems. Figure 5 shows the time-history response 
acceleration at the ground surface calculated using the conventional one-dimensional wave 
propagation theory with the soil properties shown in Fig. 4. An observed earthquake record, 
2004 Ojiya EW, is applied to the bottom soil layer. This response acceleration is used in the 
following calculations as the foundation input motion in this study, which indicates that, for 
simplicity, no adjustment for the kinematic interaction effects is conducted. The figure 
shows that the foundation input motion contains a wide range of frequency components 
showing the dominant frequency at around 1.4 Hz. The amplitude of acceleration ranges 
from 0 to 10 Hz. Therefore, this frequency range is considered to be the target frequency 
range in this study. 

The modal analysis results show that 1,110 vibrating modes appear in this frequency range. 

In fact, many units associated with these modes contain a relatively large spring constant 

Tnk  than other units. These units can appreciably be removed provided the impedance 

functions of the reduced 1DSD are in sufficient agreement with those of the original system. 

In this study, only 35 units (12 under-damped modes and 23 over-damped modes) remain 

after applying a threshold to the spring constant Tnk  of 101.0 10 kN/m, above which the 

corresponding unit is removed. This threshold is adjusted on the basis of both the number of 
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units remaining suitable for effective computation and the accuracy in the approximation of 

impedance functions. The properties of the reduced 1DSD are shown in Table 1. Figure 6 

shows a comparison of the impedance functions hhK  obtained from the reduced 1DSD with 

those obtained with the FE model. The results indicate that the impedance functions 

obtained from the 1DSD agree closely with those obtained with the FE model within the 

target frequency range. 
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Fig. 5. Fourier amplitude and time history of the foundation input motion. 

The impedance functions rrK  in the rotational direction are obtained along similar lines to 

the impedance functions in the horizontal direction. To obtain the relationship between 

rotational moment and displacement in the FE model, the center of the foundation is fixed in 

the horizontal and vertical directions and lateral force is applied to the successive node at 

the bottom of the foundation. The results of the complex modal analysis show that the 

number of over-damped modes is 2,018, while that of under-damped modes is 78 (total 

number of modes is 2,096). Therefore, the 1DSD consists of 2,018 Kelvin–Voigt units and 39 

standard units. In this direction, 44 units (27 under-damped modes and 17 over-damped 

modes) comprise the reduced 1DSD after applying a threshold to the spring constant Tnk  in 

the rotational direction of 107.0 10 kNm/rad. The properties of the reduced 1DSD are 

shown in Table 2. The resultant impedance functions in the rotational direction at the center 

of the foundation are shown in Fig. 6. Although a slight difference in the impedance 

functions appear in a high-frequency region when compared with those with the FE model, 

fairly close agreement can be observed over the target frequency range, on the whole. 
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Fig. 6. Impedance functions of a soil-shallow foundation system using 1DSDs and 1DSDs 

with residual stiffness [(a) hhK in the horizontal direction and (b) rrK  in the rotational 

direction]. Results obtained from the original FE model are shown for comparison. 
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In Saitoh, 2010b, a mechanical element associated with residual stiffness IJR was proposed 

to improve the accuracy of the reduced 1DSD. Residual stiffness has often been applied to 

approximate expressions of structural systems in conventional modal analysis. The residual 

stiffness representing the stiffness of high-frequency modes is expressed as  

 
1 21

1 1 1 1 1N

IJ nIJ l IJ l IJ N IJn lR K K K K



  

                          (19) 

where 

 For under-damped modes:  
 

2 2

2
n dn

nIJ
n n dn n

K
G R

 
 





                   (20) 

 For over-damped modes:  n
nIJ

n

K
G


                                (21) 

where l  is the maximum mode number considered in the 1DSDs without residual stiffness.  

The residual stiffness IJR  can be incorporated into the 1DSDs as a mechanical element 

arranged in series with the 1DSDs. The residual stiffnesses in both horizontal and rotational  

 

Mode (n) 1 2 3 4 5 6 

kn -4.5692E+08 3.7591E+08 1.0618E+09 -5.1042E+08 -1.6506E+10 0.0000E+00 
cn -6.6604E+06 2.1711E+07 7.9324E+07 -3.9891E+07 2.6594E+07 0.0000E+00 

kTn 1.9143E+07 -4.2683E+08 -1.4162E+09 6.8531E+08 4.7634E+07 8.2805E+09 
cTn 7.4465E+06 -1.1586E+07 -2.0610E+07 7.6590E+06 -2.5143E+07 2.0113E+08 

 7 8 9 10 11 12 

kn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
cn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

kTn 1.9166E+09 2.9441E+09 6.5445E+09 8.8819E+09 1.9163E+09 6.5327E+09 
cTn 4.6386E+07 7.1043E+07 1.5783E+08 2.1356E+08 4.5797E+07 1.5576E+08 

 13 14 15 16 17 18 

kn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
cn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

kTn 1.1882E+09 5.3841E+09 4.9079E+09 1.7577E+09 8.5567E+09 4.9203E+09 
cTn 2.8224E+07 1.2766E+08 1.1612E+08 4.1497E+07 2.0073E+08 1.1436E+08 

 19 20 21 22 23 24 

kn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
cn 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

kTn 7.8980E+09 7.1101E+08 6.3409E+09 3.0631E+09 2.2748E+09 1.7152E+09 
cTn 1.7967E+08 1.6147E+07 1.4262E+08 6.8550E+07 5.0782E+07 3.7956E+07 

 25 26 27 28 29 30 

kn 0.0000E+00 0.0000E+00 0.0000E+00 -1.8100E+10 0.0000E+00 -3.0252E+08 
cn 0.0000E+00 0.0000E+00 0.0000E+00 3.9047E+08 0.0000E+00 -3.5556E+06 

kTn 5.6713E+09 2.0277E+08 5.6121E+09 5.6507E+09 4.3924E+09 2.4506E+08 
cTn 1.2154E+08 4.2003E+06 1.1373E+08 -1.0463E+08 8.4557E+07 7.5807E+06 

 31 32 33 34 35 Resi. Stif. 

kn -9.4744E+09 -3.4928E+09 -4.8323E+09 -6.2970E+09 -1.1486E+10 0.0000E+00 
cn 5.7840E+07 4.4528E+07 -2.1066E+07 3.2994E+07 -7.5059E+07 0.0000E+00 

kTn 6.6702E+08 6.8297E+08 6.2645E+08 4.3951E+08 7.6216E+09 -6.6866E+08 
cTn -3.5218E+07 -1.7234E+07 3.5920E+07 -1.8667E+07 2.2991E+08 0.0000E+00 

*units: kN/m for kn and kTn; and kNsec/m for cn and cTn  

Table 1. Properties of mechanical elements in reduced 1DSDs in the horizontal direction 
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directions are presented in Table 1 and Table 2, respectively. In Fig. 6, the impedance 
functions of the residual 1DSDs with the residual stiffness are plotted. An appreciable 
improvement can be seen in the high-frequency region when incorporating the residual 
stiffness in both directions. 

3.4 Dynamic response of structural system in frequency domain 

In this section, the dynamic response of the structural system computed by using the 
reduced 1DSDs in the frequency domain is verified by comparing it with the dynamic 
response obtained with the original FE model. The complete structural system using the 
1DSDs in both horizontal and rotational directions is shown in Fig. 7. The properties of the 
superstructure are summarized in Table 3. The reduced 1DSDs obtained above are 
connected with each DOF in the foundation, as shown in the figure. The equations of motion 
of the structural system can be easily constructed using Eq. 15 with conventional spring-
dashpot matrices (details are described in Saitoh, 2010b) expressing the reduced 1DSDs. The 
resultant equilibrium equations of the total system can be formulated as 

 

Mode (n) 1 2 3 4 5 6 

kn -8.7367E+10 -3.2511E+10 5.9885E+11 -8.9724E+10 -2.0509E+12 -8.2557E+10 
cn -8.6002E+08 -3.2912E+08 -5.3876E+09 7.6112E+08 -2.2854E+09 8.3561E+08 

kTn 6.3069E+09 3.8708E+09 -3.4692E+10 5.3955E+09 4.5267E+09 8.6083E+09 
cTn 9.9889E+08 4.1663E+08 3.9650E+09 -5.4771E+08 2.4152E+09 -4.9286E+08 

 7 8 9 10 11 12 

kn 0.0000E+00 -6.2547E+09 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
cn 0.0000E+00 -2.1604E+08 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

kTn 2.9016E+10 1.0142E+10 3.3727E+10 4.2553E+10 1.7739E+10 4.1057E+10 
cTn 6.8559E+08 1.5672E+08 7.7893E+08 9.5936E+08 3.7922E+08 8.7675E+08 

 13 14 15 16 17 18 

kn 0.0000E+00 -5.5850E+10 0.0000E+00 0.0000E+00 -1.1840E+12 3.6129E+09 
cn 0.0000E+00 9.3275E+08 0.0000E+00 0.0000E+00 3.3843E+09 1.5195E+08 

kTn 1.9758E+10 1.3439E+10 5.1907E+10 1.5146E+10 2.1723E+10 -6.6498E+09 
cTn 4.0089E+08 -3.1988E+08 1.0150E+09 2.9275E+08 -2.7039E+09 -5.0781E+07 

 19 20 21 22 23 24 

kn -1.0096E+09 -8.9520E+09 -3.2909E+09 -1.1530E+12 3.8877E+10 -7.9236E+08 
cn -2.2987E+07 -1.0163E+08 -3.8159E+07 -3.6097E+09 6.5584E+09 -7.6230E+06 

kTn 2.4822E+09 1.2331E+10 4.6047E+09 6.8295E+10 -4.5729E+10 2.1613E+09 
cTn 3.2532E+07 3.0091E+08 1.0301E+08 5.3063E+09 -5.3463E+07 3.8351E+07 

 25 26 27 28 29 30 

kn 0.0000E+00 0.0000E+00 0.0000E+00 -3.5501E+09 0.0000E+00 -1.8681E+09 
cn 0.0000E+00 0.0000E+00 0.0000E+00 -6.3417E+06 0.0000E+00 -2.5699E+06 

kTn -4.6466E+10 -3.5291E+10 -4.6258E+10 2.0957E+09 -4.9346E+10 2.2527E+09 
cTn -4.6411E+08 -2.1706E+08 -1.9382E+08 1.5135E+07 -1.6920E+08 9.2640E+06 

 31 32 33 34 35 36 

kn 0.0000E+00 0.0000E+00 -1.4155E+09 -1.7451E+09 8.1243E+06 -2.3990E+06 
cn 0.0000E+00 0.0000E+00 -3.9743E+06 -2.7057E+06 1.5958E+04 -4.7181E+03 

kTn -2.9367E+10 -1.0747E+10 1.3208E+10 9.9997E+09 -1.9771E+10 5.1191E+09 
cTn -6.6288E+07 -2.3854E+07 2.3000E+07 2.5153E+07 -3.9248E+07 9.6705E+06 

 37 38 39 40 41 42 

kn 0.0000E+00 -3.4634E+08 -2.6621E+09 -7.3699E+06 -1.6447E+07 -3.2997E+08 
cn 0.0000E+00 -5.8881E+05 -3.8641E+06 -1.3444E+04 -2.8127E+04 -5.2243E+05 

kTn 1.2511E+10 4.5378E+10 3.0996E+10 6.1565E+10 3.8787E+09 3.1127E+10 
cTn 2.3189E+07 8.9426E+07 7.0953E+07 1.1015E+08 7.0887E+06 5.8484E+07 

 43 44 Resi. Stif.    

kn 0.0000E+00 0.0000E+00 0.0000E+00  
cn 0.0000E+00 0.0000E+00 0.0000E+00  

kTn -5.8039E+10 -3.1792E+10 -1.0587E+10  
cTn -9.5838E+07 -5.0192E+07 0.0000E+00  

  

*units: kNm/rad for kn and kTn; and kNm sec/rad for cn and cTn  

Table 2. Properties of mechanical elements in reduced 1DSDs in the rotational direction 
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           0T T TM u C u K u                             (22) 

where 

   1 2 1 2
T

s f i m f i nu u u u u u u                             (23) 

where the mass matrix  TM , the damping matrix  TC , and the stiffness matrix  TK  are 

the resultant matrices formed by superimposing the partial matrices. iu  and i  are the 

displacements at the DOFs in the reduced 1DSDs. The maximum DOFs in both directions 

are represented by m  ( 47 ) and n  ( 71 ), respectively. In order to estimate the response 

of the structural system, the absolute displacements are expressed by the sum of the 

displacements of the inertial response and the input motion, as follows: 

      gu U U                                (24) 

where 

   1 2 1 20 0 T
s f i f iU U U U U U                       (25) 
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Fig. 7. Numerical model representing complete structural system. 

Story No. Units 1 2 3 4 

Mass mi t 750 750 750 750 

Stiffness ki kN/m 2000000 2000000 2000000 2000000 

Height Hi m 12 9 6 3 

Yield Strength pi kN 15000 30000 33000 44000  

Table 3. Properties of four-story building 
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   T
g g g g g g g g g g g gU U U U U U U                     (26) 

where gU  and g  are the foundation input motions to the inertial system in the horizontal 

and rotational directions, respectively. In this study, the foundation input motion in the 

rotational direction g is neglected as the amplitude is negligible because of the shallow 

embedment of the foundation in the soil. Substituting Eq. 24 into Eq. 22 leads to 

            T T T T gM U C U K U M U                           (27) 

The comparison is performed using the transfer functions (TFs) of the dynamic responses of 

the superstructure with respect to the foundation input motion defined as 

 1 1sa g f gT U U H U       for absolute acceleration. The TFs of the footing are also 

computed. They are defined as  ha f g gT U U U     and 1ra f gT H U    for the absolute 

acceleration associated with the horizontal and rotational motions, respectively. 

Figure 8 shows the real part and the imaginary part of the transfer functions of the structural 

systems defined above. The figure indicates that the transfer functions obtained with the 

reduced 1DSDs are compatible with those obtained with the original FE model. This implies 

that 1DSDs with almost one-tenth of the DOFs in the original system can correctly represent 

the impedance functions in the target frequency region. Here the transfer functions obtained 

using the 1DSDs with residual stiffness are not presented as negligibly small differences that 

appeared in the impedance functions. 
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Fig. 8. Comparisons of the transfer functions of the structural system computed using 
1DSDs without residual stiffness and the original FE model [(a) real part and (b) imaginary 
part]. 

3.5 Dynamic response of structural system in time domain 

3.5.1 Elastic response of structural system 

In the previous section, it was shown that a structural system with reduced 1DSDs can 

correctly simulate the transfer functions in the real part and the imaginary part in the 

frequency domain. This implies that the time-history response of a structural system having 

linearly elastic members can be appropriately calculated using 1DSDs. In this section, the 
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time-history response of a structural system with 1DSDs when subjected to foundation 

input motion is computed and compared with that obtained with the original FE model. An 

attempt is then made to compute the time-history response of the structural system with 

inelasticity in the superstructure. 
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Fig. 9. Time-history response accelerations of superstructure and footing in the horizontal 
and rotational directions when subjected to ground motion associated with 2004 Ojiya EW 
by using 1DSDs and the original FE model. 

The time-history analysis is performed on the basis of Eq. 27 by using Newmark’s   

method ( 1 4  ) as a numerical integration scheme in which the time interval t  is 0.001  

s. The acceleration response at the ground surface shown in Fig. 5 is applied as the 

foundation input motion. Here the response accelerations defined in the previous section 

(the same definitions as in the transfer functions) are calculated. Figure 9 shows the time-

history responses of the acceleration of the structural systems using reduced 1DSDs without 

residual stiffness. The figure shows that the time histories of the 1DSDs are compatible with 

those of the original FE model. 

Note that a structural system using 1DSDs with residual stiffness cannot be obtained 
correctly because the dynamic response of the system is not converged (the response 
increases oscillatory with time). This implies that the structural system becomes unstable, 
which is attributed to the residual stiffness components. The unit for residual stiffness in the 
horizontal and rotational directions comprises only a negative stiffness, as shown in Table 1 
and Table 2. This negative stiffness could be a drawback to stabilizing the dynamic response 
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of structures, although the units can achieve better agreement with the impedance functions 
of the original systems in the frequency domain. 
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Fig. 10. Relationship between shear force and inter-story drift in each story when subjected 
to ground motion associated with 2004 Ojiya EW by using 1DSDs and the original FE 
model. 

3.5.2 Inelastic response of structural system 

Comparisons are extended to the structural system to allow inelasticity in the 

superstructure. The inelasticity of the superstructure is represented by the Clough model 

(Clough & Johnson, 1966), which is generally used to model reinforced concrete members. 

The spring of the superstructure has a bilinear skeleton curve in which the ratio of tangent 

stiffness to initial stiffness is assumed to be 0.1, as shown in Fig. 7. The yield strength ip  in 

each story is presented in Table 3. In this study, the modified Newton–Raphson method is 

applied to calculate the nonlinear response of the system.  

Figure 10 shows the relationship between shear force and inter-story drift in each story. 

Figure 11 shows the time-history responses of the displacement of the foundation fu  and 

1 fH  in the horizontal and rotational directions, respectively. The results indicate that 

although a slight difference appears in the relationship between shear force and inter-story 

drift in the first inter-storey, the inelastic responses obtained with the 1DSDs show 

sufficiently close agreement with those obtained from the original FE model. From a 

practical viewpoint, a dominant advantage is that the computational time can be 
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considerably reduced by transforming the original system into 1DSDs. According to a rough 

measurement using the author‘s PC (CPU 3.40 GHz, RAM 3.00 GB), the inelastic responses 

shown above were obtained in about 11,965 s with the original FE model, while those with 

1DSDs were obtained in about 68 s. 
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Fig. 11. Time-history response displacements of the foundation in the horizontal and 
rotational directions when subjected to ground motion associated with 2004 Ojiya EW by 
using 1DSDs and the original FE model. 

4. Conclusion 

This study demonstrates the transformation procedure using a 1DSD for a multi-story 

building supported on a shallow foundation embedded in layered soil. In accordance with 

the conventional modal concept, the reduced 1DSDs in both horizontal and rotational 

directions are constructed with a small number of units associated with important modes in 

the target frequency region in this application example. The impedance functions obtained 

with the 1DSDs correctly simulate the impedance functions of the original FE model. The 

transfer functions of the structural systems in the frequency domain using the 1DSD show 

fairly good agreement with those obtained with the FE model. The time-history responses of 

structures in both linearly elastic and inelastic cases can be simulated using the 1DSDs. The 

results indicate that a significant decrease in the structural system with the 1DSD lead to a 

marked decrease in the computational time taken for the results. Therefore, it may be 

concluded that 1DSD transformation is effective and efficient for numerical computations in 

SSI problems influenced by ground motions. 
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