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Genetic Aspects of Autism Spectrum Disorders: 
From Bench to Bedside 

Ivanka Dimova and Draga Toncheva 
National Human Genome Center,  

Department of Medical Genetics, Medical University of Sofia, 
Bulgaria 

1. Introduction 

Autism is a complex disorder of the immature brain, caused by different genetic and non-
genetic factors and characterized by a certain behavioral phenotype. Autistic spectrum 
disorders (ASD) may be isolated or syndrome, in the latter case combined with other clinical 
symptoms, facial dysmorphism, abnormalities of the limbs or internal organs, growth 
retardation. 

According to DSM-IV (Diagnostic and Statistical Manual of Mental Disorders) and ICD-10 
(International Classification of Diseases) autism includes symptoms of varying degrees in 
three categories: social interaction, communication, stereotyped behaviors. Leo Kanner 
defines two most typical early childhood autism disorder: 1. extreme loneliness (inability to 
establish normal contacts even with the closest) and 2. striving for permanence (any change 
in the surrounding world is of concern; sick child requires ritual immutability even in 
actions related to its service).  

DSM-IV defines five subtypes of Pervasive Developmental Disorders (PDD): 

• Classic autism 
• Asperger Syndrome (develop speech in the expected age, normal mental 

development); 
• Desintegrative disorder (Heller syndrome) 
• Regression in cognitive abilities, motor skills and communication between 2 and 10 

years of age, after a period of "normal" development in the first few years; 
• Autistic behavior, not otherwise specified (individuals with autistic behavior not 

consistent with other subtypes); 
• Rett Syndrome 

The incidence of autism is 3-6/1000, the ratio men: women is 4:1. In recent years, the 
frequency of patients with autism is increasing. This is due to greater awareness of medical 
professionals and changing diagnostic criteria, inclusion of patients with attention deficit 
and hyperactive behavior in this group, rather than a real increase in incidence of autism. 
Clinical picture comprises lack of interest in the environment, lack of eye contact, lack of 
subject matter, motor and verbal stereotypes; agramatism (speak for yourself in the third 
person) with a peculiar intonation, singing, not asking questions. Sometimes the children 
develop strange passions (in numbers, equipment, etc.). 
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The diagnosis of "autism" is often difficult due to high variability of symptoms in different 
individuals and in the same patient over time. Today it is considered that 11-37% of cases of 
autism are within a syndrome that can be diagnosed by specific laboratory markers and / or 
its characteristic phenotype, chromosomal aberrations, single gene diseases (tuberous 
sclerosis, fragile X syndrome chromosome), environmental factors. 

Despite of the organic basis of this disease, today it is diagnosed based on criteria 
established by consensus and not by biological markers. Family studies and those among 
twins show higher concordance in monozygous (60-91%) than in dizygous twins (0-6%). 
These studies support the existence of a genetic component in the etiology of autism. 
Autism is an example of high genetic heterogeneity.  

2. Chromosomal aberrations in autism 

Chromosome abnormalities have long been recognized as an important cause of learning 
disabilities and multiple malformation syndromes. About 0.8% of live born infants have 
numerical or structural chromosomal anomalies that result in an abnormal phenotype. 
Identification of such anomalies is important clinically and also for accurate genetic 
counseling. Recently, molecular-cytogenetic and array-based techniques have enabled 
higher resolution screens for chromosome anomalies. Since all patients with a chromosomal 
imbalance are dysmorphic, the association of ASD with a facial dysmorphism seems to be a 
good indication for chromosomal anomaly screening. Clinical features that predict an 
increased likelihood of finding a cytogenetic abnormality on routine testing include: 
congenital delay in neuro-cognitive development, one or more major malformations, 
prenatal onset abnormal growth pattern, craniofacial dysmorphism, unusual behavioral 
phenotypes, often in the autistic spectrum, and a family history of multiple miscarriages, 
learning disabilities or malformations. High resolution chromosome banding has been 
reported to have an overall detection rate of 7.5% for anomalies in patients with mental 
retardation/learning disabilities. It is recently reported that de novo balanced chromosomal 
rearrangements have high risk of neurodevelopmental and psychiatric disorders. 
Conventional cytogenetic analysis uses light microscopy to examine metaphase or 
prometaphase chromosomes that have been stained to produce a distinct banding pattern 
for each chromosome. This approach has a maximum resolution of 3-5 Mb for structural 
anomalies and requires mitotic cells, usually peripheral blood leucocytes, bone marrow, or 
fibroblasts, for analysis. 

About 5% of individuals with an ASD have a microscopically identified chromosomal 

alteration. Cytogenetic assays have long been used to uncover chromosomal defects in 

patients with autism. Almost all chromosomes have been involved. The incidence of de novo 

chromosomal aberrations may be increased in groups of persons with autism, suggesting a 

causal relationship between certain chromosomal aberrations and the occurrence of isolated 

idiopathic autism.  

By conventional cytogenetic and fluorescent in situ hybridization (FISH) methods a number 
of chromosomal abnormalities were found in 1.7 to 4.8% of patients with autism. The most 
frequent aberrations were abnormalities of 15q11-q13 locus (duplications, deletions and 
insertion - in 1-4% of cases), deletions of 22q and 16p, as well as partial monosomy X . Some 
of cytogenetic anomalies in autistic patients are presented in table 1. 
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Chromosomal aberration References 

inv(3)(p14;q21) de Silva et al. (2003) 

7q11.23 duplication (locus of Williams) Somerville et al. (2005) 
Depienne et al. (2007) 

7q inversion Arking et al. (2008) 

13q14-q22 deletion  Steele et al. (2001) 

15q11-q13 duplication Cook et al. (1997) 

15q11.2 isodicentric chromosome Wolpert et al. (2000) 

15q25.2-qter trisomy Bonati et al. (2005) 

16p11.2 deletion 
16p11.2 duplication 

Shinawi et al. (2010) 
Sebat et al. (2007) 
Bijlsma et al. (2009) 

genomic instability at 16p11.2 Eichler and Zimmerman (2008) 

t(13;17)(q14;p13) Tentler et al. (2002) 

22q13 telomeric deletion Luciani et al. (2003) 
Lindquist et al. (2005) 
Wilson et al. (2003) 

22q13 interstitial deletion Wilson et al. (2008) 

Xp22.11 deletion  Marshall et al. (2008) 
Filges et al. (2011) 

Table 1. Frequent chromosomal aberrations in patients with ASD 

3. Autism in syndromes 

• Fragile X chromosome Syndrome  

Fragile X chromosome Syndrome (FXS) is characterized by facial dysmorphism (long face, 

large protruding ear mussel), large testis and various degrees of mental deficiency. This is 

the most common cause of inherited mental impairment, affecting 1 / 4000 males and 1 / 

8000 women. It is caused by a dynamic mutation (variable number of CGG repeat) in FMR1 

gene, located on the long arm of chromosome X (Xq27.3). FMR1 gene encodes a protein 

(FMRP) involved in the transport of RNA molecules from cell nucleus to  cytoplasm. 

About 90% of men with FXS have behavioral disorders that can be interpreted as abnormal 

social behavior, or behavior characteristic of autism spectrum - limb automatisms, avoiding 

eye contact, signs of auto-aggression. Approximately 30% of individuals with FXS have 

autism. 

• Prader-Willi/Angelman Syndrome 

Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS) are most often result of a 
deletion of 15q11-q13 locus. Abnormal imprinting or mutations are found in ~ 5% of patients 
with PWS and 15% of patients with AS. The loss of the father's genes in this locus leads to 
expression of PWS, loss or mutation of the maternal UBE3A or ATP10C gene causes AS.  

AS is more often associated with autism than PWS. The diagnosis of AS should be 
suspected in patients with autism, severe mental deficiency and epilepsy. Between AS and 
autism, there is a number of common characteristics - a lack of expressive speech 
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automatisms, attention deficit, hyperactivity, problems with sleeping and nutrition, and 
delayed motor development. It is known that duplication of maternal genes in the critical 
locus for AS is often associated with autistic symptoms. Majority of patients with 
Angelman syndrome (42% -61%) meet the criteria for autism. In 25% of patients with 
Prader-Willi syndrome the autism diagnosis is inserted. The fact that autism occurs more 
often in maternal duplication of 15q11-q13 locus than in the forms with the deletion 
should be considered.  

• Turner Syndrome    

Turner Syndrome (TS) is caused by complete or partial absence of one X chromosome, it 
occurs with an incidence 1:2500 girls. Characteristics of the syndrome is the presence of 
gonadal dysgenesis, infertility, short stature, short neck with pterigium, facial dysmorfism, 
coarctation of the aorta, renal anomalies. Patients with TS have normal intelligence. Often 
they have reduced non-verbal skills and arithmetic skills with in a well-developed verbal 
intelligence. Haploinsufficiency of one or more genes in Xp22.3 region determine typical TS 
neurocognitive phenotype. There is an increased risk of autism in these children as 5% have 
classic autism, and > 25% are with autistic spectrum disorders. Girls with TS inheriting X 
chromosome from their mothers have poorer social skills than those inheriting X 
chromosome from their fathers and they are more often with autism. It is believed that on 
the X chromosome exist a gene determining social skills, which is expressed only when this 
chromosome is inherited from the father.  

4. Autism with known single gene defect  

• Rett syndrome 

Rett Syndrome (RS) is the only autistic spectrum disorder with a known etiology, which 
affects 1:12500 women (Figure 1). It is X-linked syndrome, a consequence of mutation in 
MECP2 gene (Xq28), encoding methyl-CpG-binding protein-2, MECP2. Atypical forms of 
the syndrome, with early onset epilepsy or cramps, may be due to mutation in gene for 
cyclin-dependent kinase-like 5 (CDKL5). 

Like the classic signs of autism, first clinical presentation of RS is between 6 and 18 months 
after the period of normal development. Clinical manifestations of the syndrome include 
regress in the neuro-psychological development, seizures, cognitive impairment, 
microcephaly, stereotype movements, abnormal socialization. 

Many genetic and environmental factors can alter the level of MECP2 protein in the brain 
and cause an effect similar to mutation in MECP2 gene. Study the role of MECP2 in the 
pathogenesis of RS and autistic spectrum disorders are considered as "Rosetta Stone" that 
can be used in deciphering the complex etiology of autism. 

• Tuberous sclerosis  

Tuberous sclerosis (TSC) is an autosomal dominant neurodermatosis, due to mutations in 
TSC1 (9q34), which encodes the protein hamartin, or mutations in TSC2 (16r13.3) gene for 
the protein tuberin. Both proteins co-operate and participate in the control of cell growth 
and proliferation. Carriers of mutations in these loci are prone to tumor formation, skin 
changes and hamartoma in various organs (Figure 2). Brain lesions (tuberosis) lead to 
epilepsy in more than ¾ of patients with TSC.  
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Given the high incidence of epilepsy in children with TSC and the frequent association 
between epilepsy and autism, it is not surprising that approximately 25% of patients with 
TSC are autistic. Among patients with autism, the incidence of TSC is 1.1 to 1.3%, this 
percentage is by 30% higher than the incidence of TSC in the general population.  

 

Fig. 1. Rett Syndrome (www.canajoharieschools.org)   

 

Fig. 2. Tuberous sclerosis (www.benmoonpharma.com) 

• Neurofibromatosis type 1 

Neurofibromatosis (NF1) is an autosomal dominant disease characterized by the development 
of multiple benign tumors of nerves and skin (nevrofibromas) and abnormal skin 
pigmentation (spots cafe-au-lait). Pigment patches are available at birth tended to increase in 
number and size over time. NF1 gene (17q11.2) encodes a protein called neurofibromin that 
functions as a tumor-suppressor. The incidence of NF1 in autistic people in different studies 
varies from 0.2 to 14%. Patients with NF1 have a 100-190 fold higher risk of developing autism 
than in the general population. Sixfold repeat of the AAAT Alu sequences in the NF1 gene is 
found only in patients with severe autism, and not in controls groups.  

• Metabolic diseases  

Among patients with phenylketonuria, hyper-succinyl-purinaemia, lactic acidosis, abnormal 
metabolism of aromatic amino acids and cholesterol, autism is more common than in the 
general population. Selective metabolic screening is indicated in patients with autistic 
behaviors and symptoms characteristic of metabolic diseases, lethargy, cyclic vomiting, 
seizures, mental deficiency. In some patients the early diagnosis of metabolic disorder and 
appropriate treatment can significantly improve their cognitive and behavioral phenotype. 
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In untreated patients with phenylketonuria it is very common the manifestation of auto-
aggression, hyperactivity, autism. It was found that 5.71% of patients diagnosed late with 
pathologic metabolic condition meet criteria for autism.  

• Mitochondrial diseases  

Proportion of patients with autism have an increased lactate. It is assumed that hyper-
lactate-acidaemia is a consequence of impaired oxidative phosphorylation process in 
mitochondria of neurons. The relationship between autism and mitochondrial diseases has 
been demonstrated and established by decreased activity of enzymes involved in oxidative 
phosphorylation, changes in the structure of mitochondria and various mutations in 
mitochondrial DNA. In 7.2% of patients studied with autism mitochondrial disease has been 
proven. Mitochondrial disease as a cause of autism should be suspected in patients in which 
there is combination of epilepsy and signs of neurological and / or systemic dysfunction.  

• Other single gene diseases  

Elevated levels of uric acid is found in ¼ of the patients studied with autism. The reasons for 
this "purine autism" remain unclear. Autism is described in association with muscular 
dystrophy Duchenne, Sanfilippo syndrome, Sotos, Cowden, Moebius diseases.  

5. Genetic predisposition to autism 

Identification of genes participating in the development of a disease is of paramount 
importance for precise diagnostics and adequate effective treatment. That is why genetic 
investigations are wide spread in elucidating the etiology of the disease - linkage analysis 
for searching of candidate-genes, association analysis of biological candidate-genes, whole 
genome screening. 

• SNP associations in autism 

The human genome is huge, consisting of thousands genes. This is the reason why the 
discovering of specific gene/genes responsible for a disease is so difficult task. Gene 
mapping aims in establishing the location of genes related to specific disease by using other 
genetic markers (Single Nucleotide Polymorphisms – SNPs) with known localization. The 
genes or loci, which are objects of the mapping, are these ones, which are supposed to 
predispose to the disease of interest – they are called disease loci. In general, there are two 
approaches in accomplishing the goal of mapping: linkage analysis (Linkage mapping), that 
is used in large families, and association studies (Linkage disequilibrium mapping) at the 
level of population. In linkage analysis, it is not necessary to know the pathophysiology of 
the disease – they detect genes with considerable effect at large distances. In contrast, 
association studies discover genes with little effect at small distances, as it is necessary to 
know the biology of the studied disease. These two approaches very often are combined in 
the practice.  

Single Nucleotide Polymorphisms (SNPs) represent changes in single nucleotides in DNA 
and occur with frequency >1%. Because of its extremely high density in the human genome, 
SNPs are ideal polymorphic markers for association studies in complex diseases. So far in 
the official database dbSNP (http://www.ncbi.nlm.nih.gov/SNP/, Genome build 36.3, 
dbSNP build 130) more than 10 millions SNPs are discovered and deposed. 
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Chr Cytoband Study Candidate-genes References 

1 1q41-42 62 families with at least 2 
individuals had autism or 
an autism spectrum 
disorder 

MARK1 Buxbaum et al. (2004) 
Maussion et al., 2008). 
Bartlett et al. (2005)  
 

2 2q31-32 411 pedigrees including 
671 autistic children; 158 
Irish child-parent rios (442 
individuals) 

cAMP-GEFII  
(RAPGEF4), DLX1  
DLX2  

Bacchelli et al. (2003)  
Ramoz et al. (2004)  
Segurado et al. (2005)  
Liu et al. (2009)  
Newbury et al. (2009) 

3 3q24 38 Finnish families in 
which a proband had 
autism; 18 families with 
autism  
 

SLC9A9(R423X)  
C3ORF58 (DIA1, 
'deleted in autism-
1') 

Morrow et al. (2008)  
Auranen et al. (2002) 

4 4p12 470 white families with 
autism ; 557 non-Hispanic 
Caucasian families with 
autism; 54 African 
American families with 
autism 

GABRA4 GABRB1 Ma et al. (2005) 
Collins et al. (2006) 

5 5p14 780 families (3,101 
subjects) with affected 
children; 1,204 affected 
and 6,491 control subjects; 
438 Caucasian families 
with 1,390 individuals 
with autism 

CDH9 
CDH10 

Wang et al. (2009) 
Ma et al. (2009) 

7 7q31 219 affected sib pairs with 
autism; 204 families with 
autism; 539 additional 
autistic families  

RAY1 (ST7) 
MET   
WNT2 

Vincent et al. (2000) 
Lamb et al. (2005) 
Folstein and Mankoski 
(2000)  
Campbell et al. (2006) 
Wassink et al. (2001) 

7q35-36 152 families segregating 
autism; 635 patients and 
942 controls; 539 
additional autistic families

CNTNAP2 
EN2 
FOXP2 CNTNAP2 

Vernes et al. (2008)  
Alarcon et al. (2008),  
Arking et al. (2008), 
Bakkaloglu et al.(2008)  
Molloy et al. (2005)  
Benayed et al. (2005) 
Gharani et al. (2004) 

12 12q14 26 families with autism, 
comprising 65 affected 
individuals 

 Ma et al. (2007) 

Table 2. Mapping for predisposing genes in ASD 
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Chr Cytoband Study Candidate-genes References 

15 15q11-13 221 patients with autism GABRB3 Shao et al. (2003)  
Tochigi et al. (2007) 

16 16p11 859 patients of European 
ancestry with autism 
spectrum disorder and 
1,409 controls 

 Glessner et al. (2009) 

17 17q11 117 autistic trios; 115 trios 
consisting of a proband 
with autism and both 
parents; 84 Irish families 
with autism; 384 families 
in which at least 1 child 
had autism and a second 
sib had autism or ASD 

5-HTTLPR 
SLC6A4 
5-HTT 

Abramson et al., 1989; 
Piven et al., 1991, 
Klauck et al. (1997)  
Kim et al. (2002)  
Conroy et al. (2004) 

17q21 56 sib pairs from 48 
families with only 
affected males; 730 
affected families; 281 
simplex and 12 multiplex 
Caucasian families with 
autism 

ITGB3 Cantor et al. (2005)  
Weiss et al. (2006)  
Napolioni et al. (2011) 
 

19 19p13 20 Finnish families with 
autism 

TLE2 
TLE6 

Kilpinen et al. (2009) 

21 21p13-q11 34 families in which 1 
individual had autism, a 
relative had either autism 
or ASD, and both had a 
definite history of 
developmental regression

 Molloy et al. (2005) 

X Xp11 119 boys with autism MAOA Cohen et al. (2011) 

Xq28 141 individuals with 
ASD; 176 ASD patients; 
38 Finnish families; 69 
females with autism 

RPL10 
H213Q 
MECP2 

Gong et al. (2009)  
Chiocchetti et al. 
(2011) Auranen et al. 
(2002) 
Carney et al. (2003) 

  

 

Table 2. Mapping for predisposing genes in ASD. (Continuation) 
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By the abovementioned methods of analysis several regions are localized as associated with 

autism in 20 different chromosomes. Most of them are summarized in table 2. Some of the 

identified loci or polymorphisms showed association with specific clinical features of the 

autism. For example, linkage at 1q41-42 correlated to obsessive-compulsive behaviors; 

linkage to 2q31-32 - mild developmental delay particularly affecting speech and language, 

pervasive developmental disorder, attention deficit, obsessive traits, and bipolar disorder; 

3q24 - Asperger syndrome or developmental dysphagia; 7q31 - specific language 

impairment; 7q35-36 - loss of language skills and/or loss of other socially communicative 

skills; Xp11 - more severe sensory behaviors, arousal regulation problems, aggression, and 

worse social communication skills.  

In whole-genome scan of 10 000 patients with ASD, members of their families and 

volunteers genetic variants associated with disease have been found. They are related to 

CDH9 and CDH10 genes that encode cadherins. Cadherins are proteins located on the 

surface of cells that are pivotal for cellular interactions. Other 30 genes for cell adhesion 

proteins (including other cadherins and neurexins) were also found to be strongly 

associated with autism. A positive association of autistic male with CNTNAP2 gene for 

neurexin was revealed. In the brain of fetuses, cell adhesion proteins allow neurons to 

migrate to the right places and connect with other neurons. Additionaly, it was found 

connection with rare variations in genes for the ubiquitin-proteasome system that may be 

included in the exchange of adhesion proteins on the cell surface. These results highlight the 

role of variations in genes coding proteins for intercellular adhesions to create a 

susceptibility to ASD. 

One of the strongest candidate-gene for ASD, selected from association studies, is EN2, 

mapped to 7q36. EN2 mouse mutants display anatomic phenotypes in the cerebellum that 

are similar to those reported for individuals with autism. Population-attributable risk 

calculations for the associated haplotype, performed by using large sample of 518 families, 

determined that the risk allele contributes to as many as 40% of ASD cases. 

• Copy number variations (CNV) in autism  

Literature data have showed that more than half of the variability between human genomes 

is due to submicroscopic copy number variations of  DNA (microdeletions and 

microduplications), and that these CNVs are responsible for some complex diseases, even 

more than single nucleotide polymorphisms (Freeman et al., 2006; McCarroll and Altshuler, 

2007; Redon et al., 2006). There are currently more than 6,000 known regions of CNV, and 

there are likely many more (Carter, 2007; Redon et al., 2006). Microarray-based Comparative 

Genomic Hybridization (array CGH) is currently one major technique for analyzing CNVs 

in a given individual (Carter, 2007). Array CGH is a sensitive, specific and rapid method for 

detecting unbalanced genomic changes. This method is used to detect submicroscopic 

aberrations, identifying critical DNA areas for a disease and clarify the genotype-phenotype 

correlation. Array CGH provides with direct link to genome database and potential 

candidate-genes, predisposing to the disease, could be revealed. 

Emerged as a new molecular-genetic technique, array CGH is now used for screening the 

genome of affected individuals and their families and for the localization of specific genes or 
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chromosomal regions potentially linked to autism. Using array CGH in patients with 

autism, unbalanced genomic changes were found in 10-27.5% of the affected individuals. 

The combination of facial dysmorphism with autism is an indication for conducting 

screening for chromosomal reorganizations.  

Using high-resolution microarray analysis, Marshall et al. (2008) found 277 unbalanced copy 

number variations, including deletions, duplications, translocations, and inversions, in 189 

(44%) of 427 families with autism spectrum disorder. These specific changes were not 

present in a total of about 1,600 controls, although control individuals also carried many 

CNV. Although most variants were inherited among the patients, 27 cases had de novo 

alterations, and 3 (11%) of these individuals had 2 or more changes. 

In the most recent years (see table 3) the using of array CGH in large cohorts enabled us to 

uncover new candidate-genes for autism with high statistical power. Most of them are 

responsible for normal functioning of nervous system. 

 

Chr Cytoband Candidate-

genes 

Function References 

1 1q21 HYDIN hydrocephalus inducing Itsara  

et al. (2009) 

2 2p16 NRXN1 neuronal cell adhesion Rujescu  

et al. (2009) 

3 3q29 FBXO45 

DLG1 

PAK2 

synaptic transmission 

junction formation 

cytoskeleton 

reorganization 

Quintero-Rivera  

et al. (2010) 

 3p26 

 

3q26 

9q33 

CNTN4 

 

NLGN1 

ASTN2 

neuronal network 

formation and plasticity 

neuronal cell surface 

protein 

neuronal migration 

Glessner  

et al. (2009) 

11 11q13 SHANK2 molecular scaffold in the 

postsynaptic density 

Berkel  

et al. (2010) 

16 16p11 TBX6 regulation of 

developmental processes

Fernandez  

et al., 2010 

Shinawi  

et al. (2010) 

X Xp22 PTCHD1 patched domain 

containing 

Whibley  

et al. (2010) 

 

Table 3. CNV in specific regions and corresponding candidate-genes for ASD 

Figure 1 summarize the chromosomal locations, showing linkage with autism and 

containing potential candidate-genes for the disease. 
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Fig. 3. Human karyogram, showing the most frequently affected chromosomes in autism 
and ASD. 
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6. Genetic counseling in autism 

The risk for recurrence of ASD in families having children with "idiopathic" autism is 2-8%. 
The diagnosis of autism within malformative syndrome or metabolic conditions with 
known genetic defects could precise the risk for disease recurrence. It is recommended 
careful counseling in families with autistic patients when they plan future pregnancy.  

In patients with autistic spectrum disorders the following genetic analyses are 
recommended:  

• Karyotyping;  

• Metabolic screening for phenylketonuria, hyper-succinyl-purinemia, lactic acidosis, 
abnormal metabolism of aromatic amino acids, monoamines and cholesterol, abnormal 
glycosylation (CDG);  

• Screening for mutations in MECP2 and FMR1 gene;  

• FISH and RT-PCR for abnormalities of 15q11-13 locus (duplications, deletions and 
insertion);  
Screening for mutations in mtDNK;  

• Comparative genomic hybridization with microarrays (arrayCGH). 

The most probable multifactorial etiology of autism suggests that interactions between 
multiple genes cause “idiopathic” autism but that epigenetic factors and exposure to 
environmental modifiers may contribute to variable expressions of autism-related traits. The 
extensive research in this area, consolidating clinical, genetic, metabolic and environmental 
data will contribute to better understanding of the disease and to better clinical 
management.  
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