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1. Introduction   

The model of rigid block is well known in literature. In the past, several papers  analyzed 
the behaviour of rigid blocks under different kind of excitations because many monolithic 
objects of art, such as statues, obelisks and fountains, subject to earthquake excitation, can be 
modelled as rigid blocks. In [Shenton & Jones, 1991] a general bi-dimensional formulation of 
the rigid block has been obtained and rocking and slide-rock approximated conditions have 
been written. More recently this model has been used to describe the behaviour of 
monolithic bodies subject to base excitations as a one-sine pulse excitation in [Zhang &  
Makris, 2001; Makris & Black, 2004, Kounadis 2010] and earthquake excitation in [Agbabian 
et al., 1988; Pompei et al, 1998; Taniguchi, 2002]. Almost all the papers on rigid blocks 
subject to base excitation focus their attention on symmetric rigid bodies. Only a few papers 
concern non-symmetric rigid bodies that, usually, represent objects of art better than 
symmetric rigid blocks. In [Boroscheck &  Romo, 2004] the influence of the eccentricity of 
the centre of mass on the motion of the system has been studied. In [Purvance, 2005; 
Purvance et al., 2008] an  analytical and experimental estimation of overturning events 
under seismic excitations has been carried out, both for symmetric and non-symmetric rigid 
bodies. In particular, in [Zhang &  Makris, 2001] for a one-sine pulse excitation and in 
[Purvance, 2005; Purvance et al., 2008] for seismic excitation, the existence of survival 
regions that lie above the PGA (Peak Ground Acceleration) associated with the first 
overturning occurrence have been shown. In recent years, methods to reduce the effects of 
seismic excitation on art objects have been studied in some papers. In [Fujita et al, 2008 ] a 
critical excitation problem for a rigid block subjected to horizontal and vertical simultaneous 
base inputs is considered. In [Vestroni & Di Cinto, 2000] a base isolation system has been 
used to protect statues from seismic effects. The work of art has been modeled through an 
equivalent elastic beam. In [Caliò &  Marletta, 2003] the same problem has been analyzed, 
but the art object has been modeled as a symmetric rigid block simply supported on an 
oscillating base connected to the ground by a visco-elastic device. The sliding of the body is 
prevented by special seismic restraints. These analyses have shown the effectiveness of the 
isolation system and the role of many parameters. To make things more realistic, in 
[Contento & Di Egidio, 2009], the model presented in [Caliò &  Marletta, 2003] has been 
enriched considering also the eccentricity of the centre of mass of the rigid body and the 
presence of security stops, able to prevent the breaking of the isolation device by limiting 
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the displacement of the oscillating base to a maximum safety value. More recently, in [Di 
Egidio & Contento, 2009; Di Egidio & Contento, 2010], they have introduced sliding effects, 
that make the model able to carry out more complicated motions like slide-rocking, and 
sliding constrains, that prevent the rigid body from falling off the base. Alternatively, the 
possibility for the rigid block to be partially removed from the oscillating base has been 
considered. Security stops to avoid damaging the base isolation system are also considered. 
The behaviour of the whole system is studied under two types of excitations: impulsive and 
seismic. Exact nonlinear equations of motion are written for the different phases of motion: 
full-contact, sliding, rocking, slide-rocking; transition phase conditions are obtained by 
generalizing to the case under analysis those obtained in [Taniguchi, 2002; Caliò &  Marletta, 
2003;  Contento & Di Egidio, 2009]. To describe the motion when the body is outside the 
oscillating support, original equations of motion, describing the rocking and the slide-
rocking motions of the rigid block around a different point from one of the corners of its 
base, are obtained. The influence of the friction coefficient, of the eccentricity, of the security 
stops and of other parameters are analyzed by performing an extensive parametric analysis 
via a direct numerical integration of the equations of motion. Comparison between results 
obtained for isolated rigid body and non-isolated rigid body are also carried out to show the 
effectiveness of base isolation with respect to the absence of this passive control system. 
Another possibility, not considered here, is the use of three-dimensional models of rigid 
blocks, mostly circular based. They are used to study the sloshing in circular shaped tanks 
[Taniguchi, 2004], the wobbling motion [Stefanou et al., 2011] and the motion of a disk of 
finite thickness on a planar surface [Koh & Mustafa, 1990; Batista 2006]. 

2. Description of the object considered and model hypotheses  

The  two-dimensional model presented is that of  an isolated rigid body, where the isolation 
system is an oscillating base connected to the ground by a linear visco-elastic device. The 
geometric dimensions of the rigid body are taken with ratios similar to those of real works 
of art and its characteristics are reported in Fig.1(a). With respect to the traditional models 
presented in literature, here, also the eccentricity of the centre of mass of the rigid body is 
considered: being C and O the centres of mass of the body and of the base respectively and 
M the middle point of the base, the eccentricity e= b1-b  is positive when the vertical 
projection of the centre of mass C is shifted on the right side of  M. In Fig.1(b) parameters 
characterising the base isolation are shown, where c and k are the damping and the stiffness 
of the linear visco-elastic device representing the base isolation system.  

The rigid body here considered can undergo different kinds of motion: (a) full-contact 
motion where the rigid body remains in contact with the isolated base when it oscillates, (b) 
sliding motion where the rigid body slides on the oscillating base, (c) rocking motion where 
the rigid body rocks around one of the two bottom corners without sliding and (d) slide-
rocking motion where a combination of rocking and sliding motion occurs (Fig.2). Three  
Lagrangian parameters are used to describe the different phases of motion (Fig.2): u(t) that is 
the translation of the oscillating base, x(t) that  is the translation of the body due to slide 
with respect to the isolated base and ϑ(t) that is the rotation of the body around one of the 
bottom corners and can be positive or negative if the body rocks around the left or the right 
corner respectively. Quantities ug and vg, shown in Fig.1(b), are the horizontal and vertical 
ground displacements respectively. Since there are no constraints the rigid block can come 
partially away from the base so that the rocking motion can occur not only around one of 
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the corners of the rigid body but also around one of the corners of the isolating base. For the 
same reason one of the possible collapse condition of motion is the body falling off the base. 
The other is the overturning of the body. In the model, frictional forces are expressed by 
using the Coulomb description and the friction coefficient has been varied in the different 
analyses carried out.  

bb

u x x xx u
max max

b1 b2
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r1 r1
r1 r2 r2
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O
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C CC

M M M

q qcr1 cr2
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Fig. 1. Mechanical system: (a) geometrical parameters of the rigid body; (b) parameters of 
the base isolation system without security stops for the sliding motion; (c) security stops for 
the sliding motion. 

(c)

u>0 u>0 u>0u>0
x>0 x>0

q>0 q>0

(d)(a) (b)

M M M M
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Fig. 2. Phases of motion: (a) full-contact; (b) sliding; (c) rocking; (d) slide-rocking. 

3. General formulation  

In this section the equations of motion for the different phases of motion, the transition 

conditions among them and the impact conditions are derived. 

3.1 Equations of motion  

Exact nonlinear equations of motion are written by using a Lagrangian approach for the 

different phases of motion. 

3.1.1 Full-contact motion  

The full-contact motion equation is the linear equation of a single degree of freedom system 
that represents the equilibrium of all forces acting on the system in the horizontal direction: 
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 ( )( ) 0      b Gm m u u cu ku  (1) 

where m and mb are the mass of the rigid block and the mass of the isolated base, 
respectively. 

3.1.2 Sliding motion 

During a pure sliding motion kinetic energy T and potential energy V of the system can be 
written respectively: 

 2 2 21 1 1
; ( )

2 2 2
     C B O O GT mu m u V k u u  (2) 

where cu  and ou are the positions of the centres of the body C and of the base O expressed 

as functions of two Lagrangian parameters (Fig.3(a)): 

 ( ) ( ) ( ) ( ), ( ) ( ) ( )    C G O Gu t u t u t x t u t u t u t  (3) 

Lagrange’s equations of motion are derived as follows: 

 
( ) 0

( )( ) 0

   

     

  

   
g

b g

m u u x F

m m u u mx c u k u
 (4) 

where F is the Coulomb kinetic friction force given by: 

 ( ) ( )  k gF sign x m g v  (5) 

and where k  is the kinetic friction coefficient and g the gravity acceleration. 

3.1.3 Rocking motion 

For the rocking motion, due to the fact that the model is non-symmetric, two different sets of 
equations of motion are necessary, depending on which corner the motion occurs. When the 

relative displacement ˆ ˆ[ , ] x x x , the base of the body is inside the oscillating support (see 

Fig.1(b)). In this case the positions of the centres of the rigid body C and of the base O, when 
a rocking around the corner 1 occurs, can be obtained by referring to Fig.3(b):  

 
1 1

1

ˆ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

   
  

 

C G

C G

O G

u t u t u t b b

v t v t h h

u t u t u t

 (6) 

Kinetic energy, potential energy and vitual work W of the non-conservative forces then read: 

 

2 2 2 2

2
1

1 1 1
( ) ;

2 2 2
1

( );
2

( ) .



 

   
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 
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

C C b O CT m u v m u I

V k u m g h h

W c u t u

 (7) 
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Lagrange’s equations of motion read: 

 
2

1 1

1 1 1

( )( ) 0

( ) ( ) 0

 



       

     

   
   

b G

G G

m m u u cu ku m h m b

I m u u h m g v b
 (8) 

where  

 1 1 1 1
ˆ ˆcos( ) sin( ); sin( ) cos( )       b b h h b h  (9) 

are the horizontal and vertical distances between centre of mass and corner 1 (that is the 

centre of rotation) in the actual position, after rotation (see Fig.3(b)),  and where 1 1
ˆ b b (see 

Fig.1(a)). In Eqs.(8) 2
1 1: CI I mr  is the polar inertia around corner 1; CI  is the polar inertia 

with respect to centre C of the body. The first equation of motion of Eqs.(8) represents the 

equilibrium of the forces acting on the body together with the base in the horizontal 

direction, while the second represents the equilibrium of the moments around the corner on 

which the rotation occurs.  
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Fig. 3. Geometrical description of the different phases of motion: (a) sliding; (b) (slide-) 

rocking around corner 1; (c) (slide-)rocking where the left corner of the body is outside the 

oscillating base. 

When the variable ˆ ˆ[ , ] x x x , the base of the rigid body is outside the oscillating support. In 

this case the centre of rotation of the body is located in one of the corners of the oscillating 

support (see Figs. 3(c)). The positions of the centres of the rigid body C and the base O, 

when a rocking around the left corner of the support occurs ( ˆ x x ), are equal to Eqs.(6) 

where, however, 1 1
ˆ  b b y  with ˆ y x x  ( 0x not depending on time, see Fig.3(c)). By 

using Eqs.(7)  it is possible to obtain Lagrange’s equations of motion equal to Eqs.(8). In this 

case 1I  is the polar inertia around the left corner of the support; 1b and 1h  represent the 

horizontal and vertical distances between the centre of mass and the left corner of the 

oscillating support (and not the left corner of the rigid body as in the previous case, see 

Fig.3(c)). They are still given by Eqs.(9). The equations of motion of rocking around the right 

corner of the base or of the support can be obtained in a similar way (cases ˆ ˆ[ , ] x x x  and 
ˆx x  respectively).  
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3.1.4 Slide-rocking motion 

Also for  the slide-rocking motion, due to the non-symmetry of the rigid body, two different 

sets of equations of motion are necessary, depending on which corner the rotation occurs. 

When during the motion the relative displacement ˆ ˆ[ , ] x x x , by evaluating kinetic and 

potential energies and taking into account the virtual work of the generalized forces given 

by Eq.(7), Lagrange’s equations of motion around the left corner can be found and read: 

 

2
1 1 1

2
1 1

1 1 1

( ) 0

( )( ) 0

( ) ( ) 0

 

 



      

        

      

   
    

    

G

b G

G G

m u u x m h m b F

m m u u mx cu ku m h m b

I m u u x h m g v b

 (10) 

where 1b  and 1h , given by Eqs.(9), are the horizontal and vertical distances between the 

centre of mass and corner 1 (that is the centre of rotation) in the actual position, after 

rotation (see Fig.3(b)), and where 1 1
ˆ b b . Eq.(101) represents the equilibrium in the 

horizontal directions of all the forces acting on the rigid body (Fig.4(b)), while Eqs.(102) and 

(103) have the same meaning of Eqs.(8). The Coulomb kinetic friction force 1F  is given by: 

 1 1( ) kF sign x Y  (11) 

where the vertical reaction 1Y  can be obtained by evaluating the vertical component of the 

total force acting on the rigid body (Fig.4(b)): 

 
2

1 1 1( )       GY m g v mb mh  (12) 

The equations of motion of rocking around corner 2, in the case in which the relative 

displacement ˆ ˆ[ , ] x x x  can be obtained similarly.  

When the variable ˆ ˆ[ , ], x x x  the centre of rotation of the body is located in one of the 

corners of the oscillating support (see Fig.3(c)). It is possible to obtain Lagrange’s equations 

of motion for the left corner: 

 
2

1 1

2
1 1

1 1 1 1
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    
      

     

G G

b G

G G

m u u mx m g v m h m b F

m m u u mx cu ku m h m b mx

I m u u h mx h m g v b mx b

 

(13)

 

In this case 1I  is the polar inertia around the left corner of the support; 1b  and 1h  represent 

the horizontal and vertical distances between the centre of mass C and the left corner of the 

oscillating support (and not the left corner of the rigid body as in the previous case, see Fig.3 

(c)). They are still given by Eqs.(9). It is interesting to observe that the first of Eqs.(13) 

represents the equilibrium of the forces acting during the slide-rocking motion along the 

slide direction parallel to the base of the body, when it is in a rotated configuration. The 

interpretation of the other two equations of motion do not change with respect to the 

previous case. A representation of the forces acting on the system during the slide-rocking 

motion around the left corner of the support is reported in Fig.4(c). The kinetic friction force 
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1F  is still given by Eq.(11) where 1Y  represents the total force orthogonal to the inclined 

slide direction and it can be obtained by the forces acting on the rigid body (Fig.4(c)): 

 
2

1 1
ˆ( )cos( ) ( )sin( ) 2               G GY m g v m u u mx mb mh  (14) 

It is interesting to observe that in this case the Coriolis force ( 2 ) mx  appears in the system 

due to the fact that the centre of rotation of the rigid body changes its position with respect 

the body during the motion. 
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Fig. 4. Forces acting on rigid body: (a) during a sliding motion; (b) during (slide-)rocking 
around corner 1; (c) during (slide-)rocking where the left corner of the body is outside the 
oscillating base. 

3.2 Transition and termination conditions  

Transition phase conditions are obtained by the equilibrium among forces or moments 

acting on the rigid body during the motion. In the following only the case related to motions 

around the left corner is presented while transition and termination conditions evaluated for 

a motion occurring around the right corner can be found similarly. 

3.2.1 Sliding motion 

A pure sliding phase can take place starting from the rest or from the full-contact phase. By 

referring to the forces acting on the system during a full-contact phase shown in Fig.4(a) 

with 0x , a sliding phase can occur when the static frictional force ( )  s s GF m g v  is 

lesser than, or equal to, the absolute value of the horizontal inertial force ( ) Gm u u . This 

condition reads: 

 ( )     s G Gg v u u  (15) 

where s  is the static friction coefficient. Equation (15) refers to starting condition from the 

rest when 0u   at 0t  .  

It is assumed that the termination condition of a sliding phase corresponds to the vanishing 

of the sliding velocity 0x  .  
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3.2.2 Rocking motion 

The pure rocking phase can take place from the rest or the full-contact phase. A rocking 

phase can occur when the resisting moment RM  due to the vertical accelerations ( )Gm g v   

of the body is smaller than the overturning moment OM  due to inertial force ( )Gm u u   (see 

Fig.4(a) with 0x  ). Considering the moments around the left corner (of the body or of the 

support), the following equation can be obtained:  

 1
ˆ

( )G G

b
u u g v

h
      (16) 

where 1 1b̂ b   when the relative displacement ˆ ˆ[ , ]x x x   during the full-contact motion, 

(see Fig.3(b)). On the contrary if the relative displacement x̂ x  , then 1 1b̂ b y   with 
ˆy x x   ( 0x  , see Fig.3(c)). Equation (16) refers to a starting condition from the rest when 

0u   at 0t   (and 0x  ). There is a favoured direction for the beginning of the rocking 

phase associated with the sign of the total acceleration Gu u  . In some cases when 1
ˆ 0b   or 

2
ˆ 0b  , which are the cases where the centre of mass is placed on the vertical projection of 

the centre of rotation of the body, an unstable equilibrium position manifests itself.  

No particular conditions are assumed to describe the termination condition of a rocking 
phase. This means that the rocking phase finishes when the energy associated to this phase 
is completely dissipated.  

3.2.3 Slide-rocking motion 

A slide-rocking motion can take place following the rest condition, the full-contact phase, the 

pure sliding phase or the pure rocking phase. Depending on which phase it starts, different 

starting conditions must be considered. First the starting condition of a rocking phase during a 

sliding motion will be analyzed. By referring to forces acting on the system during a sliding 

phase shown in Fig.4(a), a rocking phase can occur when the resisting moment RM  due to the 

vertical accelerations ( )Gm g v   of the body is smaller than the overturning moment OM  due 

to inertial force ( )Gm u u x    . Considering the moments with respect to the left corner (of the 

body or of the support), the following equation can be obtained: 

 1
ˆ

( )G G

b
u u x g v

h
        (17) 

where, if the displacement ˆ ˆ[ , ]x x x  , then 1 1b̂ b   (se Fig.3(b)); if the relative displacement 

x̂ x  , then 1 1b̂ b y   with ˆy x x   ( 0x  , see Fig.3(c)). There is a favoured direction for 

the beginning of the rocking phase also in this case. The starting condition of a sliding phase 

during a rocking motion can be evaluated by referring to the forces acting on the rigid body 

during a rocking motion shown in Fig.4(b) with 0x  . When the body is rocking around the 

left corner (of the body or of the support), the starting condition for a slide can be easily 

written as: 

 1 1s Y X   (18) 
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where 1X  and 1Y  are the reactions of the base as in Fig.4(b),(c). If the displacement ˆ ˆ[ , ]x x x  , 

force 1Y  is given by Eq.(12), while 1X  can be evaluated by computing the total horizontal 

force acting on the rigid body. By referring to forces in Fig.4(b) (with 0x  ), it reads: 

 2
1 1 1( )GX m u u mh mb         (19) 

When x̂ x  , the force 1Y  is given by Eq.(14) with 0x  , while 1X  can be evaluated by 

computing the total force acting on the rigid body along the sliding direction. By referring to 

forces in Fig.4(c) (with 0x x   ), it reads: 

 2
1 1

ˆ( )cos( ) ( )sin( )G GX m u u m g v mh mb             (20) 

Finally the starting condition of a slide-rocking phase from the full-contact phase is 

analyzed. A slide-rocking motion can take place from this phase if pure sliding and rocking 

conditions occur simultaneously. In particular a slide-rocking around the left corner (of the 

body or of the support) occurs when Eq.(15) and Eq.(16) are simultaneously proven. A slide-

rocking phase takes place directly from the rest if the same previous equations, with 0u   

at 0t  , are simultaneously proven ( 1 1b̂ b ).  

Also in this case, the termination condition of the sliding motion is taken to be 0x  . When 

this condition is satisfied only the rocking motion remains active. The termination of the 

rocking motion is associated with the total dissipation of the energy associated to this phase; 

in this case only the sliding motion remains.  

3.3 Impact conditions  

Both during pure rocking motion and during slide-rocking motion an impact among the 

rigid block and the isolated base occurs when the angle   approaches zero. No bouncing 

phenomenon is taken into account. Post impact quantities can be found, assuming that the 
impact happens instantly and the body position remains unchanged, imposing the 
conservation of the angular momentum  and the conservation of the linear momentum 
along the horizontal direction. Referring to an impact that occurs when the object 
approaches the base by rocking around the left corner (of the body or of the support), the 

angular momentum after the impact 2I mhu   has to be equal to the angular momentum 

before the impact 1 1 2 22 ( )I mr b sin mhu       . This condition reads: 

 1 1 1 22 ( )I mr bsin mhu I mhu               (21) 

where 2 2 2
1 1

ˆr b h  . The conservation of the linear momentum is needed to relate u and 

u under the assumption that the impact (that happens instantly by hypothesis) does not 

affect the sliding motion: 

 ( ) ( )b bmh m u x m u mh m u x m u                    (22) 

If the relative displacement ˆ ˆ[ , ]x x x  , then 1 1b̂ b  (see Fig.3(b)); if the relative 

displacement x̂ x  , then 1 1b̂ b y   with ˆy x x   ( 0x  , see Fig.3(c)). Taking Eq.(21) and 
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Eq.(22) into account, which means considering an impact that happens when the body is 

approaching the base by rocking around the left corner and successively rocking around the 

right corner, for a rectangular body, the following post-impact velocities are obtained: 

 
2 2

1 1 1
2 2

2

( ) 2 sin( )( )

( )
b b

b

m h I m m mbr m m

m h I m m

     


 
   (23) 

and 

 1 2 1 1
2 2

2

( 2 sin( )

( )b

hm I I bmr
u u

h m I m m

    
 

 
   (24) 

The maximum value of the coefficient of restitution that allows rocking motion of a block on 
an isolated base then reads:   

 

22 2 2
1 1 1

1 2 2
2

( ) 2 sin( )( )

( )
b b

b

m h I m m mbr m m
r

m h I m m








      
           


  (25) 

In Fig.5 some values of the restitution coefficient are shown. The dashed and dotted lines 

represent r1 obtained for 0.3e b and 0.3e b   respectively, while the solid line represents 

1 ( 0)r r e   as in [Vassiliou & Makris, 2011]. In the analyses the restitution coefficient has 

been taken accordingly with Eq.(25). 
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Fig. 5. Restitution coefficient for different values of the eccentricity.  

4. Description of the excitations  

Two types of base excitations are considered in the following: impulsive excitation and 
seismic excitation. Results are obtained in an analytical or in a numerical way depending on 
the excitation considered. Several geometrical and mechanical parameters are introduced to 
characterise the behaviour of the system. In particular: 

 
b

k

m m
 


 ;  

2
T




 ; 
2( )b

c

m m






 (26) 
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where   is the frequency, T is the period and   is the damping ratio of the isolated system 

in the full contact phase, that are well known quantities. Other quantities are introduced to 

characterize the system: 

 e

b
   ;  h

b
  ; bm

m
     (27) 

where   is the eccentricity ratio with respect to the base of the rigid body,   is the 

slenderness of the body and   is the mass ratio. 

4.1 Impulsive excitation  

An horizontal impulsive ground excitation has been considered. The solution of the full-
contact, Eq.(1), under an impulsive ground acceleration I, can be found in closed form and  
is well known, so, in this case, most of the results have been found analytically. Since the 
system exhibits a symmetry in the rocking motion, conditions where there is a rocking 
motion have been evaluated only referring to a rocking around corner 1 and for and 

eccentricity 0  . Results are exposed trough maps describing the criteria for the different 

phases of motion. These maps, firstly obtained for non isolated, symmetric rigid body 
subjects to a horizontal ground acceleration in [Shenton, 1996], were successively extended 
to vertical ground acceleration in [Tung, 2007]. Here they are extended to base isolated non-
symmetric rigid body subjects to a horizontal ground impulsive excitation and comparison 
between not isolated and isolated systems is carried out.  

4.2 Seismic excitation 

In this case the system has been excited with two different Italian registered seismic ground 
motions. Also for this kind of excitation only horizontal components of the seismic source 
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Fig. 6. Time-history and response spectrum of the Italian seismic accelerations used in the 
analysis: (a) Brienza; (b) Calitri.  
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( ) ( )gu t f t are considered, where ( )f t  is the recorded seismic acceleration and  is a 

variable coefficient used to scale the maximum amplitude of the seismic accelerations (PGA: 

Peak Ground Acceleration). In Fig.6 the seismic inputs used and the time-histories with their 

elastic response spectrums are shown. The Brienza seismic source (Fig.6(a)) is used to analyze 

the behaviour of the isolated rigid block and its dependence on several parameters, especially 

on the friction coefficient; the Calitri seismic source (Fig.6(b)) is used to evaluate the influence 

of the spectral characteristic of the earthquake in the dynamics of the isolated system.  

4.3 Description of the simulation  

Results are obtained via a direct numerical integration of the equations of motion using a 
Runge-Kutta fourth order scheme. Special care is devoted to the choice of the integration 
time step and appropriate procedures are followed to iteratively identify the transitions 
among the different phases. Extensive parametric analyses are conducted to evaluate the 
influence of the friction coefficient, the eccentricity and the slenderness as well as the period 
of the isolated base on the behavior of the system. Analyses are performed by increasing the 
PGA or the impulsive excitation to find the first occurrence of rocking, sliding and falling or 
overturning of the body. Maps of behavior are produced to compare the results obtained 
with similar systems. 

5. Description of the results  

Results have been obtained for two different cases, the first one where only the rocking 
motion is allowed and a second one where the body is able to slip as well. 

5.1 Introduction of safety devices  

Two types of security stops have been introduced in the model considered and their effects 
on the system investigated. The first is able to prevent isolation device breakage by limiting 
the displacement of the oscillating base to a maximum safety value, the others are 
introduced to prevent the rigid body from falling off the base. 

5.1.1 Security stops for the base isolation  

This kind of security stops is introduced to prevent the breaking of isolation devices that 

generally cannot support displacements greater than a boundary value maxu  (see Fig.1(b)). 

During the motion, if the velocity u  is different from zero, an impact among oscillating base 

and security stops occurs when: 

 maxu u  (28) 

To evaluate the condition after an impact, it is assumed that: the impact happens instantly 

and the body position remains unchanged; during the impact, a fraction of the horizontal 

momentum is dissipated and after the impact there is an inversion in the direction of 

motion. The horizontal momentum after the impact ( )H bQ m m u     becomes a fraction i  

of the horizontal momentum before the impact ( )H bQ m m u    . By letting H HQ Q  , it 

is possible to obtain the post-impact velocity of the body:  
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 iu u     (29) 

where i  is the restitution coefficient that can assume values in the range [0, 1]. 

5.1.2 Security stops for the slip of the body  

Special sliding constrains that prevent the rigid body from falling off the base have been 

introduced in the model as an alternative to the possibility of the rigid block coming 

partially away from the base (Fig.1(c)). An impact among the body and the security stops, 

during a slide or a slide-rocking motion occurs when: 

 ˆx x  (30) 

if the velocity x  is different from zero. After the impact it is supposed that the horizontal 

momentum due to slide motion mx  completely vanishes since it is partially dissipated and 

partially transferred to the horizontal momentum of the oscillating base. In particular: 

 ( ) ( )b s bm m u mx m m u         (31) 

from which it is possible to obtain the post-impact velocity of the base: 

 s
b

m
u u x

m m
   


    (32) 

where s  is the restitution coefficient that can assume values in the range [0, 1], under the 

assumptions that the impact happens instantly. 

5.2 Pure rocking motion 

Analyses are performed to evaluate the first time at which rocking and overturning of the 

body occur. This evaluation is done for several values of parameters  , T and  . The 

analyses here performed do not permit to obtain the so-called survival regions that lies 

above the first overturning occurrence as in [Zhang &  Makris, 2001; Purvance, 2005; 

Purvance et al., 2008].  

5.2.1 Impulsive excitation 

The rocking condition around corner 1 can be obtained by equating the maximum 

overturning moment maxmh u , due to the inertia forces, with the resisting moment 

( )mg b e , due to gravity, in which maxu  is the absolute maximum acceleration generated 

by an impulse. This equation can be written, taking into account Eq.(27): 

 max (1 )
g

u 


   (33) 

The solution of the full-contact equation (1), under an impulsive ground acceleration I , is 
well known and reads:  
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 2

2

1
( ) sin( 1 )

1

tI
u t e t  

 
 


 (34) 

By solving a maximum problem, it is possible to obtain the absolute maximum acceleration: 

 max

2 ( )
( )

I a
u I a

T

 
    (35) 

where the function ( )a  , which is always positive, reads:  

 
2 2

22

1 1 4
Arc tan

3 41

( ) 1 for 0

1
( ) for  0

2

a

a e

 
 

 

 

   
   

 

  
 (36) 

Starting rocking condition can be obtained by Eq.(16) (with 0g gu v   ), taking into account 

Eq.(35):  

 
1

: (1 )
2 ( )

R

T g
I

a


  
 C  (37) 

In the following, with solid lines overturning curves are indicated, while with dashed lines 

rocking curves are indicated; moreover thin lines refer to an isolated rigid block, while thick 

lines refer to a non-isolated rigid block. In Fig.7(a) minimum rocking and overturning 

impulses versus the period of the isolated base T are plotted for a fixed damping  . In grey 

regions a rocking phase occurs. Below these regions only a full-contact phase is possible, 

while above an overturning of the rigid block occurs. It is observed that when T is increased 

the object rocks or overturns with higher impulse amplitude,  however, the distance 

between the rocking and the overturning curves decreases. It is also possible to observe that 

for increased eccentricities the behaviour of the system worsens since smaller impulses are 

able to cause the rocking or the overturning. Also the amplitude of the rocking regions 

becomes smaller when the eccentricity is increased. In Fig.7(b) rocking and overturning 

impulses versus the eccentricity are shown both for isolated and non-isolated systems. 

Referring to the isolated system, also in this case, the grey area indicates the rocking phase 

region. The best behaviour of the system is obtained when 0   (symmetric body); the 

presence of an eccentricity reduces the performances since a smaller impulse is required to 

cause rocking or overturning. When 1     (the centre of mass is located on a vertical side 

of the body), since no resisting moment is present, the system is in an unstable equilibrium 

position. By comparing rocking and overturning curves for isolated and non-isolated 

systems, it is possible to observe the efficiency of the base isolation. It has to be highlighted 

that the rocking curve for non-isolated system is coincident with the horizontal axis (the 

minimum rocking impulse is always zero) because, given that an impulse corresponds to an 

initial velocity, a non-isolated body has always to start its motion with an angular velocity 

(0) 0  . Finally in Fig.7(c) rocking and overturning impulses versus the slenderness   are 

shown both for isolated and non-isolated systems. Curves are plotted starting by the value 
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of the slenderness 1 / 2   above which no bouncing phenomena occur. For a fixed 

eccentricity an increase of the slenderness causes an evident worsening of the behaviour. For 

higher values of the eccentricity both isolated and non-isolated systems reduce their 

performances. Grey region refers to rocking phase for 0.5   , both for isolated and non 

isolated structure; an increasing of the eccentricity also causes a reduction in the dimensions 

of the rocking region.  

5.2.2 Seismic excitation 

In Fig.8 comparison between the behaviour of an isolated rigid body with and without 

security stops for the oscillating base is shown under Buia earthquake (security stops for the 

sliding are not considered here). In the vertical left side of the graphs the scale factor   is 

reported, while in the vertical right side the PGA is reported.  

In particular in Fig.8(a) rocking and overturning curves versus eccentricity  are drawn in 

the case of absence of security stops (thick lines) and the case in which these safety devices 

are present (thin lines). Dotted thick line refers to impact events: it gives the scaling factor   

(or PGA) at which impacts on security stops occur for each value of eccentricity .  It is 

possible to observe that after an impact rocking and overturning happens for a lower value 

of the scaling factor with respect to the case in which security stops are not considered. 

Time-histories of ( )u t and ( )t  show better what happens when an impact occurs 

(Fig.8(b),(c)). Also in these figures thick lines denote the absence of security stops while thin 

lines denote the presence of this safety device. For the case labelled with H in Fig.8(a), when 

the displacement of the oscillating base ( )u t  reaches security stops ( max( )u t u ) one or 

more successive impacts can occur, as shown in Fig.8(b). The angle of rocking ( )t  (Fig.8(c)) 

in general increases with respect to the case in which security stops are not considered and 

causes the overturning of the rigid body for lower values of the scaling factor. Quantity 

rt refers to the time at which rocking phase starts, that is the instant at which Eq.(16) is 

satisfied. 

In the following, when safety devices are introduced, these characteristics are always 

considered:  0.70,  max 0.20u  . In Fig.9 comparison between isolated and non isolated 

system is shown to better evaluate the efficiency of the isolation system under Buia 

earthquake  for a fixed damping and in presence of security stops. In particular in Fig.9(a) 

rocking and overturning curves versus the period T are plotted for several eccentricity  . 

Dots on  -axis refer to the behaviour of the non isolated system. It is possible to observe that 

increasing the level of the protection (that is increasing period T) scaling factors at which 

rocking occurs increase with respect to the non isolated system, instead overturning scaling 

factors do not monotonically grow with T due to the high nonlinearity of the system. For 

example the minimum of the overturning curve that occurs in the range (0.5, 1.0)T   is 

related to the high contents of spectral energy of the Buia earthquake in the same range. Out 

of this range, the isolated system requires higher scaling factors to cause the overturning of 

the rigid body with respect the non isolated system. The behaviour of the system 

significantly decays when the rigid body has an eccentricity different to zero. The grey area 

in the graph refers to the region in which a rocking phase occurs for 0.5  . Below this  
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Fig. 7. Dependence on eccentricity  : (a) Minimum absolute impulse versus period T 

( 3  ); (b) Minimum absolute impulse versus eccentricity   ( 3,  2T s ); (c) Minimum 

absolute impulse versus slenderness   ( 2T s ); ( 0.3 ,b m 32000 / ,kg m  0.05  ). 

region a full-contact phase takes place; above this region an overturning of the rigid body 

occurs. In Fig.9(b) rocking and overturning curves versus the eccentricity  are plotted. Thick 

lines refer to the non isolated system, while thin lines to isolated system. Rocking and 

overturning curves for isolated system are the same shown in Fig.8(a). It is possible to note 

that the best behaviour of the system is obtained when 0   (symmetric body); the presence 

of an eccentricity reduces the performances since a smaller impulse is required to cause 

rocking or overturning. By comparing rocking and overturning curves for isolated and non-

isolated systems, it is possible to observe the efficiency of the base isolation. Also in this case 

grey areas indicate the rocking phase regions. Below these areas there is no rocking, above 

them there is a critical region in which overturning is not guaranteed everywhere because of 

the existence of survival regions that lie above the curve associated with the first overturning 

occurrence. Finally in Fig.9(c) rocking and overturning curves versus the slenderness  , for a 

fixed eccentricity ( 0.5  ), are plotted. Also in this figure thick lines refer to the non isolated 

system, while thin lines to isolated system. Also in this case curves are plotted starting by the 

value of the slenderness  1 / 2  . By increasing the slenderness   both the non isolated 

and the isolated systems generally show a decay of the performances, but it is possible to 

observe also in this case the greater efficiency of the base isolated system.  

The thick dotted line is the impact curve. Also in this case grey areas indicate the rocking phase 

regions. It is useful to summarize the effects due to the presence of security stops. In Fig.8(a) it is 

possible to observe that a range of eccentricity ( 0.75  ), in which impact events have the 

greater effects, exists. Into this range, when an impact occurs before the rocking in the system 

without security stops, the impact and the rocking curves become practically coincident. This 

means that the impact is the principal cause of rocking. Instead, when an impact occurs after the 

rocking, the impact and the overturning curves become coincident. This means that the impact 
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is the main cause of overturning. This limit value of the absolute eccentricity seems to be 

possessed by every systems and it depends on geometrical and mechanical characteristics of the 

system itself. Also above a slenderness limit value ( 3)   it happens that impact curve and 

overturning curve coincide, as shown in Fig.9(c). This slenderness limit value also depends on 

geometrical and mechanical characteristics of the system.  
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Fig. 8. Effects of the security stops under Buia earthquake: (a) Seismic scale factor versus 

eccentricity   ( 0.3 ,b m  3,   32000 / ,kg m  0.20,   0.70,  max 0.20,u   2T s ); 

(b) Time history of displacements ( )u t  for the case labelled with H in Fig.8a 

( 0.3 , 6.5    ); (c) Time history of rotation ( )t for the case labelled with H . 
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Fig. 9. Seismic analysis under Buia earthquake: (a) Seismic scale factor versus period T 

(   3 ); (b) Seismic scale factor versus eccentricity  ( 3,  T = 2 s ); (c) Seismic scale factor 

versus slenderness   (T = 2 s ); ( 0.3 ,b m 32000 /kg m  ,  0.20 ). 

The last analysis reported here points out the effects of the spectral characteristics of the 

earthquake. A simplified analysis is conducted by using Brienza and Calitri Italian 

registered earthquakes (Fig.6(b),(c)) with comparable lengths both normalized by assuming 

an acceleration peak equal to g. In Fig.10(a) rocking and overturning curves, obtained by 
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evaluating for which slenderness   the body rocks or overturns by varying the eccentricity 

 , are plotted. It is clear that under Brienza earthquake the system shows a better behaviour 

since rocking and overturning happen for higher slenderness with respect to the Calitri 

earthquake. Grey areas indicate the rocking phase regions. Below these areas there is full-

contact, above them there is overturning. In Fig.10(b) rocking (dashed lines) and  

overturning (solid lines) curves, obtained by evaluating the level of protection (that is the 

period T) to prevent rocking or overturning of the body by varying the eccentricity  , are 

plotted. It is evident that the Brienza earthquake requires a lower level of protection with 

respect to the Calitri earthquake, to prevent rocking or overturning. For Brienza input in the 

range [ , ]A B   , base isolation ( 0T  ) is not necessary to prevent overturning. Also in this 

case grey areas indicate the rocking phase regions but on the contrary, over these areas there 

is full-contact, below them there is a critical region in which overturning is not guaranteed 

everywhere because of the existence of survival regions. The isolated system shows a better 

behaviour for earthquake with a more narrow spectrum as found in [Purvance et al., 2008].  
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Fig. 10. Comparison between normalized Brienza and Calitri earthquakes (PGA=g): (a) 

slenderness   versus eccentricity  ( 0.3 ,b m 3,  2T s ) and (b) period T versus 

eccentricity  ( 0.3 ,b m 3,  32000 /kg m  , 0.20  ). 

5.3 Slide-rocking motion 

As for the rocking motion, analyses are performed to evaluate the first time at which slide, 

rocking or slide-rocking and overturning or falling of the body occur. Results are found for 

several values of parameters  , T and  .  

5.3.1 Impulsive excitation 

A horizontal impulsive ground excitation is considered individually in the following. Maps 

describing the criteria for the different phases of motion are obtained for base isolated non-

symmetric rigid body subjects to a horizontal ground impulsive excitation and comparison 

between not isolated and isolated systems is carried out. These criteria maps are behaviour 

maps that divides the parameter plane ( sI  )  in different regions where the motion starts 

with a different phase of motion. Conditions where there is a rocking motion will be 

evaluated only referring to a rocking around corner 1 and 0  . This is possible since, as 

already pointed out, the system exhibits a symmetry in the rocking motion. Considering 

sliding condition given by Eq.(15) (with 0g gu v   ) and taking into account Eq.(35) and 

Eq.(37), it is possible to obtain the starting condition of the sliding motion: 
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 :
2 ( )

S s

T g
I

a


 
C  (38) 

Starting rocking condition is still expressed by Eq.(37). By equating Eqs.(37, 38) it is possible 
to obtain the curve where, during rocking motion, the starting condition of sliding motion 
also becomes true: 

 1
: (1 )SR s 


 C  (39) 

When (1 ) /s     only the rocking motion is allowed (case considered in section 5.2). In 

order to find the condition at which a slide-rocking motion occurs starting from a pure 

rocking phase Eq.(18) must be taken into account. At the beginning of a rocking motion it 

can be considered that 0    and, by referring to Fig.3(a), 1 1 1,b b h h   . From Eq.(82) 

(with 0g gu v   ) it is possible to obtain the maximum angular acceleration max : 

 1
max

1 1

2 ( )ma h m gb
I

T I I

 
    (40) 

where use of Eq.(35) is done. The curve along which a sliding motion occurs starting to a 
rocking phase can be obtained by Eq.(18), by taking into account Eq.(12), Eq.(19) and Eq.(40). 
It reads: 

 
2 2(3 6 3 ) ( ) 3 (1 )

:
[3 (1 ) ( ) 4 ]

RS s

I a g

I a g

      


    
    


 

C  (41) 

where use of Eq.(27) is done. Previous curves divide the parameter plane in several regions 
as shown in Fig.11(b)-(f). It is possible to observe that, when a base isolation is applied to the        
rigid body, a full-contact region appears.  
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Fig. 11. Criteria maps: (a) not isolated system ( 3,  0,   2T s ); (b) isolated system 

( 3,  0,  0.1T s ); (c) isolated system ( 3,  0,  1T s ); (d) isolated system 

( 3,  0,  2T s ); (e) isolated system ( 5,  0,  2T s );  (f) isolated system 

( 3,  0.5,   2T s ); ( 0.20  ). 
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By considering the rocking motion particularly dangerous for the body, it is possible to 

observe that by increasing the period T of the oscillating base, the regions where there is 

rocking (grey regions) decrease (Fig.11(b)-(d)). By referring to the case where  2T s  

(Fig.11(d)), both an increase of the slenderness   (Fig.11(e)) and of the eccentricity   

(Fig.11(f)) cause a deterioration in the performance to the system, since a reduction of the 

full-contact region and an increase of the rocking regions are observed.  

5.3.2 Seismic excitation 

In the numerical simulations performed here, 0.8k s    is always used as in [Shenton & 

Jones, 1991]; according to results found in [Caliò &  Marletta, 2003] and [Contento & Di 

Egidio, 2009], in this paper, it is always assumed 0.2.   Where the security stop collision is 

concerned,  max 0.2u m , ˆ 0.1x m  and the restitution coefficients , 0.7i s   are always 

chosen. In the following figures, these graphic conventions are always used:  dashed curves 

are related to sliding motion and in particular heavy dashed curves are the curves at which 

a sliding motion begins, while thick dashed curves are the collapse curves due to the 

precipitation of the rigid block from the oscillating base; solid curves are related to rocking 

motion and in particular heavy solid curves are the curves at which rocking begins, while 

thick solid curves are the collapse curves due to overturning of the rigid body. Finally heavy 

dotted curves refer to the reaching of a slide ˆx x  above which the body is partially out of 

the oscillating base, thick dotted curves refer to a collision with the slide security stops and 

thick dash-dot curves refer to a collision with the base isolation security stops when they are 

considered.  
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Fig. 12. Seismic analysis under Brienza earthquake: (a) PGA versus static friction coefficient   

s - no security stops; (b) PGA versus static friction coefficient s - only base stops; (c) PGA 

versus static friction coefficient s - only sliding stops; (d) PGA versus static friction 

coefficient s - both base and sliding stops; ( 3,  0,   2T s ). 
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Results of the first analysis are shown in Fig.12 where the PGA associated with the first 

occurrence of sliding, rocking, falling or overturning is plotted versus the static friction 

coefficient  s , under Brienza earthquake for a body with slenderness 3   and eccentricity  

0  . In each graph of Fig.13 it is possible to observe the existence of five different regions: 

a  region S where only sliding motion can occur, a region S-R where rocking or slide-rocking 

motion can occur, a region R of pure rocking motions, a region FC where during the motion 

the body and the base remain in full contact and a critical region CR. Here, as for the rocking 

case, the survival regions could exist. At the labelled point A a collision between the sliding 

curve and the overturning one manifests itself. While the sliding curve and the critical 

falling curve strongly depend on the friction coefficient  s , it is very interesting to note that 

the rocking and the overturning curve are practically independent from s  above the point 

A. As observed in [Di Egidio & Contento, 2009] in this region, where the behaviour of the 

system does not depend on the friction, only a pure rocking motion is possible. Differently 

from the results obtained in [Di Egidio & Contento, 2009] where the body could not exit 

from the oscillating base, here, also for small values of the static friction coefficient, a 

rocking motion manifests itself. This is possible since, when the body is out the base (this 

happens over the curve labelled Out base), it can rock easily because the resisting moment 

becomes smaller and smaller as the body comes out the base (see Figs. 12(a),(b)). The effects 

of the presence of the security stops on the behaviour of the system are very interesting. 

Figure 12(a) refers to the absence of these stops. When security stops on oscillating base are 

considered (Fig.12(b)) a worsening of the performance of the system in the R region can be 

observed, because rocking and overturning can occur for smaller values of the PGA. On the 

contrary, around the conjunction between the falling and the overturning curves it is 

possible to observe an improvement of the performance of the system. It is useful to note for 

next comments, that the impact on the security stops (above the curve labelled Impact 1) 

happens before a rocking motion manifests itself. The introduction of security stops on the 

sliding motion (Fig.12(c), curve labelled Impact 2) change the falling collapse events in 

overturning collapse events. Since below the point B rocking and overturing curves 

coincide, rocking and overturning events happen for the same PGA and no S-R region 

exists. However the presence of these kind of security stops, do not change significantly the 

values of PGA at which a collapse can occur. Finally in Fig.12(d) results obtained from the 

contemporary presence of the two kind of security stops are shown.  

The effects of the eccentricity and specially of the slenderness on the performance of the 

system are shown in Fig.13. In Figs. 13(a)-(d) the results obtained for a body with 

slenderness 3   and eccentricity 0.35   are reported. First of all the worsening of the 

behaviour of the system due to an increasing of the eccentricity with respect to the results 

shown in Fig.12 must be observed, since smaller PGA are now able to cause falling and 

overturning collapse events. Another interesting aspect is related to the presence of security 

stops on the oscillating base (Fig.13(b)). Due to the increased eccentricity, the rocking starts 

before a collapse on security stops happens. This fact makes the system less sensitive to the 

presence of this kind of security stops compared to the case analyzed previously and shown 

in Fig.12. The presence of the security stops on the sliding motion (Fig.13(c)) or the 

contemporary presence of the two kind of security stops (Fig.13(d)) have, in this case, a 
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small impact on the performance of the system. On the contrary, in Figs. 13(e)-(h), results 

obtained for a lesser slenderness 2  (and the same eccentricity 0.35  ) are shown. First 

of all it must be observed that a decreasing of the slenderness causes a reduction of the 

region R where a pure rocking motion manifest itself, since the sliding motion becomes 

possible for higher values of the friction coefficient. By comparing results obtained without 

security stops (Fig.13(e)) and with only the security stops on the oscillating base (Fig.13(f)), it 

is possible to observe the great positive influence of this type of stops specially on the 

overturning collapse condition. The great sensitivity to the presence of these security stops 

is related to the fact that the impact on them happens before the rocking motion starts as 

observed also in the previous case.  
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Fig. 13. Seismic analysis under Brienza earthquake: (a)-(d) PGA versus static friction 

coefficient s ( 3  ); (a) no security stops; (b) only base stops; (c) only sliding stops; (d) 

both base and sliding stops. (e)-(h) PGA versus static friction coefficient s ( 2  ); (e) no 

security stops; (f) only base stops; (g) only sliding stops; (h) both base and sliding stops; 

( 0.35,   2T s ). 

www.intechopen.com



 
Seismic Protection of Monolithic Objects of Art Using a Constrained Oscillating Base  

 

355 

Unlike the case with 3   (shown in Fig.12(b)), where security stops on an oscillating base 

cause a worsening of the performance of the system, for smaller slenderness they improve 

the behaviour of the system. The presence of security stops on sliding motion have a small 

impact on the behaviour of the system as shown in Fig.13(g). Finally the contemporary 

presence of the two types of security stops causes a general improvement of the 

performance of the system compared to their total absence. To conclude, the comparison 

between the case with 3   (Figs. 13(a)-(d)) and 2   (Figs. 13(e)-(h)) shows that the 

performances of the two system are similar as to the falling collapse conditions (when no 

security stops on sliding are considered), while in the overturning conditions the behaviour 

of the system with lesser slenderness is much better than the other one.  

In Fig.14 some time-histories of different cases contained in different regions are shown. A case 

of pure slide motion in the presence of security stops is shown in Fig.14(a) for a point labelled 

with I1 in Fig.13(d). It is possible to observe the impossibility of the system to overcome the 

threshold value x̂ . When no sliding security stops are considered, the body can exit from the 

base as shown in Fig.14(b) for a point labelled I2 in Fig.13(f). In Fig.14(c) a case contained in the 

S-R region in presence of only security stops on the oscillation base is shown (point labelled I3 

in Fig.13(f)). It is possible to observe the impacts of the oscillating base on the stops from the 

time-history of the displacement u that never exceed the threshold value maxu . From the 

time-histories of x  and   two different slide-rocking motions can be observed. Below the 

time SRt , as the body is inside the support, rocking or slide-rocking motion around the corners 

of the of the body manifest themselves; above the time SRt , as the body is outside the support, 

rocking and slide-rocking motion happen around the corners of the support. In particular, in 

this last case the rocking motion happens around the left corner of the support since x̂ x   

and the right corner of the body. In Fig.14(d) the time-histories of a pure rocking motion are 

finally shown (point labelled I4 in Fig.13(f)).  
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In Figs. 15  results obtained for a body with slenderness 1   and eccentricity 0.35   are 

shown. It is very interesting to observe that in this case, the collapse of the system, also 

when no security stops are considered (Fig.15(a)), is related only to the overturning of the 

body. This fact can be explained by observing the great attitude of a body with less 

slenderness to slide instead of rocking. Since these kinds of bodies easily exit from the limits 

of the support by sliding and can easily reach large sliding displacement x, when a rocking 

motion starts, a overturning condition follows due to the small value of the resisting 

moment. When the two different security stops are considered a great improvement of the 

performance of the system is observed. This fact confirms the positive effects of the stops to 

system with a smaller slenderness. Above the points labelled with C rocking and sliding 

curves coincide. Finally it can be noted that no pure rocking region exists. 
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Fig. 15. Seismic analysis under Brienza earthquake, PGA vs static friction coefficient s :(a) 

no security stops; (b) base and sliding stops; ( 1,  0.35,   2T s ). 

6. Conclusion  

A model of a non-symmetric rigid body, where the centre of gravity is not equally distant 
from the two base corners can be used to investigate the behaviour of a real base isolated art 
object. The base under the rigid body is connected to the ground by a linear visco-elastic 
device representing the passive control system. Exact nonlinear equations of motion have 
been written by using a Lagrangian approach and transition conditions have also been 
derived. In the case in which no sliding security stops are considered original equations of 
motion describing the slide-rocking motion of the rigid block when it is partially outside the 
support have been obtained. For the impulsive excitation exact and approximated (for 
damped systems) results have been obtained in closed form while seismic excitation has 
been considered by using two Italian registered earthquakes. Two different kinds of collapse 
condition have been considered: the fall from the oscillating base of the rigid block and the 
overturning of the body. The analysis has been conducted with the aim of pointing out the 
effects of the friction coefficient, the influence of the slenderness and of the eccentricity of 
the body and the analysis confirms that base isolation can be more effective for rigid bodies 
with geometrical parameters similar to those of real works of art. Security stops have been 
considered one kind able to prevent isolation device breakage by limiting the displacement 
of the oscillating base to a maximum safety value, another introduced to prevent the rigid 
body from falling off the base. For wider bodies security stops turn out to have a positive 
influence on the performance of the system while above a certain value of slenderness they 
can worsen the behaviour of the system.  
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